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Abstract. Many well-known machine-learning algorithms have been applied to the task of time-

series classification, including decision trees, neural networks, support vector machines, and others. 

However, it was shown that the simple 1-nearest neighbor (1NN) classifier, coupled with an elastic 

distance measure like Dynamic Time Warping (DTW), often produces better results than more 

complex classifiers on time-series data, including k-nearest neighbor (kNN) for values of    . In 

this article we revisit the kNN classifier on time-series data by considering 10 classic distance-based 

vote weighting schemes in the context of Euclidean distance, as well as four commonly used elastic 

distance measures: DTW, Longest Common Subsequence (LCS), Edit Distance with Real Penalty 

(ERP), and Edit Distance on Real sequence (EDR). Through experiments on the complete collection of 

UCR time-series datasets we confirm the view that the 1NN classifier is very hard to beat. Overall, for 

all considered distance measures, we found that variants of the Dudani weighting scheme produced 

the best results. 

Keywords: Time series, classification, 1-nearest neighbor, k-nearest neighbor, weighted k-nearest 

neighbor, elastic distance measures 

1. Introduction 

Time series embody one form of sequential data where the data is ordered by a time parameter 

[36]. Each element of a time series describes the phenomenon under examination at a specific point 

in time. Depending on whether the observations were carried out continuously or at regular 

intervals we can differentiate continuous and discrete time series [5]. In this paper, we consider the 

simplest form of discrete time series whose elements are uniformly spaced real numbers. 

Time series are used for storage, display and analysis of data across a wide range of different 

domains, including various areas of science, medicine, economics, ecology, telecommunications and 

meteorology [12, 22, 36]. Esling and Agon [12] emphasize that in almost every scientific field, 

measurements are performed over time and that the collected data can be organized in the form of 



time series with the aim of extracting meaningful knowledge. For finding new and useful information 

from the sets of collected data we can rely on methods from statistical analysis and modeling, data 

mining and machine learning [36]. 

While research in statistical modeling techniques has a longer history [36], the need to process 

increasing volumes of data has heightened the interest for studying different task types of temporal 

data mining: indexing, classification, clustering, prediction, segmentation, anomaly detection and 

others [10, 21]. The area of interest of this work is primarily related to time-series classification. 

In recent years, there is a growing interest for research in different aspects of time-series 

classification [18, 24, 48, 63, 64]. The possibility of applying many well-known machine learning 

techniques was investigated in this field. These techniques include: decision trees [52], neural 

networks [43], support vector machines [61], first order logic rules [51], Bayesian classifiers [46] and 

others.  However, it was shown that the simple nearest-neighbor (1NN) approach often produces 

better results than the mentioned more complex classifiers for the time-series data [63]. 

The nearest neighbor algorithm is probably one of the most esteemed algorithms in data mining 

[60]. It is based on the following very simple idea: unknown samples are placed into the class of their 

nearest neighbors [8]. The majority voting k-nearest neighbor (kNN) rule generalizes this concept by 

finding the k nearest neighbors and choosing the class that is most frequent among them [14]. The 

distance-weighted k-nearest neighbor rule proposed by Dudani  [11] assigns weights to the 

neighbors according to their distance from the unclassified sample: greater significance is given to 

closer neighbors.  

Since finding the nearest neighbors constitutes the core idea behind the kNN rule, one of the most 

essential questions of its implementation is related to the selection of an appropriate distance 

measure. In the domain of time series, several different distance measures are applied for 

comparing data sequences. The most commonly used and most frequently investigated time-series 

distance measures are Euclidean distance [13], Dynamic Time Warping (DTW) [3], Longest Common 

Subsequence (LCS) [59], Edit Distance with Real Penalty (ERP) [7], and Edit Distance on Real 

sequence (EDR) [6]. 

Several different methods for assigning weights to the nearest neighbors are proposed in the 

literature [11, 19, 20, 35, 37, 39, 44, 65]. Generally, each paper that presents a new way of 

computing weights reports the superiority of the new method compared to some previous solutions. 

Several of these papers ([19, 20, 65]) compare various weighting schemes using a relatively small 

number of datasets (commonly 12) from the UCI machine learning repository [2]. The conclusions 

are usually based on comparing classification results using Euclidean distance. 

The aim of this study is to compare different weighting schemes from the above mentioned papers 

in the domain of time series. Our research is motivated by the view that the simple 1NN rule gives 

better results than the majority voting kNN rule [10]. We will investigate whether the proposed 

weighting schemes can produce higher classification accuracies than the 1NN classifier and 

reexamine the view that the simple 1NN classifier is very hard to beat [63]. In order to achieve this 

objective our research encompasses the majority of all publicly available, labeled time-series 

datasets in the world which are provided by the UCR Time Series Repository [25]. Moreover, our 

examinations encompass the five most commonly used time-series distance measures (Euclidean 



distance and the unconstrained versions of DTW, LCS, ERP and EDR) and provide statistical support 

to the results obtained. 

The rest of this paper is organized as follows. The required background knowledge about the various 

weighting schemes of the weighted k-nearest neighbor rule is presented in Section 2. The time-

series similarity measures of interest are also described in Section 2. Section 3 outlines our 

Framework for Analysis and Prediction (FAP) [28] which was used to carry out the experiments. A 

summary of the used datasets is also given in Section 3. The experiments and their results are 

presented in Section 4. Section 5 concludes the paper and discusses possible directions of future 

work. 

2. Background and related work 

2.1. The weighted k-nearest neighbor rule 

A time series Q of length n can be viewed as a sequence              of real numbers which 

describes the change of the observed phenomenon at equidistant points in time [7, 12, 66]. The task 

of classification is to determine the class (label) of an unclassified time series S based on a given 

training set of pre-classified time series                                  [12, 21, 36]. In the 

remainder of this paper we denote the set of classes assigned to the elements of the training set 

with C, i.e.                   
where     denotes the class of time series   . 
According to Ratanamahatana et al. [49], the simple nearest neighbor rule (1NN) [8] is one of the 

most popular time-series classification methods. The class of a new sequence is determined by the 

closest (most similar) member of the training set. In [63], Xi et al. have shown that the combination 

of the 1NN rule and the DTW distance measure is a very competitive classifier compared to other 

more complex methods. Cover and Hart [8] proved that the asymptotic misclassification rate R of 

the 1NN rule satisfies the following condition: 

                      

 

where R
*
 is the Bayesian probability of error. 

One of the first formulations and analyses of the k-nearest neighbor rule originates from Fix and 

Hodges [14]. Let           and let the training set T contain    representatives of class           . A new time series Q is labeled with class    if            , where    denotes the 

number of training examples of class    which are among the         nearest neighbors of Q.  

The majority voting k-nearest neighbor rule (kNN) algorithm is a natural extension of the 1NN rule: a 

new series Q is labeled with the class that is most frequent among the k nearest neighbors of Q 

inside the training set T. The choice of the class can be formally written as follows: 



                          
      (1) 

 

where     denotes the class of the i-th nearest neighbor, and E(∙) is an indicator function that returns 

1 if its argument is true and 0 otherwise. Ties are broken arbitrarily. 

Wu et al. [60] highlight a number of issues related to the choice of k. If k is too small, the kNN rule 

can be sensitive to noise points. If k is too large, the closest neighbors can include many different 

classes. Another issue may arise from the equality of the neighbors in the process of majority voting 

regardless of their distance from the query object. This can be addressed by weighting the votes of 

the neighbors in accordance with their distance. If we denote the weight of the i-th nearest neighbor 

with   , Eq. (1) can be adjusted in the following way: 

                            
      (2) 

 

The first weighted voting method for the kNN rule was proposed by Dudani in [11] (henceforth 

denoted Dudani). In this approach weights are taken from the interval [0,1]. The closest neighbor is 

weighted with 1, the farthest with 0 and the others are scaled between by the linear mapping 

defined in Eq. (3), where di denotes the distance between the query sequence Q and the i-th of the 

nearest neighbors. 

                                 (3) 

 

Dudani [11] has also suggested two additional alternative weighting schemes: the inverse distance 

weight (Inverse, Eq. (4)) and the rank weight (Rank, Eq. (5)). 

        (4) 

           (5) 

 

Instead of the inverse distance we may rely on the inverse of the squared distance [35, 39, 60] 

(ISquared). In both of these cases there is a possibility of division by zero. This is usually solved by 

adding a small constant ε (we have used 0.001 in our experiments) to the denominator as in Eq. (6). 

           (6) 

 

The weighting function in Eq. (3) excludes the k-th neighbor from the voting process in the situation 

when       since         for    . Macleod et al.  [37] provide a generalization of Dudani's 

weighting function by introducing two new parameters:     and     (Macleod, Eq. (7)). 

Through them we can overcome this shortcoming. When     and    , Eq. (7) becomes the 



original weighting scheme proposed by Dudani. From the several combinations of these parameters, 

which have been investigated in [37], we will use     with    . 

                                                  (7) 

 

In [44], Pao et al. have used the Fibonacci sequence as the weighting function (Fibonacci, Eq. (8)). 

They have compared this scheme with the three weighting methods defined by Dudani (linear 

mapping - Eq. (3), inverse distance - Eq. (4), and the rank weight - Eq. (5)) in the field of recognizing 

emotions from Mandarin speech. Beside the majority and weighted voting rules their study has also 

included two other variations of the kNN classifier: Categorical Average Patterns [57] and Weighted 

Discrete kNN [45]. They have found that the Fibonacci weighting function outperforms the others in 

all of the examined classifiers.                        (8) 

 

Gou at al. [20] have introduced a weighting scheme calculated as the reciprocal value of the 

neighbors' rank (Uniform, Eq. (9)), and a weighting function (DualU, Eq. (10)) based on Dudani's 

linear mapping (Eq. (3)). They have compared the classification accuracies of the majority voting kNN 

classifier and its weighted voting forms based on these three methods of computing weights. The 

experiments were conducted using artificially generated data and real data selected from the UCI 

machine learning repository [2] with numeric attributes only. Their conclusion is that the combined 

weighting in Eq. (10) surpasses the other examined classifiers. 

       (9) 

                                    (10) 

 

In [65] Zavrel has matched another weighting scheme against the linear mapping (Eq. (3)) and the 

inverse distance (Eq. (4)) weighting functions proposed by Dudani,  as well as against the 1NN 

classifier and the majority voting rule. This scheme (Zavrel) is based on the exponential function as 

shown in Eq. (11) where α and β are constants determining the slope and the power of the 

exponential decay function, respectively. The survey covered 12 datasets from the UCI machine 

learning repository [2] and one additional linguistic dataset supplied by the author. Zavrel has found 

that the weighted voting can improve kNN's accuracy and that Dudani's linear mapping (Eq. (3)) is 

superior to the other classifiers examined in his study. In our inquiry we will select      , 

similarly as in Zavrel's paper.            (11) 

 

The dual distance-weighted function (DualD) depicted with Eq. (12) was presented by Gou et al. in 

[19]. This novel weighted kNN rule extends Dudani's linear mapping (Eq. (3)): it weights the closest 

and the farthest neighbors the same way as the linear mapping, but assigns smaller values to those 



between them. The authors have compared its classification accuracy with the accuracies of the 

1NN, the kNN and Dudani's linear-mapping based weighted kNN rule. The dual distance-weighted 

function has performed better with each of the 12 sets from the UCI machine learning repository [2] 

which were used in the experiments. 

                                             (12) 

 

2.2. Time-series distance measures 

The main task in the process of classification of a new time series Q using the nearest neighbor rule 

is to find k time series from the training set that are closest to Q. The distance between two time 

series                and                is defined using a proximity measure - a function 

that returns the nonnegative distance d(Q,S) between them [12]. A distance metric is a distance 

measure that for every time series Q, S and X satisfies the following conditions: 

1. Reflexivity:          if and only if    , 

2. Symmetry:              , 
3. Triangle inequality:                     . 

In the rest of this section distance measures used in our experiments will be briefly introduced. 

Euclidean distance. The most common distance measure in time-series data mining is probably the 

Euclidean distance [1, 13, 62]. Assuming that Q and S are of the same length n, we can think of them 

as points in  n-dimensional space. In this manner we will be able to calculate their distance relying on 

the differences between the corresponding elements of the sequences as in Eq. (13). 

