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ABSTRACT 
 

A common approach to producing visual speech is to interpolate the parameters describing a sequence of mouth shapes, known as visemes, 

where visemes are the visual counterpart of phonemes. A single viseme typically represents a group of phonemes that are visually similar. 

Often these visemes are based on the static poses used in producing a phoneme. In this paper we investigate alternative representations for 

visemes, produced using motion-captured data, in conjunction with a constraint-based approach for visual speech production. We show that 

using visemes which incorporate more contextual information produces better results that using static pose visemes. 

  

1. INTRODUCTION 
There are different approaches to visual speech synthesis: 

interpolative synthesizers based on visemes [2, 3], concatenative 

synthesizers based on the concatenation of dynamic pieces [5, 

12, 13], learning-based synthesizers based on learning a 

mapping between audio and visual features using machine 

learning techniques [4, 22] and physically-based synthesizers 

based on the physical simulation of the skin and muscles [1, 11]. 

Our approach is based on viseme interpolation, where the 

parameters describing a sequence of facial postures are 

interpolated to produce animation. For general facial animation, 

this approach gives artists close control over the final result, 

albeit at the expense of endless tweaking of facial posture to 

give the desired effect, and for visual speech it fits easily with 

the phoneme-based approach to producing speech. 

An issue that visual speech synthesizers must deal with is 

coarticulation, which is the effect of context on a phoneme or its 

equivalent viseme. For example, in the word ‘boot’ the /o/ 

affects the lip shape of the /b/ and the /t/. For a concatenative 

synthesizer, coarticulation within pieces is accounted for, since 

the dynamic movement of the mouth is part of the 

representation, although there is still an issue at joins between 

pieces. For a viseme-based solution, the interpolation process 

must reproduce the effect. Here, the most commonly used 

approach is based on dominance functions [6]. Instead, we base 

our solution on a constraint-based approach (similar to [8, 9]), 

which formulates the coarticulation problem as an optimization 

problem. A viseme is treated as a cluster or range of poses 

centred on an ideal target pose. An objective function tries to fit 

a curve so that it passes through the viseme centre, but a set of 

constraints prevents this, so that the curve passes through the 

cluster, remaining in the viseme's range. 

This paper investigates a number of different representations for 

a viseme that can be used in the constraint-based approach. 

These are formulated by considering the variability of a 

particular viseme, in isolation and in context, and considering 

the acceleration characteristics between a sequence of visemes. 

This kind of data is collected for a particular speaker by using a 

corpus (as described in Section 3), and the process of calculating 

the relevant parameters to be used in the animation process is 

known as tuning the model. For example, if the parameters for 

the viseme /t/ were known, this could be used in synthesizing the 

words 'dramatically' and 'dormitory'. However, the tuning 

process would need to take into account the context, and not 

assume that a /t/ behaves the same when between /a/ and /i/ as 

when between /i/ and /o/. Using a corpus to produce visemes 

makes the process similar to other data-driven approaches, such 

as concatenative approaches, although less data is stored for the 

viseme representation.  

Section 2 will present an overview of the constraint-based 

approach. Section 3 describes the corpus recorded. Section 4 

presents the type of data extracted from the corpus and how it is 

used to define the different types of visemes. Section 5 presents 

the results. Finally, section 6 presents conclusions and 

suggestions for future work. 

2. CONSTRAINT-BASED VISUAL 

SPEECH 
A posture (viseme) for a phoneme is variable within and 

between speakers. It is affected by context (the so-called 

coarticulation effect), as well as by such things as mood and 

tiredness. This variability needs to be encoded within the model. 

Thus, a viseme is regarded as a distribution around an ideal 

target. The aim is to hit the target, but the realisation is that most 

average speakers do not achieve this. Highly deformable 

visemes, such as an open mouthed /a/, are regarded as having 

larger distributions than closed-lip shapes, such as an /m/. Each 

distribution is regarded as a constraint which must be satisfied 

by any final speech trajectory. As long as the trajectory stays 

within the limits of each viseme, it is regarded as acceptable, and 

infinite variety within acceptable limits is possible. 

To prevent the ideal targets from being met by the trajectory, 

other constraints must be present. For example, a global 

constraint can be used to limit the acceleration and deceleration 

of a trajectory. In practice, the global constraint and the 



distribution (or range) constraints produce an equilibrium, where 

they are both satisfied. Variations can be used to give different 

trajectories. For example, low values of the global constraint 

(together with relaxed range constraints) could be used to 

simulate under-articulation (e.g. mumbling). In addition, a 

weighting factor can be introduced to change the over/under 

articulation of a particular viseme. 