                  
     (13) 

 

The advantage of Euclidean distance is that it is very easy to compute and to understand. 

Furthermore, it fulfills the above mentioned conditions to be a distance metric and therefore it can 

be used for indexing time series in databases [13]. There are, however, some disadvantages, too: the 

sequences must have the same number of points (can be avoided by interpolation to equal length 

[50]), it is sensitive to shifting and scaling along the y-axis (can be precluded by normalizing the 

series [9, 17]), and it is also sensitive to distortions and shifting along the time axis [26].  

Dynamic Time Warping (DTW). Euclidean distance is based on linear aligning of related points of 

time series (Fig. 1 (a)): the i-th point of the first series is paired with the i-th point of the second one. 

The assessment of the distance can be improved by warping the time axis of one or both of the 

sequences (Fig. 1 (b)). One of the most popular distance measures based on non-linear aligning is the 

Dynamic Time Warping [3, 26, 63]. 

DTW searches for an optimal warping path in the matrix of distances between the components of 

the time series Q and S (Fig. 1 (c)).  A warping path               (where            



     ) represents a sequence of adjacent cells from the matrix. Each element of a warping 

path is of the form            (where    denotes a row of the matrix and    denotes a column of 

the matrix) and the warping path must satisfy the following constraints: 

 Boundary condition - the first and the last element of the warping path are in diagonally 

opposite corners of the matrix:         ,         . 
 Continuity condition - matrix cells denoted by adjacent elements of the warping path must 

be neighbors:          ,          . 

 Monotonity condition - the warping path must be monotonically non-decreasing along the 

time axis:          ,          . 

From the set of all possible warping paths we are seeking for the optimal one, which minimizes the 

warping cost (the sum of the cells that constitute the warping path). This can be found using 

dynamic programming, as recursively defined by Eq. (14). 

          
                                                                                  (14) 

 

where          is the distance between    and   . The distance between Q and S is then defined as                . Euclidean distance can be seen as a special warping path which contains 

only the diagonal elements on the distance matrix, and which is defined if the time series are of the 

same length. 

 

 

 

Fig. 1 (a) Linear aligning of time series in case of the Euclidean distance, 

(b) Non-linear aligning of DTW, (c) Warping path inside the warping matrix 

Longest Common Subsequence (LCS). This approach calculates the distance between two sequences 

relying on a variation of the edit distance technique - a well known method in the field of string 

processing. The basic idea is to express the similarity of the time series based on the length of their 

longest common subsequence [59]. The length of the LCS can be computed using dynamic 

programming based on the recursive definition in Eq. (15). The condition       is usually too strong 

(a) 

(b) 

(c) 



for time series and it is often replaced with a parameterized condition          , where      . The dissimilarity          between Q and S is calculated according to Eq. (16) as 

presented in [49] and [9]. 

 

                                                                                          (15) 

                          (16) 

 

Edit Distance with Real Penalty (ERP). Ding et al. in [10] refer to distance measures that utilize linear 

aligning between the points of time series as lock-step measures (Euclidean distance and other 

forms of the    norm for    ). One of their main advantages is that they represent distance 

metrics and thus they can easily be applied for indexing in databases. However, the fixed mapping 

between the points makes them sensitive to noise and to time shiftings.  Elastic measures like DTW 

and LCS address these issues by allowing one-to-many (DTW) and one-to-many/one-to-none (LCS) 

mappings [10]. Since neither DTW nor LCS satisfy the triangle inequality [55], they are non-metric 

distance measures. 

In [7] Chen and Ng propose the ERP distance function as a combination of the L1 norm and the 

elastic distance measures. To handle local time shiftings it calculates the real penalty between non-

gap elements using L1 distance. The distance for gaps is computed based on a constant value 

denoted by g (the default value is 0) in the definition of this measure (Eq. (17)). ERP is a distance 

metric, but it is sensitive to noise [6]. 

       
   
  
   
 
 
        
       
        
       
                                                               

   (17) 

 

Edit Distance on Real sequence (EDR). EDR [6] is an elastic distance measure based on edit distance 

which has been developed with the aim to improve the accuracy of LCS in the case when the time 

series contains similar sub-sequences with gaps of different sizes between them. EDR is robust to 

noise, outliers and local time shifting. In contrast to LCS, EDR assigns penalties according to the 

lengths of the gaps, but EDR also does not represent a distance metric. This measure is defined as 

follows: 



          
                                                                           (18) 

 

The subcost in Eq. (18) is calculated by the following formula: 

                                       
2.3 Motivation for the evaluation 

In several significant research contributions in the field of time-series data mining [10, 48, 58, 63], 

the simple 1NN classifier is selected as one of the most accurate classifiers, demonstrating 

comparable and even superior performance than many more complex classification techniques. Xi et 

al. [63] highlight that in this domain the simple 1NN classifier (in combination with DTW) is very hard 

to beat. 

The majority voting k-nearest neighbor rule (kNN) generalizes the idea of the 1NN rule by taking into 

account not one, but k nearest neighbors. As an attempt to improve classification accuracy, several 

different methods for assigning weights to the nearest neighbors are proposed in the literature [11, 

19, 20, 35, 37, 39, 44, 65]. However, these papers are not directly related to the domain of time 

series and every newly introduced weighting scheme is compared only to a few other ones. 

Furthermore, the experiments are commonly based on a small number of datasets (usually from the 

UCI machine learning repository [2]), the examinations are performed exclusively in combination 

with Euclidean distance and the results are not supported by statistical tests. 

To the best of our knowledge, our work represents the most comprehensive analysis of different 

weighting schemes for the kNN classifier in the field of time-series data mining. It includes the five 

most commonly used distance measures (Euclidean distance, DTW, LCS, ERP and EDR), a large 

number of weighting functions and the majority of all publicly available, labeled time-series datasets 

in the world (provided by the UCR Time Series Repository [25]). In addition, we also provide 

statistical support to the obtained results. 

3. The Framework for Analysis and Prediction and the datasets 

Time-series data are generated and utilized in many domains of science, economics and medicine, 

and the amount of data from which we need to extract valuable information is continuously 

increasing. This has led to a growing interest of studying different fields of temporal data analysis [5, 

9, 10, 12, 21, 49]. We can distinguish between two distinct field of time series research [9, 36]: 

statistical analysis and modeling on one side, and the data mining and machine learning approach on 

the other side. 

According to Das and Gunopulos [9] the statistical approach is mainly interested in identifying 

patterns, trend analysis, seasonality and forecasting. On the other hand, temporal data mining is 

focused on database management and on research tasks like indexing, classification, clustering, 



prediction, data representation and distance measurements [10, 12, 36]. Ratanamahatana et al. [49] 

and Das and Gunopulos [9] emphasize that the methods studied by statisticians are of little 

furtherance for researchers of time series-data mining. As a consequence, it has become increasingly 

important to develop new methodologies for different task types of temporal data mining and to 

investigate and enhance the existing ones. However, the new solutions are usually separately 

implemented and described in different publications where the comparison is often based only on a 

very limited number of case studies.  

Motivated by these considerations we have developed an open source, multipurpose and 

multifunctional library for researchers and practitioners in the field of time-series data mining. Our 

Framework for Analysis and Prediction (FAP)[28] is written in Java and it is designed to be a free and 

extensible software package which will cover all of the main tasks of temporal data mining and 

analysis. The incitement behind this framework is to support and alleviate the investigation and 

comparison of different techniques utilized in this domain. 

In its latest version, beside the implementation of the most commonly used distance measures 

described in Section 2.2, FAP contains several others including different forms of the Lp norm, Time 

Warp Edit Distance (TWED) [38], Spline [29], Swale [42] and the Canberra distance [27]. The elastic 

distance measures (DTW,LCS,ERP,EDR,TWED) are implemented in three ways: without constraining 

the warping window, using the Sakoe-Chiba band [53], and employing the Itakura parallelogram 

[23]. Along with the nearest neighbor rule and the majority voting NN rule, our library incorporates 

all of the different weighting schemes outlined in Section 2.1. Among the methods for testing the 

accuracy of classifiers, FAP currently supports stratified k-fold cross validation (SCV), leave-one-out 

(LOO) and the holdout method, with the support for training/testing method of error classification 

estimation. There are also several classes implementing pre-processing transformations including 

scaling, shifting, min-max normalization, z-score normalization, decimal scaling and linear 

equiscaling. Various time-series representations are also supported: Piecewise Linear Approximation 

(PLA), Piecewise Aggregate Approximation (PAA), Adaptive Piecewise Constant Approximation 

(APCA), Symbolic Aggregate Approximation (SAX) and Spline. 

The Framework for Analysis and Prediction has been already successfully employed within various 

research domains including: investigation of the influence of global constraints on distance measures 

[31, 32], developing a distributed distance matrix generator based on agents [40, 41], mining time 

series in the psychological domain [30, 34] and time-series analysis in the neurology domain [33]. 

FAP might be applied in other domains too, for example, signal processing [56] or image processing 

[54]. 

The experiments performed in this research are executed on 46 datasets from [25] (Table 1), which 

includes the majority of all publicly available, labeled time-series datasets in the world. The length of 

time series varies from 24 to 1882 (column L), depending of the dataset. The number of time series 

per dataset varies from 56 to 9236 (column S) and the number of classes varies from 2 to 50 (column 

C). Column ID contains the labels assigned to datasets that are used in the tables with detailed 

results of the experiments presented in the Appendix of this paper. 

In the case of LCS and EDR the distance also depends on the matching threshold ε. The value of this 

parameter was determined as proposed in [6]. Let      denote the standard deviation over the 

points of time series T. The matching threshold is equal to              (for all the time series    



in a dataset). The obtained values of ε are presented in the corresponding columns of Table 1 (the 

same values are used for LCS and EDR as in [6]). The aim of our work is not to show how to pick 

optimal values for the threshold parameter ε, but to investigate different extensions of the 1NN 

classifier. The ε values listed in Table 1 work reasonably well for kNN classification (see Table 2), 

therefore we use them in all our experiments. 

ID Dataset S L C ε ID Dataset S L C ε 

1 50words 905 270 50 0.249537 24 mallat 2400 1024 8 0.249878 

2 adiac 781 176 37 0.249289 25 medicalimages 1141 99 10 0.248734 

3 beef 60 470 5 0.024453 26 motes 1272 84 2 0.248507 

4 car 120 577 4 0.249783 27 noninvasivefatalecg_thorax1 3765 750 42 0.249833 

5 cbf 930 128 3 0.249022 28 noninvasivefatalecg_thorax2 3765 750 42 0.249833 

6 chlorineconcentration 4307 166 3 0.249246 29 oliveoil 60 570 4 0.084183 

7 cinc_ecg_torso 1420 1639 4 0.249924 30 osuleaf 442 427 6 0.250294 

8 coffee 56 286 2 2.984938 31 plane 210 144 7 0.256236 

9 cricket_x 780 300 12 0.548431 32 sonyaiborobotsurface 621 70 2 0.248208 

10 cricket_y 780 300 12 0.564973 33 sonyaiborobotsurfaceii 980 65 2 0.248069 

11 cricket_z 780 300 12 0.532931 34 starlightcurves 9236 1024 3 0.249879 

12 diatomsizereduction 322 345 4 0.249637 35 swedishleaf 1125 128 15 0.249022 

13 ecg200 200 96 2 0.248695 36 symbols 1020 398 6 0.249686 

14 ecgfivedays 884 136 2 0.249079 37 synthetic_control 600 60 6 0.247908 

15 faceall 2250 131 14 0.249044 38 trace 200 275 4 0.249545 

16 facefour 112 350 4 0.249643 39 twoleadecg 1162 82 2 0.248471 

17 fish 350 463 7 0.306026 40 twopatterns 5000 128 4 0.249022 

18 gun_point 200 150 2 0.249165 41 uwavegesturelibrary_x 4478 315 8 0.249603 

19 haptics 463 1092 5 0.249886 42 uwavegesturelibrary_y 4478 315 8 0.249603 

20 inlineskate 650 1882 7 0.249934 43 uwavegesturelibrary_z 4478 315 8 0.249603 

21 italypowerdemand 1096 24 2 0.244736 44 wafer 7164 152 2 0.249176 

22 lighting2 121 637 2 0.249804 45 wordssynonyms 905 270 25 0.249537 

23 lighting7 143 319 7 0.249608 46 yoga 3300 426 2 0.249706 

Table 1. Characteristics of the UCR datasets used in the experiments 

4. Experimental results 

In Section 2.1 we have seen that a number of different extensions of the nearest-neighbor rule are 

proposed in the literature in order to improve the accuracy of the classification. Assertions about the 

superiority of a new weighting scheme are often founded on comparing classification errors 

considering a small number of datasets (commonly from the UCI machine learning repository [2]). 

Moreover, in all of these experiments the distance between objects is determined solely by 

Euclidean distance. In the domain of time series, however, besides this lock-step measure several 

other elastic measures are also in use (the most widely used are briefly outlined in Section 2.2). In 

this section we will report the results of our investigation of various NN classifiers on a large number 

of datasets from the UCR Time Series Repository [25] (Table 1) considering both the Euclidean and 

the unconstrained elastic distance measures. These datasets encompass various different domains, 

including biology, astronomy, robotics, medicine, etc. In addition to classification accuracies, we will 

also provide statistical support to our findings. 



In these experiments, the accuracy of classification is obtained by 10 runs of stratified 10-fold cross-

validation (SCV10x10) using the best value of parameter k obtained in the range from 1 to 30 by 

stratified 9-fold cross-validation (SCV1x9) on the respective training sets from the folds. Within each 

of the 10 runs, the datasets are randomly divided into 10 stratified disjoint folds of approximately 

equal size. The testing is then performed through 10 iterations: one (not yet selected) fold is used for 

testing, and the other nine for finding the best k value using SCV1x9. This approach ensures that the 

testing and training subsets are completely separated. Detailed results are shown in the Appendix of 

this paper.   

 
Euclidean distance DTW LCS ERP EDR 

 
 Win  Error k  Win  Error k  Win  Error k  Win  Error k  Win  Error k 

1NN  9  0.1595 
 

 15 ○ 0.1404 
 

 10 ○ 0.1611 
 

 15  0.1294 
 

 6 ○ 0.1620 
 

kNN  6 ○ 0.1605 2.99 ○ 7  0.1394 2.80  6  0.1529 4.71 ○ 7 ○ 0.1298 2.80 ○ 4  0.1556 4.84 

Inverse ○ 5  0.1593 3.55  9  0.1373 3.97  10  0.1491 6.14 ○ 7  0.1274 3.35  5  0.1505 6.28 

ISquared  6  0.1586 4.11  10  0.1372 4.88  7  0.1503 5.94  9  0.1253 3.70  9  0.1489 7.22 

Rank  6  0.1601 4.11  8  0.1399 3.97  6  0.1542 6.38  8  0.1288 3.96 ○ 4  0.1559 6.53 

Fibonacci  6  0.1585 3.94  8  0.1378 4.27  8  0.1547 5.19  11  0.1263 4.16  8  0.1564 5.16 

Dudani  11  0.1571 6.58  9  0.1369 5.90  6  0.1481 8.78  13  0.1249 6.45  9  0.1488 9.16 

Macleod  6  0.1601 3.44 ○ 7  0.1397 3.37 ○ 4  0.1520 5.50 ○ 7  0.1283 3.35 ○ 4  0.1526 5.60 

DualD  10 ● 0.1567 6.87 ● 19 ● 0.1359 6.56 ● 19 ● 0.1474 9.47  14 ● 0.1242 6.72 ● 13 ● 0.1480 9.75 

Zavrel  10  0.1587 5.16  12  0.1380 5.10  6  0.1522 5.10  12  0.1285 3.42  10  0.1510 6.76 

Uniform  8  0.1570 6.25  12  0.1362 7.43  7  0.1550 8.44  9  0.1258 6.66  10  0.1560 8.65 

DualU ● 13  0.1571 13.22  11  0.1369 13.98  12  0.1485 15.56 ● 17  0.1254 14.49  9  0.1497 16.24 

Table 2. Comparison the average accuracies of different NN classifiers for the five most commonly 

used time-series distance measures 

The average classification errors of the examined NN classifiers and the average values of the 

parameter k are presented in Table 2. The best results are marked with symbol ●, and the weakest 
ones with symbol  ○. Column Win denotes the number of datasets for which the given kNN classifier 

gave the smallest classification error in comparison to the other classifiers. With respect to this 

category the best result is achieved by the dual distance-weighted kNN rule defined by Eq. (12) in 

Section 2.1 (for DTW DTW, LCS and EDR), the DualU weighting scheme (Euclidean distance and ERP). 

From Table 2 we can notice that in terms of average classification accuracy the simple nearest 

neighbor classifier underperforms most of the other forms of the kNN classifier in case of all 

considered distance measures. On the other hand, the best result is always obtained using the dual 

distance-weighting scheme. It is also worth to notice that the differences between the best and 

worst average results are not particularly big: 0.0038 (Euclidean distance), 0.0045 (DTW), 0.0137 

(LCS) , 0.0055 (ERP), 0.0140 (EDR). 

By comparing the average values of parameter k, it is evident that (in order to achieve the best 

accuracy) the largest number of neighbors is required by the DualU weighting scheme (Eq. (10)): the 

average value is greater than 13 for all investigated distance measures. The required set of the 

closest objects is smallest in case of the majority voting NN rule  - the mean value is less than 5 for all 

of the five measures.  



In the rest of this section we will describe the results obtained for each distance measure in more 

detail. We will provide a summary of comparison of the simple nearest-neighbor rule and the other 

versions of the kNN classifier in terms of the number of datasets for which they  achieved better and 

worse classification accuracies (Tables 3, 6, 480, 431 and 495). The average differences of the 

classification accuracies between the simple nearest-neighbor rule and the other considered 

classifiers are also listed in these tables. 

In order to see whether there is a statistically significant difference between the analyzed classifiers, 

we counted the statistically significant wins and losses according to the corrected resampled t-test 

[4] at significance level 0.001, for each classifier. These results are presented in Tables 1052, 1271, 

1600, 1185 and 1842. In addition, we compared the average error rates across all datasets using the 

Wilcoxon sign-rank test [15] adjusted by the one-step Bonferroni scheme [16]. The obtained 

adjusted p values are shown in Tables 5, 8, 40, 58 and 49. The rows and columns of these tables are 

sorted by overall average error rates (cf. Table 2), with the upper triangle of the symmetrical matrix 

of p values shown, thus enabling the reader to easily inspect the p values for methods to which a 

given method is supposedly superior to (reading by rows) or inferior to (reading by columns). 

4.1. Euclidean distance 

From Table 3 we can see that, compared to the simple nearest neighbor rule, among all of the 

observed classifiers, the Dudani, the DualD and the DualU weighting schemes gave better accuracies 

for the largest number of datasets (28, 28 and 25, respectively) and that the kNN classifier and the 

Rank weighting scheme gave the largest number of datasets with higher classification error than 

1NN (26 and 25). The largest number of statistically significant wins (Table 4), and the smallest 

number of losses were produced by the Dudani weighting scheme. The DualD and the DualU 

schemes provide the second and the third best results in this comparison too. We can also notice 

that the majority voting k-nearest neighbor and 1NN classifiers have the smallest number of 

statistically significant wins. 

It can be seen in Table 5 that according to the adjusted sign-rank test the DualD scheme exhibits 

significant superiority to all schemes except Uniform, DualU and Dudani. On the other hand, the 

error rates of Dudani are judged to be significantly better than the other schemes (except DualD, 

DualU, Zavrel and Unifrom). The DualU scheme also performed strongly according to this test, 

exhibiting very low p values against most methods with lower average error rates, with the 

exceptions being Dudani and Zavrel. In all, it can be said that both statistical testing methodologies 

agree that DualD, Dudani and DualU are the best weighting schemes to use in combination with 

Euclidean distance, and that Uniform is the fourth best behind the mentioned three. 

 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 11 13 16 11 18 28 14 28 19 19 25 

Average diff. 0.0092 0.0102 0.0100 0.0118 0.0063 0.0083 0.0094 0.0084 0.0078 0.0096 0.0054 

Worse than 1NN 26 24 24 25 22 15 24 15 19 22 12 

Average diff. 0.0056 0.0050 0.0049 0.0061 0.0030 0.0082 0.0067 0.0072 0.0056 0.0030 0.0017 

Table 3. Comparison of kNN with 1NN in case of Euclidean distance 

 

 



 
Dudani DualD DualU Uniform ISquared Zavrel Fibonacci Inverse Macleod Rank kNN NN 

Wins 97 98 72 53 36 45 35 20 20 21 10 17 

Losses 9 12 30 26 33 51 50 41 47 57 80 88 

Wins-Losses 88 86 42 27 3 -6 -15 -21 -27 -36 -70 -71 

Table 4. Statistically significant wins and losses counts for different NN classifiers, across all datasets, 

in case of Euclidean distance 

 
ERROR 0.1567 0.1570 0.1571 0.1571 0.1585 0.1586 0.1587 0.1593 0.1595 0.1601 0.1601 0.1605 

ERROR 
 

DualD Uniform DualU Dudani Fibonacci ISquared Zavrel Inverse NN Rank Macleod kNN 

0.1567 DualD 
 

0.70191 1.00000 1.00000 0.04547 0.01305 0.16922 0.01100 0.15400 0.02063 0.00236 0.00595 

0.1570 Uniform 
  

1.00000 0.49978 0.74422 0.30360 1.00000 0.34616 1.00000 0.46096 0.32428 0.08732 

0.1571 DualU 
   

1.00000 0.03214 0.06143 1.00000 0.00384 0.05153 0.00287 0.01322 0.00194 

0.1571 Dudani 
    

0.02226 0.03275 0.61199 0.00595 0.24021 0.02964 0.00434 0.00400 

0.1585 Fibonacci 
     

1.00000 1.00000 0.57312 1.00000 0.38958 0.58591 1.00000 

0.1586 ISquared 
      

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.1587 Zavrel 
       

1.00000 1.00000 1.00000 1.00000 0.22457 

0.1593 Inverse 
        

1.00000 1.00000 1.00000 0.11749 

0.1595 NN 
         

1.00000 1.00000 0.47544 

0.1601 Rank 
          

1.00000 1.00000 

0.1601 Macleod 
           

1.00000 

0.1605 kNN                         

Table 5. Bonferroni-adjusted p values for the pairwise Wilcoxon sign-rank test of the differences in 

average error rates across the datasets, in case of Euclidean distance 

4.2. Dynamic Time Warping (DTW) 

The situation in the case of DTW is similar as in the case of Euclidean distance.  From Table 6 we can 

see, that the kNN classifier has generated the smallest number of datasets (11) with better results 

than the 1NN classifier, and the DualU and DualD classifiers the largest number (24). The second 

best result was obtained by the Zavrel method (23 datasets with better accuracies than the simple 

nearest-neighbor rule). This is reflected also in the number of statistically significant wins and losses 

(Table 7): after 1NN, the majority voting k-nearest neighbor rule has the second worst ratio of wins 

and losses (-60). The largest number of wins (108) was produced by the DualD scheme followed by 

the Dudani method (88 wins). Interestingly, according to the corrected resampled t-test the DualU 

weighting scheme did not rank among the best ones. 

According to the results of the adjusted sign-rank test (Table 8), the DualD scheme outperforms all 

of the other classifiers (except DualU, Zavrel and to a lesser extent 1NN). In contrast to the Euclidean 

distance, the Dudani method did not produce low p values against most of the weighting schemes 

with lower average error rates (except Macleaod and  Rank). The Wilcoxon sign-rank test does not 

seem to confirm the wins-losses result of the Inverse scheme from Table 7, either: it exhibited higher 

p values against all other classifiers (among the ones with lower average error rates). Again, both of 

the statistical tests affirm that in combination with the DTW distance measure the DualD weighting 

scheme is the best choice. However, the results in column NN clearly indicate that the 1NN classifier 

is very hard to beat (especially in case of DTW). 