Using the constraints, an optimisation function is used to create 

a trajectory that tries to pass close to the centre of each viseme. 

Figure 1 gives a conceptual view of this. We believe this 

approach better matches the mental and physical activity that 

produces the coarticulation effect, thus leading to better visual 

speech. In using a constrained optimisation approach [8], we 

need two parts: an objective function, Obj(X) and a set of 

bounded constraints Cj: 

                                     
(2.1) 

                             

where    and    are the lower and upper bounds respectively. 

The objective function specifies the goodness of the system state 

X for each step in an iterative optimisation procedure. The 

constraints maintain the physicality of the motion. 

The particular optimisation function we use is based on [8, 9]. 

However, whilst that work uses a system of weights to indicate 

the importance of particular targets, we add variability around 

the targets    using a constant, ki, which represents over/under-

articulation: 
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    (2.3) 

where    is the minimum value of   ,    is the maximum value 

of    and ai varies the amount of over-articulation and under-

articulation. The objective function uses the square difference 

between the speech trajectory S and the sequence of ideal targets 

(visemes)    given at times ti. 

The objective function is subject to a set of constraints. A speech 

trajectory S will start and end with particular constraints, e.g. a 

neutral state such as silence. These are the boundary constraints, 

as listed in Table 1, which ensure the articulators are in the rest 

state. If necessary, these constraints can also be used to join 

trajectories together.  Range constraints are used to ensure that 

the trajectory stays within a certain distance of each target:  

                  (2.4) 

where    and    are, respectively, the lower and upper bounds of 

the ideal targets   . Finally, acceleration constraints are used to 

prevent the ideal targets being met, i.e. if Equation 2.4 and Table 

1 are used in Equation 2.2, the ideal targets    will simply be 

met. 

Two kinds of acceleration constraint are considered. Local 

acceleration constraints are used to limit the acceleration 

between two targets. A global acceleration constraint is used to 

dampen the trajectory. The local parametric acceleration is 

limited as follows: 

            where               (2.5) 

where λ is the maximum allowable magnitude of acceleration 

between two targets of the trajectory. If two consecutive targets 

are similar, the acceleration of the segment between them is 

small. If these targets are different, constraining the acceleration 

of the segment between them will make them similar. When a 

target has a coarticulation effect over its next target these two 

targets are similar and the acceleration of the segment between 

them is small. 

The global parametric acceleration of a trajectory is limited as 

follows: 

            where                   (2.6) 

where γ is the maximum allowable magnitude of acceleration 

across the entire trajectory. As this value tends to zero, the 

trajectory cannot meet its targets. As the global constraint is 

reduced the trajectory will eventually reach the limit of at least 

one range constraint. 

A further constraint is added to ameliorate the effect of 

trajectory turning points occurring between viseme targets, since 

this can make the mouth movement appear to be out of 

synchronization with the audio. Local constraints that restrict the 

acceleration to zero at each target are used: 

                             (2.7) 

The speech trajectory S is represented by a cubic non-uniform 

B-spline. This gives the necessary C2 continuity to enable 

Equations 2.5 and 2.6 to be applied. The optimisation problem is 

solved using a variant of the Sequential Quadratic Programming 

(SQP) method (see [24]). The SQP algorithm requires the 

objective function described in Equation 2.2. It also requires the 

derivatives of the objective and the constraints functions: the 

Table 1. Boundary Constraints 

Constraints Action 

S(tstart) = εstart Ensures trajectory starts at εstart 

S(tend) = εend Ensures trajectory ends at εend 

S(tstart)′ = S(tend)′ = 0 Ensures the velocity is equal to 

zero at the beginning and end of 

the trajectory 

S(tstart)′′ = S(tend)′′ = 0 Ensures the acceleration is equal 

to zero at the beginning and end 

of the trajectory 

 

Figure 1. Conceptual view of the interpolation process 

through or near to clusters of acceptable mouth shapes for 

each viseme 

start 

end 



Hessian of the objective function Hobj and the Jacobian of the 

constraints Jcstr. This algorithm follows an iterative process with 

the steps described in Equations 2.8, 2.9 and 2.10. The iterative 

process finishes when the constraints are met and there is no 

further reduction in the optimisation function (see section 5 for a 

discussion of this). 

           
  

 

 

    

   

 
    

    

     (2.8) 

            
                  (2.9) 

                                      (2.10) 

3. CAPTURING DATA 
In order to produce specific values for the range constraints 

described in the previous section, we need to define the visemes 

that are to be used and measure their visual shapes on real 

speakers. In English, there is no formal agreement on the 

number of visemes to use. For example, Massaro defines 17 

visemes [19] and both Dodd and Campbell [7] and Tekalp and 

Ostermman [23] use 14 visemes. We use 14 visemes for 

Mexican-Spanish [18], as listed in table 2. Many of these are 

similar to the English visemes, although there are exceptions. 

The phoneme /v/ is an example where there is a different 

mapping between Spanish and English visemes; in English 

speech the phoneme maps to the /F/ viseme whereas in Spanish, 

the /v/ phoneme corresponds to the /B/ viseme. There are also 

letters, like /h/, that do not have a corresponding phoneme in 

Spanish (they are not pronounced during speech) and thus have 

no associated viseme.  Similarly, there are phonemes in Spanish 

that do not occur in English, such as /ñ/, although there is an 

appropriate viseme mapping, in this example to the /N/ viseme. 

The data for the visemes in Table 2 was captured both statically 

and dynamically. In the static case, each speaker performed 

(only once) the static mouth shapes of each of the representative 

phonemes in Table 2. In the dynamic case, two native Mexican-

Spanish speakers (one female and one male) were recorded 

using an inexpensive mocap system built using two high speed 

(Casio Exilim F1) cameras. Both speakers recorded a corpus of 

VCV combinations as described in Table 3 where C is any of the 

representative phonemes in Table 2 and V are the viseme vowels 

a, e, i and o. Each of the VCV segments was repeated 10 times. 

The speed of production of the segments was controlled by 

using a metronome. The speed was measured by syllables per 

minute (spm) and the recorded speeds used in this work were 

100 spm and 200 spm. This gives a total of 2880 segments per 

speaker (16 VCV segments multiplied by 10 repetitions 

multiplied by 9 consonants multiplied by 2 speeds). Syllables 

per minute were chosen as it is easy to synchronize a syllable to 

a beat than a single phoneme as some consonants are hard to 

keep for long periods of time, e.g. plosives. When synchronizing 

to the metronome, the first vowel would align with a metronome 

beat, then the consonant and the second vowel align with the 

following beat. This means the first vowel is longer than the 

second. To make the vowels even in length, a /t/ was introduced 

at the beginning and end of the segment. The /t/ was selected as 

it is a consonant that is easily influenced by surrounding vowels, 

e.g. consider the words steed and boot.  

The recorded mocap data is in the form of the 3D coordinates of 

the markers placed on the speaker’s face. These markers are 

used to deform a 3D synthetic face model according to the 

speaker movement so the 3D model replicates the movement . 

We call this mapped 3D data. This is done for each frame in a 

recorded VCV segment using Radial Basis Functions [21] and 

Mixtures of Probabilistic Principal Component Analysis [10]. 

We use Principal Components (PCs) from Principal Component 

Analysis (PCA) as the parameterization [14, 17]. The PCs are 

obtained by applying PCA to a set of 17 different poses obtained 

from FaceGen (Singular Inversions: http://www.facegen.com/) 

and the first seven PCs are used as the parameterization. By 

projecting the mapped 3D data to the space defined by the PCs a 

set of seven PC parameter curves is obtained. A frame were each 

of the visemes is thought to be produced is extracted. The 

variability of a viseme is obtained by grouping the frames were 

the given viseme was produced. This data is then used with an 

interpolation process to create a synthetic animation curve to 

compare against the PC parameter curves from the 3D mapped 

data. 