 



 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 11 19 20 13 17 22 14 24 23 16 24 

Average diff. 0.0206 0.0167 0.0148 0.0184 0.0140 0.0150 0.0179 0.0150 0.0106 0.0186 0.0087 

Worse than 1NN 24 20 19 23 20 17 24 15 14 21 14 

Average diff. 0.0069 0.0080 0.0071 0.0087 0.0051 0.0090 0.0085 0.0091 0.0086 0.0043 0.0023 

Table 6. Comparison of kNN with 1NN in case of DTW 

 
DualD Dudani Inverse Zavrel Uniform DualU ISquared Macleod Fibonacci Rank kNN NN 

Wins 108 88 60 73 60 54 51 29 30 29 23 27 

Losses 14 15 31 50 40 46 51 52 57 58 83 135 

Wins-Losses 94 73 29 23 20 8 0 -23 -27 -29 -60 -108 

Table 7. Statistically significant wins and losses counts for different NN classifiers, across all datasets, 

in case of DTW 

 
ERROR 0.1359 0.1362 0.1369 0.1369 0.1372 0.1373 0.1378 0.1380 0.1394 0.1397 0.1399 0.1404 

ERROR 
 

DualD Uniform DualU Dudani ISquared Inverse Fibonacci Zavrel kNN Macleod Rank NN 

0.1359 DualD 
 

0.03479 1.00000 0.00457 0.25074 0.03199 0.01462 0.66578 0.00460 0.00016 0.00025 0.34188 

0.1362 Uniform 
  

1.00000 0.56725 1.00000 1.00000 1.00000 1.00000 1.00000 0.21505 0.41112 1.00000 

0.1369 DualU 
   

1.00000 1.00000 1.00000 0.29673 1.00000 0.13473 0.09454 0.05906 0.23230 

0.1369 Dudani 
    

0.73143 0.11718 0.37950 1.00000 0.15009 0.00059 0.00062 1.00000 

0.1372 ISquared 
     

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.1373 Inverse 
      

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.1378 Fibonacci 
       

1.00000 1.00000 0.57177 0.54839 1.00000 

0.1380 Zavrel 
        

1.00000 1.00000 1.00000 0.17366 

0.1394 kNN 
         

1.00000 1.00000 1.00000 

0.1397 Macleod 
          

1.00000 1.00000 

0.1399 Rank 
           

1.00000 

0.1404 NN                         

Table 8. Bonferroni-adjusted p values for the pairwise Wilcoxon sign-rank test of the differences in 

average error rates across the datasets, in case of DTW 

4.3. Longest Common Subsequence (LCS) 

In comparison with the nearest neighbor rule, by the number of datasets with smaller classification 

error (Table 9), the best ranked classifiers are Dudani and DualD (33). The second best result was 

produced by the DualU scheme (32). The smallest difference (24) was found in the case of the kNN 

rule. The largest number of statistically significant wins (Table 10), and the smallest number of losses 

were produced by the DualD weighting scheme. Like in the case of DTW, it is followed by the Dudani 

method. The third place was taken by the DualU scheme. The worst ratio of wins and losses was 

produced by the simple nearest neighbor rule.  It is followed by the kNN classifier, similarly to the 

previous distance measures. 

The results of the Bonferroni-adjusted Wilcoxon sign-rank test (Table 11) support the findings of the 

corrected resampled t-test (Table 10): the DualD weighting scheme surpasses all of the other 

analyzed methods (except DualU). Analogous to the results for Euclidean distance, in terms of the 

obtained p values, the Dudani method outmatched all of the weighting schemes with lower average 

error rates (except DualU and to a lesser extent Inverse). On the other hand, the DualU method did 

not achieved low p values against most of the methods with lower average error. Based on the 



findings of the statistical tests we come to a similar conclusion as in the case of the Euclidean 

distance and the DTW distance measure: DualD and Dudani are the best weighting schemes to use in 

combination with LCS.  

 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 24 29 29 25 31 33 27 33 27 28 32 

Average diff. 0.0214 0.0226 0.0211 0.0176 0.0110 0.0214 0.0220 0.0226 0.0212 0.0129 0.0188 

Worse than 1NN 19 14 14 18 10 11 17 11 16 14 7 

Average diff. 0.0073 0.0074 0.0083 0.0070 0.0045 0.0101 0.0105 0.0105 0.0103 0.0057 0.0030 

Table 9. Comparison of kNN with 1NN in case of LCS 

 
DualD Dudani DualU Inverse Uniform ISquared Fibonacci Macleod Zavrel Rank kNN NN 

Wins 148 130 86 72 64 46 61 52 38 41 27 30 

Losses 12 18 59 47 53 44 67 63 58 80 94 200 

Wins-Losses 136 112 27 25 11 2 -6 -11 -20 -39 -67 -170 

Table 10. Statistically significant wins and losses counts for different NN classifiers, across all 

datasets, in case of LCS 

 
ERROR 0.1474 0.1481 0.1485 0.1491 0.1503 0.1520 0.1522 0.1529 0.1542 0.1547 0.1550 0.1611 

ERROR 
 

DualD Dudani DualU Inverse ISquared Macleod Zavrel kNN Rank Fibonacci Uniform NN 

0.1474 DualD 
 
0.03805 0.98764 0.01725 0.00317 0.00025 0.00002 0.00023 0.00100 0.03607 0.03347 0.00176 

0.1481 Dudani 
  

1.00000 0.30537 0.01950 0.00037 0.00066 0.00059 0.00272 0.11719 0.15683 0.00267 

0.1485 DualU 
   

1.00000 0.59575 0.22113 0.10611 0.00274 0.03469 1.00000 1.00000 0.00007 

0.1491 Inverse 
    

1.00000 0.27745 1.00000 0.13919 0.32943 1.00000 1.00000 0.06862 

0.1503 ISquared 
     

0.39280 0.18368 0.00921 0.14131 1.00000 1.00000 0.06143 

0.1520 Macleod 
      

1.00000 0.92880 1.00000 0.85687 0.51696 0.63697 

0.1522 Zavrel 
       

0.52932 1.00000 0.21667 0.07439 0.32222 

0.1529 kNN 
        

0.68922 0.02644 0.02246 1.00000 

0.1542 Rank 
         

0.43511 0.21642 0.44756 

0.1547 Fibonacci 
          

1.00000 0.00402 

0.1550 Uniform 
           

0.03629 

0.1611 NN                         

Table 11. Bonferroni-adjusted p values for the pairwise Wilcoxon sign-rank test of the differences in 

average error rates across the datasets, in case of LCS 

4.4. Edit distance with Real Penalty (ERP) 

The results in Table 12 show, the largest number of datasets, for which we detected better 

classification accuracies than for the 1NN rule, was produced by the DualU (28), the DualD (24) and 

the Dudani (23) weighting schemes, analogously as in the previous cases. The simple 1NN rule has 

the smallest number of statistically significant wins. As in the case of the DTW and LCS distances, the 

best difference between wins and losses was achieved by the DualD weighting scheme (Table 13). It 

is followed by the Dudani and the Uniform methods. 

Based on the results of the Bonferroni-adjusted Wilcoxon sign-rank test in Table 14, we can see that 

the DualD scheme outperforms almost all of the other methods: it exhibits higher p values only 

against the Dudani and the DualU schemes. We can also notice, that the method proposed by 

Dudani performed strongly, too. With respect to the average classification accuracy the ISquared 



scheme precedes every other method (except DualD and Dudani), but it did not produce lower p 

values against the schemes with lower average error rates. Overall, both of the statistical tests 

indicate that DualD and Dudani methods represent the best choices in combination with ERP, too. 

 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 13 15 17 15 17 23 15 24 23 19 28 

Average diff. 0.0120 0.0160 0.0169 0.0142 0.0123 0.0142 0.0145 0.0138 0.0029 0.0131 0.0069 

Worse than 1NN 26 24 23 23 19 16 24 14 11 20 8 

Average diff. 0.0066 0.0061 0.0044 0.0080 0.0035 0.0073 0.0070 0.0066 0.0025 0.0041 0.0010 

Table 12. Comparison of kNN with 1NN in case of ERP 

 
DualD Dudani Uniform DualU ISquared Fibonacci Inverse Rank Macleod KNN Zavrel NN 

Wins 90 97 58 73 53 41 36 35 32 19 35 17 

Losses 5 14 28 48 31 41 37 43 41 72 99 127 

Wins-Losses 85 83 30 25 22 0 -1 -8 -9 -53 -64 -110 

Table 13. Statistically significant wins and losses counts for different NN classifiers, across all 

datasets, in case of ERP 

 
ERROR 0.1242 0.1249 0.1253 0.1254 0.1258 0.1263 0.1274 0.1283 0.1285 0.1288 0.1294 0.1298 

ERROR 
 

DualD Dudani ISquared DualU Uniform Fibonacci Inverse Macleod Zavrel Rank NN kNN 

0.1242 DualD 
 
1.00000 0.00566 1.00000 0.00289 0.01062 0.00005 0.00004 0.28407 0.00002 0.08383 0.00001 

0.1249 Dudani 
  

0.02670 1.00000 0.01359 0.04331 0.00065 0.00072 0.48936 0.00010 0.17017 0.00006 

0.1253 ISquared 
   

0.92880 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.45573 

0.1254 DualU 
    

1.00000 1.00000 0.70659 0.40467 0.01427 0.60988 0.00038 0.02961 

0.1258 Uniform 
     

1.00000 0.85263 1.00000 1.00000 1.00000 1.00000 0.09378 

0.1263 Fibonacci 
      

1.00000 0.68710 1.00000 1.00000 1.00000 0.01152 

0.1274 Inverse 
       

1.00000 1.00000 1.00000 1.00000 1.00000 

0.1283 Macleod 
        

1.00000 1.00000 1.00000 1.00000 

0.1285 Zavrel 
         

1.00000 0.30165 1.00000 

0.1288 Rank 
          

1.00000 1.00000 

0.1294 NN 
           

1.00000 

0.1298 kNN                         

Table 14. Bonferroni-adjusted p values for the pairwise Wilcoxon sign-rank test of the differences in 

average error rates across the datasets, in case of ERP 

4.5. Edit Distance on Real sequence (EDR) 

Based on the numbers shown in Table 15 and Table 16 it is evident that this distance measure does 

not differ significantly from the previous ones. The number of datasets for which the various 

extensions of the 1NN classifier achieved better results is in range from 20 (kNN) to 36 (DualU).  

Following DualU,  the second best results were obtained by the DualD and Dudani (33) schemes. The 

number of datasets with accuracies worse than with 1NN is not larger than 24. The largest number 

of statistically significant wins and the smallest number of losses are produced by the DualD 

weighting scheme, followed by the Dudani and the ISquared methods. Again, the simple 1NN rule 

has the worst ratio of wins and losses.  

Similarly as in the case of the other distance measures, from the results of the adjusted sing-rank 

test in Table 17, we can see that the DualD weighting scheme produced low p values against most of 



the other methods except Dudani, DualU and Zavrel. We can also notice that the Dudani scheme 

exhibited low p values against a number of weighting schemes with lower average error rates except 

the DualU and Zavrel methods and to a lesser extent the ISquared and Uniform schemes. In 

comparison with the ERP distance, according to this test the ISquared scheme performed a bit 

better. Based on these results we can highlight the DualD and the Dudani schemes as the best 

choices also with the EDR distance measure. 