4. EXTRACTING DATA AND VISEME 

TYPES 
In order to extract values for the visemes the recorded segments 

have to be labelled. Labelling identifies the instant in time the 

viseme is executed. Once labelled, all the executions of a given 

viseme can be used to give a range for it. Different types of data 

Table 2. Mexican-Spanish viseme definition 

Phonemes: IPA 

and example word 

Representa

tive 

phoneme 

Viseme name (vowels 

lower case, consonants 

upper case) 

silence  NEUTRAL 

/a/casa /a/ a 

/b/beber, /m/marcar, 

/p/partir 

/b/ B 

/tʃ/chorro, /ʎ/lluvia /tʃ/ CH 

/d/dedo, /s/sol, 

/t/todo 

/d/ D 

/e/peso /e/ e 

/f/falso /f/ F 

/i/si /i/ i 

/x/reloj,/g/ganar /x/ J 

/k/casa /k/ K 

/n/niño, /ɲ/niño /n/ N 

/o/bosque, /u/cuna /o/ o 

/ɾ/pero, /r/perro  /r/ R 

/l/los /l/ L 

 

Table 3. Vowel-Consonant-Vowel (VCV) combinations 

Vowels a e i o 

a aCa aCe aCi aCo 

e eCa eCe eCi eCo 

i iCa iCe iCi iCo 

o oCa oCe oCi oCo 

 



can be extracted from the corpus, which we define as Type 1, 2, 

3 and 4. In addition, Type 0 data is the visemes captured while 

the speaker is holding the production of a viseme. These are 

essentially a baseline since they contain no context and thus no 

coarticulation information. We will refer to these as static 

visemes. 

In Type 1 data, a coarticulated viseme is taken as the mean of all 

the repetitions of the viseme. The viseme range is also taken 

from all the repetitions. For the vowels, this means mixing the 

repetitions of a given vowel when it appears at the beginning of 

a VCV segment and when it appears at the end of a VCV 

segment for all consonants C. For the consonants, the consonant 

data is obtained by mixing all the consonants of all the 

combinations of VCV where the consonant is used. 

In Type 2 data, the coarticulated visemes and the viseme ranges 

for consonants are obtained in the same way as in Type 1 data. 

For vowels, they are obtained by separating the order in which 

the vowel appears. The vowel will have a coarticulated viseme 

and a viseme range for when it starts a VCV segment and 

another for when it ends the segment, for all consonants. 

In Type 3 data, the coarticulated viseme and its range for a 

vowel depend on the position of the vowel, on the consonant 

used and also on the vowel used before or after the consonant. 

For example, the vowel /a/ preceding the consonant /m/ will 

have different values for the coarticulated viseme value and for 

the viseme range when appearing in  ‘ama’ than in ‘amo’. The 

vowel /a/ will have a different coarticulated viseme value and 

viseme range when appearing after the consonant /m/ when 

appearing in ‘ema’ than when appearing in ‘ima’. For the 

consonants, the coarticulated viseme and the viseme range will 

be defined according to the vowel that is before and after the 

consonant. For example, the consonant /m/ will have a different 

coarticulated viseme and viseme range when appearing in ‘ama’ 

than when appearing in ‘ame’. 

Type 4 data are acceleration ranges. These acceleration ranges 

depend on what is before or after a viseme. For example, the 

acceleration range between a vowel /a/ and a consonant /m/ will 

be different when appearing in ‘ama’ than when appearing in 

‘ame’. Also the acceleration range between a consonant /m/ and 

a vowel /e/ will be different when appearing in ‘ame’ than when 

appearing in ‘ime’. 

From this data, static visemes, coarticulated visemes and 

enhanced visemes are obtained. Static visemes are visemes 

captured while the speaker is holding the production of a 

viseme, and thus do not incorporate context. Coarticulated 

visemes are taken as the mean of a viseme produced several 

times during recorded speech. Three types of coarticulated 

visemes were extracted. They correspond to the Type 1, 2 and 3 

data, respectively. Enhanced visemes are the combination of 

static visemes or coarticulated visemes with local acceleration 

information before and after the viseme. This information is 

obtained from Type 4 data. 

5. EVALUATION AND RESULTS 
The different kinds of viseme data are used in our constraint-

based coarticulation model in order to produce synthetic 

animation curves. In addition, a simple spline curve fitted 

through the targets is used as a baseline for the experiments. 

Table 4 describes all the possible experiments. As an example, 

experiment 13 uses coarticulated Type 1 visemes to produce 

synthetic animation curves using the constraint-based approach.  

An objective evaluation is then conducted by comparing the 

synthetic curves against the original recorded curves (from the 

mapped 3D data) using Root Mean Square (RMS). RMS is used 

as the synthetic and recorded curves are aligned. If the curves 

were not aligned, Dynamic Time Warping (DTW) [20] could be 

used. The first evaluation is done using the corpus used to 

extract the data, i.e. the synthetic curves are compared against 

the recorded data in the corpus. The second evaluation uses a set 

of words that are different to the data in the corpus. 

For the first evaluation, each of the experiment settings was 

evaluated against each of the recorded VCV segments described 

in section 3. This means each of the experiment settings had to 

synthesize each of the different sentences and their repetitions. 

This evaluation was done just for the first PC animation 

parameter; a similar evaluation could be carried out for the rest 

of the parameters. Each experiment setting synthesized 1440 

different VCV sentences ( 9 consonant visemes multiplied by 16 

VCV combinations and 10 executions of each VCV performed 

by a given speaker at a given speed). 

As mentioned in section 4, each of the executions of the VCV 

combinations was labelled. In each execution the timing is 

slightly different and the magnitude of each curve and any 

common points is slightly different. Given the labelling, 10 

synthesized curves are produced for each VCV combination. 

The synthesized curves are compared with the respective 

original. 

Table 4. The experiments 

Experim
ent 

number 

Viseme type Range 
type 

(max, 
min) 

Interpolatio
n Method 

0 Static None spline 

1 Static Type 1 constraints 

2 Static Type 2 constraints 

3 Static Type 3 constraints 

4 Coarticulated Type 1 None spline 

5 Coarticulated Type 2 None spline 

6 Coarticulated Type 3 None spline 

7 Coarticulated Type 1 Type 1 constraints 

8 Coarticulated Type 2 Type 2 constraints 

9 Coarticulated Type 3 Type 3 constraints 

10 Enhanced: Static Type 1 constraints 

11 Enhanced: Static Type 2 constraints 

12 Enhanced: Static Type 3 constraints 

13 Enhanced: 
Coarticulated Type 1 

Type 1 constraints 

14 Enhanced: 
Coarticulated Type 2 

Type 2 constraints 

15 Enhanced: 
Coarticulated Type 3 

Type 3 constraints 

 



Figure 3 shows the RMS mean for the evaluation of each 

experiment for each speaker. It can be observed that when using 

static visemes, the coarticulation model (experiments 1, 2, 3) 

performs better than the spline interpolation (experiment 0). This 

is because the coarticulation model constrains the trajectory to 

pass between the viseme ranges. Similar behaviour can be 

observed using coarticulated visemes. 

Also, it can be observed that, in general, both interpolation 

approaches perform better using coarticulated visemes than 

static visemes. For example, for splines, experiments 7, 8 and 9 

give better results than experiment 0. For the constraint-based 

model, experiments 13, 14 and 15 perform better than 

experiments 4, 5 and 6. This is clearly because coarticulated 

visemes are captured in continuous speech, i.e. in context, whilst 

static visemes are captured when holding a position and in 

isolation, and thus do not include coarticulation effects. 

In general, it can be observed that enhanced visemes perform 

better than static visemes. Enhanced visemes contain 

coarticulation information as local acceleration constraints 

(obtained from recorded data) applied before and after the 

viseme. It also can be observed that coarticulated visemes 

perform better than static enhanced visemes. 

The best performance is reached by the coarticulated viseme 

with Type 3 data and the enhanced viseme with Type 3 data. 

This tells us that adding local acceleration constraints (to form 

the enhanced viseme) to coarticulated visemes of Type 3 data is 

redundant. It can also be observed that, in general, using Type 3 

data produces better results than using Type 2 data, which, in 

turn, produces better results than using Type 1 data. This is 

because Type 3 data is more refined than Type 2 data, and Type 

2 data is more refined than Type 1 data. 

An Analysis of Variances (ANOVA) can give us confidence in 

what is observed in Figure 3. In order to apply ANOVA, a test 

on the homogeneity of variances is required [15]. Levene’s test 

[16] was applied to each speaker’s results at each capture speed 

and did not find any evidence for a departure from the 

homogeneity assumption (p=0.0001). A one-way ANOVA was 

applied on type of experiment (see Table 5) for each speaker at 

each speed. The ANOVA tests that the means are the same 

across the types of experiments. Table 5 shows that this has a 

small probability for any speaker’s results at any speed with 

95% of confidence. So, the differences between experiments are 

backed up by this test and these differences are not a random 

coincidence. 

The experiment settings in Table 4 were used to synthesize 

longer words. The words were nonsense words in Mexican-

Spanish constructed randomly and alternating vowels and 

consonants. This means a vowel is always preceded and 

followed by a consonant and a consonant is always preceded and 

followed by a vowel. The words used for this evaluation are 

shown in Table 6. The consonant visemes appear in upper case.  