 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 20 27 29 24 30 33 26 33 29 31 36 

Average diff. 0.0248 0.0240 0.0234 0.0179 0.0105 0.0208 0.0217 0.0219 0.0182 0.0113 0.0159 

Worse than 1NN 24 19 17 20 12 12 19 12 10 11 4 

Average diff. 0.0083 0.0063 0.0044 0.0074 0.0048 0.0065 0.0069 0.0066 0.0022 0.0068 0.0009 

Table 15. Comparison of kNN with 1NN in case of EDR 

 
DualD Dudani ISquared DualU Inverse Zavrel Uniform Macleod Fibonacci Rank KNN NN 

Wins 142 126 98 99 77 96 75 53 62 43 31 11 

Losses 6 14 37 56 49 76 72 76 87 97 136 207 

Wins-Losses 136 112 61 43 28 20 3 -23 -25 -54 -105 -196 

Table 16. Statistically significant wins and losses counts for different NN classifiers, across all 

datasets, in case of EDR 

 
ERROR 0.1480 0.1488 0.1489 0.1497 0.1505 0.1510 0.1526 0.1556 0.1559 0.1560 0.1564 0.1620 

ERROR 
 

DualD Dudani ISquared DualU Inverse Zavrel Macleod kNN Rank Uniform Fibonacci NN 

0.1480 DualD 
 
0.30385 0.02309 0.39242 0.00285 0.43467 0.00008 0.00000 0.00016 0.03207 0.00595 0.00103 

0.1488 Dudani 
  

0.39788 1.00000 0.03899 1.00000 0.00048 0.00001 0.00109 0.20613 0.09163 0.00225 

0.1489 ISquared 
   

1.00000 0.12900 1.00000 0.10232 0.00100 0.03629 1.00000 1.00000 0.06492 

0.1497 DualU 
    

1.00000 1.00000 0.10931 0.00143 0.04376 1.00000 0.43299 0.00000 

0.1505 Inverse 
     

1.00000 1.00000 0.00152 0.40647 1.00000 1.00000 0.28412 

0.1510 Zavrel 
      

0.62916 0.02226 0.18958 1.00000 1.00000 0.00197 

0.1526 Macleod 
       

0.00033 1.00000 1.00000 1.00000 0.48969 

0.1556 kNN 
        

0.00494 0.01100 0.30302 1.00000 

0.1559 Rank 
         

1.00000 1.00000 1.00000 

0.1560 Uniform 
          

1.00000 0.00969 

0.1564 Fibonacci 
           

0.03085 

0.1620 NN                         

Table 17. Bonferroni-adjusted p values for the pairwise Wilcoxon sign-rank test of the differences in 

average error rates across the datasets, in case of EDR 

4.6 Summary 

Observing the average classification accuracy, in the case of all of the considered distance measures, 

the best results are obtained with the dual distance-weighting scheme defined by Gou at al. [19] 

(Eq. (12)). The worst average classification accuracy is produced by the simple nearest neighbor rule 

(except for Euclidean distance and ERP). It is worth noting that the differences between the best and 

worst average results are not particularly big (<0.02).  

It is evident that there are some noticeable differences between the analyzed distance measures at 

the level of individual datasets.  This is summarized in Table 18. In this table, the datasets for which 



all of the observed extensions of the 1NN classifier (the unweighted kNN and all of its weighed 

versions) gave better classification accuracies are denoted with symbol ●. On the other hand, 
symbol ○ denotes the datasets for which none of the extensions has outperformed the simple 

nearest neighbor rule.  

The obtained results show some resemblances between the distance measures, too.  We can clearly 

identify two groups of datasets whose members exhibit similar characteristics. The first such group 

consists of the haptics, italypowerdemand, noninvasivefatalecg_thorax1, 

noninvasivefatalecg_thorax2, uwavegesturelibrary_x, uwavegesturelibrary_y and 

uwavegesturelibrary_z datasets. For each dataset of this group, almost every distance measure gave 

better results with the unweighted and the weighted kNN than with the 1NN classifier. On the other 

hand, in case of the cinc_ecg_torso dataset every distance measure gave better (or equal) accuracies 

using the 1NN classifier compared to the unweighted and the weighted kNN (except for DTW). 

Dataset L2 DTW LCS ERP EDR Dataset L2 DTW LCS ERP EDR 

50words  ●    mallat  ● ●  ● 

adiac ○ ○    medicalimages ●  ●  ● 

beef  ○    motes ● ○    

car  ○    noninvasivefatalecg_thorax1 ● ● ● ● ● 

cbf  ○ ● ○ ● noninvasivefatalecg_thorax2 ●  ● ● ● 

chlorineconcentration ○ ○ ● ○ ● oliveoil    ○  

cinc_ecg_torso ○  ○ ○ ○ osuleaf      

coffee   ○ ○  plane  ○    

cricket_x      sonyaiborobotsurface  ○ ○ ○  

cricket_y      sonyaiborobotsurfaceii ○     

cricket_z      starlightcurves  ● ●  ● 

diatomsizereduction ○ ○ ● ○ ● swedishleaf   ●   

ecg200   ○   symbols      

ecgfivedays  ○ ○  ○ synthetic_control ○ ● ● ● ● 

faceall ○  ●   trace ○ ○  ○  

facefour   ○ ○ ○ twoleadecg  ○ ● ○ ● 

fish   ●  ● twopatterns  ○ ○ ○ ● 

gun_point   ● ○ ● uwavegesturelibrary_x ● ● ●  ● 

haptics ● ● ● ● ● uwavegesturelibrary_y ● ● ● ● ● 

inlineskate   ●   uwavegesturelibrary_z ● ● ● ● ● 

italypowerdemand ● ● ● ●  wafer ○  ○ ○  

lighting2   ○  ○ wordssynonyms  ●   ○ 

lighting7  ● ● ●  yoga    ○  

Table 18. Comparison of different distance measures at the level of individual datasets 

In order to better understand the importance of the first neighbor, we have counted how many 

times was     selected as the optimal value in the process of tuning parameter k over all datasets. 

For every examined variation of the kNN classifier, the optimal value of parameter k was selected 

4600 times (100 times by the SC1x9 algorithm for each of the 46 examined datasets). The obtained 

results in percentages are shown in Table 19. We can see that     represents the best solution 

very often, especially in case of the majority voting k-nearest neighbor rule. Optimal solutions 



requiring a larger number of neighbors most frequently occur in case of the DualD, Dudani and the 

DualU weighting schemes. We can also notice that     was much less frequently chosen in case of 

LCS and EDR than in case of the other distance measures. 

 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

L2 61.07 52.48 46.50 56.63 51.93 24.89 54.54 23.57 40.43 44.28 27.24 

DTW 60.22 44.09 38.37 55.07 51.65 33.35 52.65 31.52 41.87 42.91 30.17 

LCS 35.28 25.33 22.67 30.52 29.83 18.20 27.17 17.85 28.96 24.48 17.24 

ERP 56.63 49.43 44.59 52.04 48.33 30.96 50.43 30.37 48.48 41.50 30.15 

EDR 36.07 25.83 21.67 31.72 29.46 14.22 27.50 13.46 28.85 21.83 14.13 

Table 19. Percentage of SCV10x10 folds for which     was selected as the optimal value over all 

datasets. 

Through a series of detailed experiments presented in this work we have confirmed the view that 

the simple 1NN is very hard to beat [63].  When observing  the number of  statistically significant 

wins and losses, the best results are achieved by the distance-weighted scheme defined by Dudani 

[11] (Eq. (3)) in case of Euclidean distance, and the dual distance-weighting scheme defined  by Gou 

at al. [19] (Eq. (12)) in case of the unconstrained elastic distance measures. Both the corrected 

resampled t-test and the adjusted Wilcoxon sing-rank test results support the DualD and the Dudani 

weighting methods as the best choices in combination with all of the five discussed time-series 

distance measures. 

5. Conclusions and future work 

In the last decade classification has been intensively investigated in the field of time-series data 

mining  [18, 24, 48, 63, 64]. Among the considerable number of proposed techniques, the simple 

nearest neighbor classifier and the Dynamic Time Warping distance measure were shown to be one 

of the best combinations [63]. To improve the accuracy of classification, the majority voting k-

nearest neighbor rule generalizes the idea of the 1NN rule by taking into account not one but k 

nearest neighbors. The next step in investigating the nearest neighbor rule is assigning different 

weights to the neighbors. 

Several different weighting schemes are proposed in the literature [11, 19, 20, 35, 37, 39, 44, 65]. 

They have been examined exclusively in combination with the Euclidean distance and they were 

either not tested in the domain of time series, or tested only in a very limited extent. Furthermore, 

the results were not supported by statistical tests. In this paper, we have, through a detailed 

analysis, compared a wide variety of nearest-neighbor weighting schemes in combination with the 

five most commonly used time-series distance measures based on the largest set of freely available 

labeled time-series datasets [25]. Based on the obtained results we can conclude that, for a 

significant number of datasets, both the majority voting kNN and the distance distance-weighted k-

nearest neighbor rule can produce better accuracies than the 1NN classifier. On the other hand, for 

a notable number of datasets they cannot outperform this simple classifier. In both cases the 

differences are not overwhelming. Among the analyzed schemes the best performances were 

obtained with the dual distance-weighting scheme defined by Gou at al. [19] (Eq. (12)) and with the 

weighting function defined by Dudani [11] (Eq. (3)). These findings were also confirmed by the 



corrected resampled t-test and the Wilcoxon sing-rank test adjusted by the one-step Bonferroni 

scheme. 

Since the elastic measures (DTW, LCS, ERP and EDR) generally provide more accurate classification 

accuracies compared to non-elastic measures, it would be interesting to check the influence of 

different weighting schemes on constrained versions of these measures. The major drawback of 

these measures is performance, since they are all based on quadratic complexity algorithms. The 

introduction of global constraints significantly speeds-up the computation process [31] and in some 

cases (DTW) even improves the classification accuracies [32]. Furthermore, due to the high 

dimensionality of time-series data, it would be interesting to investigate the interaction of the 

hubness phenomenon [48] with different kNN weighting methods and the behavior of the hubs-

based weighting scheme [47].  
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Appendix 

Tables 0, 1, 2, 3 and 4 contain the classification errors and the values of parameter k obtained for the 

analyzed similarity measures (Euclidean distance, DTW, LCS, ERP and EDR). Due to lack of space, the 

values reported in the tables in the Appendix are shown rounded to three decimal places.  

ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.298 0.301 1.40 0.301 1.66 0.300 2.93 0.302 1.87 0.298 4.84 0.293 6.71 0.302 1.63 0.292 7.24 0.299 4.76 0.299 3.68 0.299 10.36 

2 0.315 0.320 1.52 0.323 1.80 0.326 2.43 0.322 2.11 0.321 5.17 0.317 5.73 0.320 1.56 0.316 6.40 0.322 1.66 0.320 6.29 0.317 14.79 

3 0.487 0.540 8.06 0.522 9.94 0.495 7.71 0.542 8.49 0.485 4.48 0.558 9.54 0.557 7.16 0.543 9.36 0.555 7.25 0.483 10.38 0.492 12.43 

4 0.222 0.229 3.07 0.225 3.25 0.222 3.48 0.228 4.00 0.216 4.76 0.204 6.13 0.225 3.43 0.205 6.16 0.205 4.08 0.215 7.07 0.212 11.18 

5 0.011 0.008 11.44 0.007 11.71 0.007 12.90 0.006 16.29 0.012 4.93 0.006 15.79 0.007 12.12 0.006 15.89 0.006 13.54 0.010 13.32 0.010 17.21 

6 0.002 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 2.11 

7 0.001 0.001 1.02 0.001 1.07 0.002 1.18 0.001 1.23 0.001 1.06 0.002 2.73 0.002 1.22 0.002 2.75 0.001 1.04 0.001 1.29 0.001 1.98 

8 0.100 0.108 1.12 0.115 1.52 0.127 2.01 0.114 1.24 0.113 1.81 0.114 2.11 0.119 1.40 0.114 2.52 0.102 2.44 0.105 3.91 0.099 6.41 

9 0.331 0.331 1.00 0.331 1.00 0.332 1.08 0.331 1.00 0.331 1.12 0.330 3.51 0.331 1.00 0.332 3.97 0.331 1.12 0.331 1.12 0.328 13.32 

10 0.344 0.347 2.00 0.346 3.08 0.343 3.93 0.350 3.20 0.341 7.10 0.344 6.31 0.350 2.66 0.343 7.18 0.344 1.20 0.338 8.10 0.338 18.17 

11 0.331 0.331 1.00 0.331 1.00 0.332 1.06 0.331 1.00 0.331 1.06 0.331 3.38 0.331 1.00 0.332 3.44 0.331 1.38 0.331 1.10 0.328 14.61 