These words were performed by the male and female speaker at 

100 spm and 200 spm and at a free normal speaking rate and 

recorded. The pronunciation of these words is the same for both 

speakers as both of them were pronounced by Mexicans and 

there is no ambiguity in pronunciation in Mexican-Spanish. As 

the corpuses consist of Vowel-Consonant-Vowel (VCV) 

sentences, information about ranges and viseme centres for 

consonants appearing between vowels (VCV) is available. 

Information about a given vowel between consonants is not 

available (CVC). The nonsense words in Table 6 contain vowel 

between consonants segments. For experiments using Type data 

1 the vowel ranges and centres with no change were used. The 

following was done for experiments using Type 2 data: 

 When the vowel is between consonants, the average of the 

range of the vowel after the first consonant and the range 

of the vowel before the second consonant is taken as the 

range. The same is done for the centre. 

 

 

Figure 3. VCV evaluation results: Female speaker at 100 

spm (red); Female speaker at 200 spm (yellow); Male 

speaker at 100 spm (blue); Male speaker at 200 spm (green). 

 

Table 5. Results of ANOVA tests for VCV evaluation results. 

Speaker ANOVA F Significance 

Female (100 spm) F(21,33098) 1719.69
4 

0.0001 

Female (200 spm) F(21,33098) 504.461 0.0001 

Male (100 spm) F(21,33098) 1125.64
3 

0.0001 

Male (200 spm) F(21,33098) 279.279 0.0001 
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 When the vowel starts the word, the range of the vowel 

before the consonant is taken. The same is done for the 

centre. 

 When the vowel ends the word, the range of the vowel 

after the consonant is taken. The same is done for the 

centre. 

For experiments using Type 3 data the following was done: 

 When the vowel is between consonants, the first consonant 

is not the first letter of the word and the second consonant 

is not the last letter of the word, the average of the range of 

the vowel given the vowel before the first consonant and 

the range of the vowel given the vowel after the second 

consonant is taken. The same is done for the centre. 

 When the vowel is between consonants and the first 

consonant is the first letter of the word, an average is taken 

between all the ranges of the vowel given any vowel 

before the first consonant. All this is averaged with the 

range of the vowel given the vowel after the second 

consonant. The same is done for the centre. 

 When the vowel is between consonants and the second 

consonant is the last letter of the word, an average is taken 

between all the ranges of the vowel given any vowel after 

the second consonant. All this is averaged with the range 

of the vowel given the vowel before the first consonant. 

The same is done for the centre. 

 When the vowel starts the word, the range of the vowel 

given the vowel after the consonant is taken. The same is 

done for the centre. 

 When the vowel ends the word, the range of the vowel 

given the vowel before the consonant is taken. The same is 

done for the centre. 

Local acceleration ranges were calculated in a similar way. Each 

of the experiment settings in Table 4 was used to synthesize the 

words in Table 6 for the male and female speaker at 100 and 200 

spm. Figure 4 shows the RMS mean for the evaluation of each 

experiment for each speaker. As for the VCV evaluation, using 

coarticulated visemes or enhanced visemes gives better results 

than using static visemes. Using coarticulated visemes gives 

better results than enhanced visemes. Using coarticulated 

visemes with Type 3 data gives the same results as enhanced 

visemes with Type 3 data. Using the coarticulation model gives 

better results than using spline interpolation. Again, Levene’s 

test and the ANOVA test were applied (see Table 7) to support 

these observations. In this case, the ANOVA test for the results 

for the male speaker at 200 spm is non-significant. This could be 

due to the need for more comparisons but these results can be 

taken as informal evidence. 

To confirm visually the results of the objective comparison a 

few frames for the first PC parameter are shown in Figure 5. 

Figure 5 shows the visual results for the PC 1 parameter for 

experiments 0, 9 and 13 in comparison to the  mapped 3D data 

for one of the executions of the VCV sentence ‘taNat’ for the 

male speaker at 200 spm. It can be observed that the experiment 

9 is the closest visually to the mapped 3D segment. This 

matches the objective evaluation results. 