12 0.001 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 

13 0.100 0.103 2.78 0.096 4.08 0.089 4.11 0.105 3.85 0.096 3.91 0.092 5.51 0.099 3.89 0.089 5.63 0.085 4.18 0.092 5.57 0.093 13.94 

14 0.005 0.006 1.02 0.006 1.08 0.006 2.03 0.006 1.07 0.006 1.06 0.005 2.92 0.006 1.05 0.005 3.01 0.007 2.90 0.006 3.42 0.006 5.79 

15 0.040 0.040 1.00 0.040 1.00 0.040 1.00 0.040 1.00 0.040 1.00 0.041 2.37 0.040 1.00 0.041 2.53 0.041 1.19 0.040 1.00 0.040 7.88 

16 0.057 0.066 1.33 0.066 1.38 0.071 2.13 0.065 1.45 0.064 1.85 0.071 3.32 0.068 1.38 0.070 3.32 0.055 3.33 0.065 4.31 0.059 6.41 

17 0.168 0.173 3.01 0.167 3.86 0.165 4.28 0.167 5.24 0.153 6.35 0.162 8.83 0.167 3.96 0.162 9.35 0.170 4.35 0.156 6.71 0.160 17.80 

18 0.053 0.058 1.42 0.058 2.27 0.062 2.91 0.057 2.44 0.057 2.77 0.052 4.48 0.058 2.29 0.050 4.50 0.058 2.19 0.058 4.33 0.054 4.01 

19 0.590 0.531 17.25 0.527 17.58 0.522 18.73 0.523 21.18 0.558 9.05 0.529 24.92 0.523 17.94 0.528 24.61 0.544 17.84 0.529 24.40 0.565 26.52 

20 0.478 0.478 1.06 0.481 1.47 0.482 2.06 0.478 1.09 0.482 2.25 0.476 4.36 0.478 1.18 0.475 4.56 0.474 6.62 0.482 2.58 0.479 9.94 

21 0.033 0.031 8.36 0.029 8.34 0.029 9.85 0.028 10.29 0.032 6.55 0.029 11.85 0.029 8.55 0.029 12.42 0.030 8.49 0.029 13.93 0.031 21.48 

22 0.258 0.273 2.18 0.269 2.66 0.273 2.96 0.273 3.05 0.260 3.73 0.241 5.84 0.268 2.98 0.249 6.36 0.255 7.38 0.259 5.24 0.258 13.14 

23 0.354 0.362 2.75 0.356 3.10 0.354 3.28 0.360 3.63 0.365 4.96 0.361 5.46 0.352 3.06 0.363 5.36 0.365 1.81 0.368 3.76 0.354 10.63 

24 0.016 0.016 1.10 0.016 1.39 0.016 1.64 0.016 1.32 0.016 1.57 0.015 5.04 0.016 1.38 0.015 5.73 0.017 2.40 0.016 2.84 0.015 14.71 

25 0.228 0.228 2.78 0.222 3.70 0.223 4.84 0.225 4.78 0.225 7.93 0.211 8.50 0.224 3.78 0.212 9.32 0.222 6.80 0.224 15.34 0.225 22.67 

26 0.079 0.064 13.90 0.058 14.60 0.057 16.80 0.058 20.23 0.074 9.16 0.058 27.90 0.059 15.22 0.057 28.47 0.061 24.58 0.060 27.09 0.077 21.68 

27 0.157 0.156 4.28 0.153 5.52 0.149 6.61 0.152 7.06 0.150 9.52 0.147 10.30 0.152 5.67 0.147 10.80 0.145 15.87 0.147 15.25 0.148 27.47 

28 0.095 0.092 4.36 0.089 4.69 0.086 6.35 0.089 6.28 0.088 9.29 0.086 9.86 0.088 4.79 0.086 10.89 0.089 11.73 0.086 15.83 0.088 25.87 

29 0.117 0.112 2.02 0.117 2.44 0.118 2.64 0.117 2.91 0.117 2.73 0.115 3.76 0.118 2.36 0.115 3.89 0.115 2.24 0.112 5.84 0.115 10.95 

30 0.342 0.347 1.29 0.350 1.51 0.352 2.38 0.350 1.71 0.349 2.59 0.345 4.74 0.350 1.59 0.339 5.11 0.344 8.57 0.349 5.02 0.340 14.13 

31 0.028 0.032 4.28 0.031 7.45 0.026 9.39 0.031 5.84 0.029 1.39 0.031 12.00 0.030 5.12 0.032 11.74 0.029 8.98 0.032 5.48 0.028 5.14 

32 0.014 0.015 1.38 0.016 1.76 0.015 1.93 0.015 1.88 0.015 1.69 0.014 3.84 0.016 1.86 0.014 3.96 0.015 2.59 0.015 2.02 0.014 4.07 

33 0.014 0.015 1.20 0.016 1.30 0.016 1.66 0.015 1.39 0.015 1.39 0.016 3.67 0.016 1.30 0.015 3.73 0.014 2.35 0.016 1.57 0.014 11.42 

34 0.111 0.112 1.60 0.110 3.48 0.110 3.41 0.112 3.66 0.110 4.39 0.108 5.54 0.110 3.48 0.109 5.95 0.110 3.47 0.108 5.02 0.109 22.38 

35 0.177 0.177 1.00 0.177 1.00 0.177 1.00 0.177 1.00 0.177 1.09 0.174 4.08 0.177 1.00 0.174 4.41 0.177 1.00 0.177 1.00 0.179 13.13 

36 0.035 0.039 2.14 0.038 3.76 0.037 4.00 0.038 3.52 0.038 2.39 0.034 6.47 0.038 3.47 0.034 7.03 0.035 2.70 0.039 4.87 0.031 18.27 

37 0.077 0.079 1.34 0.079 1.34 0.079 1.34 0.079 1.57 0.079 1.58 0.081 2.83 0.079 1.34 0.082 2.99 0.079 1.40 0.079 1.71 0.080 10.88 

38 0.119 0.119 1.00 0.119 1.00 0.119 1.00 0.119 1.00 0.119 1.00 0.120 1.24 0.119 1.00 0.119 1.39 0.119 1.00 0.119 1.00 0.119 1.15 

39 0.004 0.005 3.02 0.005 4.30 0.005 5.61 0.005 5.61 0.004 3.76 0.005 7.33 0.005 4.16 0.005 7.80 0.005 4.08 0.004 4.47 0.004 9.01 

40 0.013 0.013 1.08 0.013 1.08 0.013 1.13 0.013 1.12 0.012 3.29 0.011 6.12 0.013 1.08 0.011 6.33 0.011 4.05 0.012 3.41 0.012 18.30 

41 0.228 0.222 3.02 0.221 3.40 0.222 3.74 0.222 4.72 0.220 9.35 0.218 6.39 0.222 3.49 0.219 6.92 0.227 5.75 0.222 6.01 0.219 19.32 

42 0.275 0.270 4.17 0.266 6.11 0.263 8.74 0.266 7.00 0.263 8.35 0.261 9.81 0.268 5.07 0.261 10.79 0.273 12.95 0.258 16.08 0.257 28.98 

43 0.288 0.286 3.24 0.285 4.89 0.283 5.99 0.285 5.78 0.281 10.61 0.278 8.44 0.285 4.95 0.277 8.74 0.286 7.84 0.281 8.66 0.279 24.49 

44 0.001 0.001 1.00 0.001 1.00 0.001 1.08 0.001 1.00 0.001 1.00 0.001 1.19 0.001 1.00 0.001 1.19 0.001 1.12 0.001 1.24 0.001 1.21 

45 0.284 0.288 1.46 0.288 1.56 0.289 2.35 0.289 1.78 0.286 4.07 0.279 5.96 0.289 1.60 0.278 6.19 0.286 3.69 0.286 3.03 0.287 10.01 

46 0.057 0.057 1.00 0.057 1.06 0.058 1.20 0.057 1.00 0.057 1.09 0.057 3.64 0.057 1.06 0.057 4.08 0.058 1.53 0.058 1.20 0.056 11.92 

Table 20. Classification errors and the values of parameter k obtained for Euclidean distance 

  



ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.279 0.266 3.00 0.261 3.95 0.264 5.18 0.267 4.31 0.263 8.74 0.262 6.13 0.267 3.27 0.260 7.34 0.268 6.17 0.266 6.92 0.265 21.77 

2 0.334 0.337 1.33 0.343 2.12 0.343 2.20 0.342 2.47 0.337 4.30 0.338 6.31 0.341 1.81 0.336 6.82 0.339 1.53 0.341 5.39 0.335 14.88 

3 0.468 0.542 5.42 0.513 7.90 0.512 4.58 0.542 5.78 0.485 3.13 0.543 6.44 0.542 5.34 0.540 7.18 0.545 5.46 0.470 10.08 0.475 11.59 

4 0.245 0.253 1.27 0.269 3.01 0.261 5.53 0.263 1.93 0.259 2.98 0.258 4.29 0.265 2.06 0.256 5.02 0.264 2.48 0.260 4.09 0.251 9.62 

5 0.000 0.000 1.14 0.000 1.14 0.000 1.14 0.000 1.21 0.000 1.21 0.000 1.21 0.000 1.14 0.000 1.21 0.000 1.14 0.000 1.21 0.000 1.57 

6 0.003 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.48 

7 0.015 0.015 1.00 0.015 1.00 0.015 1.34 0.015 1.00 0.015 1.00 0.016 1.89 0.015 1.00 0.015 2.43 0.015 2.56 0.015 1.00 0.015 2.73 

8 0.074 0.076 1.02 0.087 1.24 0.088 1.68 0.085 1.15 0.085 1.24 0.082 1.16 0.083 1.11 0.087 1.35 0.074 1.00 0.087 1.89 0.076 1.70 

9 0.177 0.181 1.55 0.181 1.76 0.181 2.65 0.180 1.80 0.179 4.05 0.177 4.12 0.181 1.66 0.174 4.49 0.173 3.87 0.178 6.91 0.175 15.99 

10 0.170 0.172 1.43 0.164 3.08 0.167 6.59 0.171 2.43 0.170 4.98 0.163 6.05 0.172 2.06 0.162 6.98 0.168 5.94 0.174 10.08 0.169 16.77 

11 0.173 0.175 1.28 0.176 1.60 0.179 3.28 0.176 1.65 0.177 2.77 0.175 4.05 0.177 1.40 0.173 4.97 0.173 4.84 0.180 4.59 0.176 7.70 

12 0.004 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 

13 0.170 0.183 3.04 0.165 4.02 0.157 4.99 0.183 4.07 0.176 3.37 0.156 5.30 0.182 3.86 0.155 5.93 0.164 4.80 0.174 3.86 0.168 12.70 

14 0.008 0.009 1.28 0.010 2.01 0.010 2.20 0.009 1.61 0.009 1.87 0.009 2.81 0.009 1.68 0.009 2.82 0.008 1.24 0.009 2.23 0.009 7.02 

15 0.022 0.022 1.00 0.023 1.19 0.024 1.85 0.022 1.04 0.022 1.37 0.021 4.07 0.022 1.06 0.021 4.60 0.020 4.48 0.022 1.47 0.021 15.33 

16 0.055 0.073 3.05 0.072 3.62 0.071 3.65 0.070 4.28 0.064 1.91 0.070 5.85 0.070 3.58 0.071 7.18 0.055 1.00 0.050 11.08 0.057 12.51 

17 0.198 0.205 3.01 0.188 3.82 0.185 4.28 0.204 4.82 0.202 4.48 0.193 6.07 0.191 3.54 0.190 6.98 0.189 3.59 0.201 9.58 0.196 13.46 

18 0.085 0.092 2.30 0.092 4.67 0.080 5.89 0.090 4.67 0.091 2.41 0.084 6.43 0.091 3.91 0.085 7.01 0.094 3.92 0.091 7.75 0.088 9.96 

19 0.584 0.534 16.72 0.532 16.63 0.535 16.18 0.530 18.61 0.552 9.88 0.526 17.92 0.533 16.64 0.524 19.29 0.538 20.64 0.531 22.63 0.561 26.71 

20 0.453 0.455 2.46 0.419 13.60 0.428 15.81 0.466 6.60 0.459 5.72 0.460 10.29 0.469 4.92 0.449 12.35 0.447 9.16 0.457 11.23 0.455 20.14 

21 0.046 0.040 5.58 0.039 6.17 0.036 7.11 0.037 8.28 0.038 6.28 0.039 12.15 0.038 6.68 0.038 12.54 0.040 6.27 0.039 13.28 0.039 23.92 

22 0.106 0.110 1.20 0.116 1.65 0.115 1.59 0.111 1.43 0.113 1.78 0.114 2.68 0.118 1.63 0.111 2.76 0.106 1.90 0.116 2.66 0.106 6.98 

23 0.278 0.243 4.58 0.239 5.61 0.257 7.56 0.250 6.59 0.238 6.80 0.232 9.19 0.242 5.55 0.226 10.44 0.267 4.10 0.228 13.57 0.253 21.96 

24 0.013 0.013 2.66 0.011 3.80 0.011 4.66 0.012 4.75 0.012 5.53 0.011 7.79 0.011 3.94 0.011 8.39 0.011 4.04 0.012 8.09 0.010 23.15 

25 0.198 0.207 2.72 0.190 8.33 0.187 12.48 0.199 6.04 0.195 7.68 0.195 9.30 0.199 5.08 0.193 11.98 0.187 18.02 0.186 20.70 0.192 25.97 

26 0.046 0.046 1.02 0.047 1.70 0.049 4.91 0.046 1.20 0.047 1.87 0.047 2.23 0.046 1.22 0.047 3.02 0.047 3.55 0.048 3.29 0.047 9.07 

27 0.192 0.179 5.32 0.177 5.93 0.177 6.85 0.176 8.83 0.177 10.49 0.171 12.35 0.175 6.67 0.170 14.18 0.175 6.34 0.175 18.21 0.182 28.84 

28 0.121 0.123 4.37 0.119 6.75 0.116 10.03 0.117 8.55 0.115 8.67 0.113 11.52 0.117 7.02 0.113 12.84 0.118 6.20 0.114 21.28 0.116 25.95 

29 0.117 0.118 1.94 0.118 2.17 0.120 1.99 0.122 2.56 0.105 3.28 0.123 3.60 0.120 2.16 0.123 3.60 0.120 1.99 0.103 4.27 0.118 10.11 

30 0.291 0.293 1.13 0.307 4.32 0.293 6.58 0.303 2.52 0.296 3.54 0.301 6.46 0.303 2.22 0.297 7.21 0.288 5.96 0.297 7.08 0.294 13.61 

31 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

32 0.025 0.026 1.08 0.026 1.11 0.026 1.11 0.026 1.16 0.026 1.15 0.027 2.79 0.026 1.22 0.027 2.77 0.027 1.38 0.026 1.30 0.025 3.23 

33 0.027 0.029 1.28 0.029 2.01 0.029 2.16 0.029 1.61 0.029 1.87 0.028 3.68 0.029 1.74 0.028 3.76 0.025 3.49 0.029 2.49 0.028 10.43 

34 0.066 0.061 4.01 0.059 4.81 0.060 4.63 0.060 5.77 0.060 8.16 0.057 8.06 0.059 4.81 0.057 8.52 0.061 4.69 0.059 11.90 0.059 27.50 

35 0.182 0.183 2.96 0.184 3.11 0.184 3.03 0.183 4.23 0.179 7.75 0.175 6.40 0.183 3.29 0.175 6.45 0.185 3.17 0.182 5.84 0.179 19.08 

36 0.018 0.019 1.36 0.016 2.65 0.017 3.01 0.019 1.54 0.019 1.81 0.017 4.71 0.019 1.70 0.017 5.26 0.018 1.32 0.019 2.08 0.017 11.01 

37 0.008 0.005 4.06 0.005 4.20 0.005 4.46 0.005 5.30 0.004 3.99 0.006 7.92 0.005 4.33 0.006 7.74 0.007 4.44 0.004 4.47 0.006 24.52 

38 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

39 0.001 0.002 2.46 0.001 3.96 0.001 4.48 0.001 1.90 0.001 1.06 0.001 2.32 0.001 2.90 0.001 1.91 0.002 2.56 0.001 1.41 0.001 1.00 

40 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

41 0.248 0.224 6.55 0.225 7.19 0.228 8.68 0.223 9.05 0.231 9.96 0.221 12.86 0.223 7.14 0.222 14.25 0.230 16.77 0.227 18.86 0.232 28.85 

42 0.340 0.293 6.78 0.294 11.48 0.298 15.75 0.291 11.73 0.304 13.36 0.289 15.40 0.292 8.41 0.289 17.82 0.301 17.64 0.291 24.84 0.302 29.65 

43 0.303 0.283 6.50 0.279 7.45 0.279 10.57 0.279 8.88 0.281 10.48 0.276 11.68 0.281 6.98 0.274 13.04 0.278 22.99 0.276 18.74 0.280 28.99 

44 0.006 0.006 1.00 0.006 1.02 0.006 1.13 0.006 1.00 0.006 1.00 0.006 2.55 0.006 1.00 0.006 2.53 0.006 1.33 0.006 1.00 0.006 6.69 

45 0.266 0.255 2.83 0.251 3.84 0.252 4.92 0.257 4.24 0.249 8.41 0.250 6.16 0.257 3.13 0.247 7.24 0.253 6.11 0.254 7.70 0.250 22.71 

46 0.060 0.060 1.00 0.061 2.15 0.060 2.82 0.060 1.00 0.061 1.24 0.059 4.02 0.060 1.09 0.059 4.39 0.060 1.38 0.061 1.53 0.059 12.30 

Table 21. Classification errors and the values of the parameter k obtained for DTW 

 

  



ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.177 0.183 1.97 0.185 2.63 0.184 2.91 0.184 2.83 0.177 4.87 0.172 6.05 0.184 2.68 0.174 6.34 0.183 2.32 0.178 4.99 0.174 17.12 

2 0.855 0.820 21.93 0.809 26.32 0.818 23.15 0.825 26.08 0.854 6.07 0.811 25.47 0.816 22.79 0.810 26.13 0.818 21.70 0.857 13.64 0.813 24.70 

3 0.530 0.575 8.11 0.530 8.25 0.548 5.67 0.550 9.25 0.533 3.65 0.575 10.29 0.573 7.67 0.585 9.51 0.587 8.61 0.552 5.66 0.530 5.56 

4 0.192 0.195 2.81 0.185 4.37 0.186 3.46 0.193 3.71 0.182 4.34 0.175 6.37 0.204 3.32 0.170 7.26 0.196 3.17 0.186 5.15 0.182 14.74 

5 0.001 0.001 2.74 0.001 2.74 0.001 2.74 0.001 3.61 0.001 3.61 0.001 4.86 0.001 2.99 0.001 4.86 0.001 2.74 0.001 3.61 0.001 7.40 

6 0.155 0.129 3.63 0.106 16.89 0.127 4.07 0.127 5.88 0.128 10.28 0.113 8.34 0.123 4.83 0.110 10.49 0.127 4.11 0.128 12.18 0.117 10.10 

7 0.002 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.21 0.002 1.00 0.002 1.21 0.002 1.00 0.002 1.00 0.002 1.00 

8 0.072 0.086 1.12 0.081 3.32 0.087 1.45 0.088 1.35 0.088 1.84 0.082 2.55 0.095 1.38 0.078 2.91 0.091 1.37 0.085 4.61 0.074 5.23 

9 0.191 0.195 1.60 0.198 2.57 0.197 3.44 0.199 2.64 0.194 7.93 0.188 6.84 0.199 2.67 0.188 7.70 0.197 1.94 0.193 6.50 0.190 13.97 

10 0.166 0.166 1.84 0.170 2.51 0.167 4.21 0.169 3.51 0.164 4.64 0.162 7.03 0.171 2.33 0.162 7.93 0.167 1.98 0.164 9.89 0.159 17.76 

11 0.195 0.197 2.01 0.198 3.33 0.194 4.44 0.197 4.23 0.193 6.08 0.182 6.60 0.196 3.47 0.181 7.20 0.198 2.94 0.194 6.28 0.191 15.33 

12 0.043 0.016 8.40 0.016 8.25 0.016 8.21 0.017 10.77 0.032 5.47 0.013 7.44 0.016 8.12 0.013 7.52 0.016 8.25 0.029 12.46 0.013 8.03 

13 0.112 0.119 1.24 0.121 1.55 0.125 1.70 0.121 1.74 0.119 1.63 0.124 2.93 0.125 1.78 0.121 2.98 0.121 1.53 0.123 2.09 0.113 8.41 

14 0.005 0.006 1.20 0.006 1.62 0.006 1.70 0.006 1.60 0.006 1.33 0.006 2.18 0.006 1.67 0.006 2.34 0.006 1.55 0.006 1.67 0.006 3.22 

15 0.017 0.016 3.18 0.015 3.38 0.015 3.81 0.016 4.61 0.015 5.70 0.014 8.87 0.016 4.24 0.015 10.30 0.016 3.40 0.015 9.07 0.016 24.01 

16 0.009 0.026 3.72 0.025 4.07 0.018 7.42 0.025 4.83 0.009 1.00 0.010 1.13 0.023 4.45 0.010 1.16 0.026 3.76 0.010 2.65 0.009 1.00 

17 0.191 0.177 6.85 0.148 9.27 0.170 7.18 0.166 9.15 0.164 7.18 0.158 11.10 0.165 7.72 0.158 12.87 0.169 7.14 0.166 14.57 0.169 19.24 

18 0.048 0.045 8.32 0.037 10.09 0.036 12.28 0.043 11.49 0.043 5.62 0.041 16.80 0.043 10.13 0.043 17.86 0.044 8.32 0.039 10.47 0.041 19.13 

19 0.549 0.520 8.98 0.507 8.62 0.511 9.82 0.513 10.47 0.509 7.80 0.504 16.25 0.516 9.55 0.499 17.35 0.517 8.59 0.506 21.17 0.527 25.19 

20 0.406 0.404 4.14 0.389 9.32 0.392 7.92 0.399 6.11 0.393 5.66 0.385 8.58 0.392 4.22 0.377 11.47 0.397 4.24 0.396 9.28 0.390 21.67 

21 0.048 0.044 3.64 0.044 4.24 0.043 4.71 0.040 5.52 0.039 6.52 0.045 9.71 0.040 4.87 0.045 10.27 0.042 4.33 0.040 7.54 0.044 19.82 

22 0.150 0.166 1.94 0.181 2.58 0.183 3.77 0.178 2.84 0.161 1.36 0.185 4.95 0.182 3.12 0.188 5.61 0.177 2.47 0.172 4.97 0.165 7.09 

23 0.292 0.277 5.03 0.279 5.73 0.270 7.20 0.285 6.79 0.269 5.73 0.280 9.90 0.280 5.89 0.274 11.00 0.276 5.29 0.268 15.66 0.265 18.77 

24 0.033 0.026 15.69 0.025 17.90 0.025 20.27 0.026 19.14 0.027 7.05 0.025 22.48 0.026 16.16 0.025 22.62 0.026 15.07 0.024 19.21 0.026 26.88 

25 0.243 0.238 3.96 0.228 4.33 0.229 6.60 0.233 7.15 0.230 8.02 0.222 10.35 0.224 5.01 0.218 12.13 0.227 4.33 0.230 13.78 0.229 23.86 

26 0.018 0.020 2.52 0.018 5.07 0.017 6.03 0.019 4.63 0.018 4.87 0.016 8.71 0.018 4.54 0.015 9.77 0.017 4.76 0.018 7.99 0.018 18.93 

27 0.182 0.155 6.86 0.150 9.37 0.153 7.32 0.152 9.34 0.154 11.00 0.149 14.23 0.150 7.93 0.149 16.24 0.153 7.10 0.151 23.00 0.156 28.03 

28 0.134 0.101 10.05 0.097 13.95 0.100 10.06 0.099 15.22 0.111 10.65 0.095 20.41 0.099 10.88 0.094 22.70 0.100 10.15 0.103 25.43 0.107 21.47 