 

Table 6. Words used for evaluation (vowels in lowercase, 

consonants in uppercase) 

Word number Word 

1 JiBeKiRoNa 

2 DiFaLeN 

3 oCHiRo 

4 CHeLa 

5 aKeBoF 

 

 

 

Figure 4. Word evaluation results: Female speaker at 100 

spm (red); Female speaker at 200 spm (yellow); Male 

speaker at 100 spm (blue); Male speaker at 200 spm (green). 

 

Table 7. Results of ANOVA tests for VCV evaluation results. 

Speaker ANOVA F Significance 

Female (100 spm) F(21,93) 5.602 0.0001 

Female (200 spm) F(21,93) 3.324 0.0001 

Male (100 spm) F(21,93) 1.471 0.108 

Male (200 spm) F(21,93) 2.998 0.0001 
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6. CONCLUSIONS 
We have presented a constraint-based coarticulation model for 

interpolative visual speech. Parameters of the constraint-based 

approach such as viseme centres, variability of visemes and 

acceleration between two visemes were tuned from data from 

two real speakers. An evaluation of the use of three different 

types of visemes (static, coarticulated and enhanced) for 

synthesising visual speech synthesis has been conducted. Using 

the constraint-based approach it was found that coarticulated 

visemes using the most refined data (Type 3 data: centre of a 

viseme and its variability depending on what viseme is before 

and what viseme is after) provide the best approximation to real 

recorded curves. Adding acceleration information to the 

coarticulated visemes of Type 3 data, resulting in enhanced 

visemes, gave similar results. Thus, the information added by 

the acceleration information offers no improvement to these 

coarticulated visemes.  

When using these refined coarticulated visemes, a higher level 

of planning is necessary as the centre and range of the viseme 

are set according to what is before and after the viseme. We can 

argue that a higher level of planning is necessary for any 

coarticulation model in order to improve the results. This has 

repercussions on how coarticulation models are usually tuned. 

For example, for the Dominance Functions coarticulation model 

[6], the parameters of the Dominance function for a given 

viseme are usually calculated in two ways: from the interaction 

of the viseme in only one context (case A) and from the 

interaction of the viseme in several contexts (case B). In case A, 

for example, let’s suppose the parameters for the viseme T 

(representing the visual counterpart of the phoneme /t/) are being 

tuned and this is done from the recorded word ‘dramatically’. 

 

Figure 5. Visual comparison for PC 1 of mapped 3D data (first row) against experiments 0 (second row), 12 (third row) and 9 

(fourth row) for the VCV segment ‘taNat’. The first column corresponds to the first ‘t’, the second column corresponds to the first 

‘a’, the third column corresponds to ‘N’, the fourth column corresponds to the second ‘a’ and the last column corresponds to the 

second ‘t’. 



This tuning would not produce a good trajectory when 

synthesizing the word ‘dormitory’. With the data we collected 

we found the centre of a viseme varies depending on what is 

before and after it. In case B, let’s suppose the tuning is done 

from several words by an optimization process: ‘dramatically’, 

‘dormitory’, ‘petal’, ‘outer’. The tuning done for Dominance 

Functions is a more general tuning, and it is similar to the less 

refined data (Type 1 data) used with the constraint-based 

approach. However, we found that the most refined data (Type 3 

data) gave better results. We can make the obvious summary 

that when more information is added, the results are better. 

The amount of manual work required to extract the different 

types of data didn’t vary across type of data, so collecting the 

most refined data (which includes more information) implied the 

same work as collecting the less refined data. But, more work is 

needed for extracting this data than for collecting static visemes. 

We have yet to compare the effort in comparison to collecting 

data for a concatenative synthesizer. We believe it is less effort 

and that the use of a refined viseme in conjunction with a 

constraint-based approach potentially offers more control and 

flexibility in the production of visual speech. 

Initial experiments with longer utterances (e.g. the concatenation 

of all the words in Table 6) have been carried out, and, again, 

coarticulated visemes using the most refined data (Type 3 data) 

provided the best approximation to real recorded curves. 

However, further evaluation of longer utterances needs to be 

done. 

The evaluation presented in this paper concentrates on one 

animation parameter (PC1) which mainly describes gross mouth 

open-close movement. The other PCs contain more subtle mouth 

movements and further evaluation using those PCs needs to be 

done. Also, the synthesized 3D control points and ground truth 

ones could be compared rather than the PCs. RMS was used in 

the evaluation but other measures such as correlation 

coefficients could be investigated. Finally, evaluation using data 

from one speaker to synthesize sentences of the other speaker 

would provide further interesting work. 
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