29 0.833 0.623 21.64 0.623 21.64 0.623 21.64 0.743 23.79 0.833 1.00 0.623 21.64 0.623 21.64 0.623 21.64 0.623 21.64 0.833 1.00 0.623 21.64 

30 0.139 0.148 1.65 0.143 2.81 0.141 3.04 0.145 3.00 0.138 4.97 0.141 6.08 0.144 2.87 0.140 6.37 0.144 2.73 0.139 6.32 0.140 13.67 

31 0.004 0.003 2.70 0.003 2.70 0.003 2.70 0.003 3.55 0.003 3.55 0.003 4.63 0.003 2.71 0.003 4.63 0.003 2.70 0.003 3.55 0.004 11.69 

32 0.085 0.088 1.80 0.089 2.81 0.089 2.84 0.086 2.90 0.087 2.65 0.090 5.45 0.089 2.77 0.088 5.66 0.089 2.81 0.089 4.67 0.086 10.17 

33 0.072 0.072 2.76 0.063 4.09 0.063 4.06 0.070 4.89 0.064 5.59 0.064 8.56 0.064 4.07 0.063 9.13 0.064 4.11 0.065 6.65 0.067 13.81 

34 0.098 0.090 3.02 0.090 4.21 0.091 4.01 0.090 5.08 0.091 5.62 0.089 7.31 0.090 4.08 0.089 8.18 0.091 4.08 0.091 7.49 0.091 25.92 

35 0.102 0.098 2.88 0.101 3.45 0.094 3.30 0.097 4.37 0.095 6.02 0.099 8.14 0.096 3.95 0.096 8.97 0.096 3.42 0.095 5.95 0.093 23.69 

36 0.017 0.019 2.54 0.018 5.93 0.018 5.63 0.018 3.42 0.017 3.34 0.016 6.39 0.018 3.56 0.016 7.09 0.018 3.16 0.015 4.07 0.017 14.93 

37 0.064 0.045 9.43 0.045 9.74 0.045 9.81 0.038 11.84 0.046 7.02 0.043 20.09 0.043 11.58 0.045 20.59 0.045 9.74 0.044 13.29 0.056 24.28 

38 0.001 0.001 1.00 0.001 1.02 0.001 1.00 0.001 1.00 0.001 1.00 0.002 1.16 0.003 1.10 0.002 1.16 0.001 1.00 0.001 1.00 0.001 1.28 

39 0.003 0.002 4.40 0.002 4.09 0.002 4.07 0.002 4.66 0.002 4.21 0.001 6.37 0.002 4.10 0.001 6.18 0.002 4.09 0.002 4.76 0.001 7.09 

40 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

41 0.204 0.193 3.49 0.194 4.04 0.193 4.42 0.193 5.54 0.192 8.03 0.192 8.49 0.193 4.36 0.191 8.74 0.193 3.96 0.194 7.17 0.195 26.68 

42 0.273 0.248 5.32 0.246 6.61 0.244 7.52 0.244 8.10 0.248 11.45 0.239 12.14 0.246 6.43 0.237 13.63 0.246 5.93 0.242 20.84 0.253 29.57 

43 0.262 0.252 3.99 0.251 5.44 0.249 6.34 0.249 6.43 0.244 8.81 0.244 9.72 0.250 5.49 0.243 10.93 0.249 4.99 0.244 11.99 0.245 29.06 

44 0.002 0.002 1.04 0.002 1.23 0.002 2.08 0.002 1.08 0.002 1.06 0.002 1.96 0.002 1.12 0.002 2.08 0.002 1.05 0.002 1.33 0.002 3.28 

45 0.168 0.173 1.76 0.174 2.25 0.173 2.80 0.173 2.57 0.171 3.96 0.169 5.77 0.174 2.53 0.169 6.35 0.173 2.10 0.170 4.23 0.167 15.02 

46 0.069 0.072 1.98 0.065 6.11 0.066 4.59 0.069 4.70 0.065 8.44 0.061 7.15 0.069 4.25 0.059 7.36 0.068 3.77 0.064 8.24 0.060 15.22 

Table 22. Classification errors and the values of the parameter k obtained for LCS 

  



ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.236 0.240 1.74 0.242 1.89 0.237 2.67 0.242 2.40 0.236 4.76 0.230 7.19 0.243 1.97 0.231 7.43 0.234 2.69 0.235 4.75 0.228 22.93 

2 0.333 0.332 2.67 0.333 3.04 0.334 3.82 0.330 4.23 0.329 10.29 0.321 7.35 0.334 3.04 0.323 8.46 0.332 4.60 0.324 9.71 0.329 21.82 

3 0.508 0.580 7.14 0.552 9.68 0.500 8.77 0.595 7.56 0.518 5.03 0.575 9.17 0.572 7.71 0.568 8.42 0.520 2.36 0.493 8.56 0.490 17.92 

4 0.195 0.165 3.52 0.162 3.41 0.156 3.77 0.159 4.51 0.166 5.18 0.160 7.22 0.165 3.54 0.161 7.35 0.195 1.56 0.173 5.16 0.188 14.32 

5 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

6 0.005 0.005 1.00 0.005 1.00 0.005 1.00 0.005 1.00 0.005 1.00 0.005 1.00 0.005 1.00 0.005 1.00 0.005 1.10 0.005 1.00 0.005 4.64 

7 0.002 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.10 0.002 1.00 0.002 1.10 0.002 1.00 0.002 1.00 0.002 1.00 

8 0.118 0.140 1.16 0.151 1.38 0.149 1.64 0.140 1.24 0.136 1.60 0.139 2.17 0.153 1.36 0.125 2.23 0.118 1.00 0.141 2.62 0.122 4.06 

9 0.202 0.204 1.16 0.204 1.23 0.204 1.35 0.204 1.43 0.205 2.73 0.201 5.26 0.204 1.36 0.201 5.74 0.202 2.38 0.208 4.36 0.201 14.81 

10 0.172 0.175 1.19 0.178 1.57 0.180 2.09 0.173 1.60 0.178 3.39 0.173 5.70 0.176 1.67 0.173 6.05 0.171 3.09 0.179 4.70 0.172 14.33 

11 0.208 0.210 1.20 0.211 1.41 0.212 2.12 0.211 1.51 0.211 2.53 0.206 5.65 0.211 1.48 0.206 6.15 0.207 2.47 0.212 6.80 0.208 12.30 

12 0.003 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 

13 0.136 0.128 2.16 0.130 2.64 0.131 2.73 0.130 2.93 0.139 2.83 0.131 4.82 0.129 2.59 0.130 5.18 0.122 3.47 0.143 4.61 0.129 12.64 

14 0.007 0.008 1.16 0.008 1.21 0.008 1.30 0.008 1.36 0.008 1.42 0.007 2.72 0.008 1.24 0.007 2.74 0.007 1.69 0.008 1.69 0.007 11.70 

15 0.010 0.010 1.30 0.011 2.01 0.011 2.16 0.010 1.71 0.011 2.38 0.010 5.77 0.011 1.59 0.010 6.13 0.010 4.50 0.011 2.77 0.010 13.98 

16 0.019 0.021 1.20 0.023 1.66 0.020 1.73 0.023 1.66 0.019 1.00 0.025 2.92 0.021 1.36 0.020 2.03 0.019 1.00 0.021 4.08 0.019 1.00 

17 0.127 0.130 3.70 0.124 4.99 0.126 5.86 0.126 5.83 0.114 7.48 0.120 9.91 0.124 5.10 0.120 10.45 0.127 2.56 0.112 10.21 0.113 22.18 

18 0.015 0.021 2.98 0.021 3.96 0.021 4.58 0.022 4.47 0.017 2.65 0.016 6.07 0.022 3.75 0.017 6.16 0.016 4.69 0.019 5.25 0.016 10.10 

19 0.546 0.521 13.79 0.511 14.07 0.507 15.19 0.511 15.37 0.517 8.92 0.499 19.48 0.510 13.92 0.497 19.83 0.546 2.20 0.506 23.36 0.535 23.65 

20 0.394 0.404 4.76 0.356 9.23 0.344 11.22 0.392 10.15 0.380 8.64 0.352 11.80 0.388 6.90 0.345 13.41 0.394 1.60 0.383 12.35 0.384 25.39 

21 0.047 0.041 7.62 0.040 8.01 0.040 7.85 0.039 9.59 0.042 6.04 0.038 12.80 0.039 7.91 0.037 13.39 0.038 8.84 0.040 13.14 0.043 21.00 

22 0.119 0.135 2.80 0.131 3.58 0.131 3.62 0.139 4.28 0.124 3.73 0.123 5.65 0.130 3.61 0.124 5.92 0.119 1.76 0.130 5.92 0.117 12.85 

23 0.279 0.262 5.80 0.244 6.01 0.235 6.52 0.248 7.75 0.252 5.44 0.245 10.11 0.237 6.25 0.243 10.76 0.270 2.88 0.250 10.16 0.254 21.27 

24 0.007 0.007 1.12 0.007 1.28 0.007 1.29 0.007 1.22 0.007 1.24 0.007 3.79 0.007 1.21 0.007 4.02 0.007 1.72 0.007 1.33 0.007 10.27 

25 0.192 0.195 2.19 0.192 3.64 0.191 5.44 0.194 4.58 0.191 7.12 0.182 8.27 0.193 3.74 0.184 9.60 0.189 12.56 0.188 13.81 0.187 24.36 

26 0.028 0.031 1.60 0.030 2.95 0.030 4.21 0.030 3.24 0.029 3.94 0.028 7.21 0.030 3.13 0.027 8.39 0.027 4.91 0.029 6.34 0.027 20.80 

27 0.165 0.161 4.77 0.159 4.96 0.158 5.03 0.157 7.19 0.159 9.15 0.156 12.74 0.160 6.03 0.156 12.85 0.163 10.81 0.157 16.84 0.159 27.67 

28 0.097 0.084 8.21 0.081 8.85 0.080 10.21 0.079 12.89 0.085 9.73 0.077 19.75 0.080 10.31 0.076 20.25 0.092 13.08 0.082 26.11 0.090 28.65 

29 0.115 0.123 1.31 0.125 1.56 0.125 1.67 0.122 1.59 0.123 1.82 0.120 2.58 0.125 1.60 0.120 2.70 0.125 1.58 0.125 2.28 0.115 3.04 

30 0.253 0.261 2.02 0.261 2.60 0.263 2.69 0.263 3.06 0.252 5.72 0.261 4.89 0.262 2.60 0.260 5.14 0.253 1.12 0.248 6.82 0.251 19.10 

31 0.000 0.000 2.12 0.000 2.12 0.000 2.12 0.000 2.73 0.000 1.12 0.000 3.80 0.000 2.29 0.000 3.85 0.000 1.79 0.000 3.04 0.000 1.64 

32 0.018 0.019 1.30 0.019 1.47 0.019 1.47 0.020 1.66 0.019 1.54 0.019 2.77 0.019 1.51 0.019 2.61 0.020 1.83 0.019 2.02 0.019 5.40 

33 0.018 0.018 1.68 0.018 2.92 0.018 3.08 0.018 3.32 0.018 3.07 0.018 6.48 0.018 2.93 0.018 6.84 0.018 9.43 0.018 7.22 0.018 16.66 

34 0.100 0.100 2.62 0.096 4.05 0.096 4.04 0.097 5.21 0.096 4.98 0.095 6.97 0.096 4.06 0.095 7.27 0.100 3.29 0.095 5.13 0.095 24.88 

35 0.097 0.100 1.44 0.100 1.74 0.100 1.88 0.100 2.10 0.098 3.40 0.095 5.80 0.101 1.79 0.095 5.89 0.093 4.98 0.097 3.51 0.095 16.76 

36 0.020 0.021 2.52 0.021 3.41 0.021 3.40 0.021 3.89 0.021 3.37 0.018 7.92 0.020 3.19 0.018 8.21 0.020 1.14 0.021 4.95 0.019 15.50 

37 0.024 0.014 4.23 0.014 4.91 0.015 4.84 0.014 6.00 0.011 4.72 0.014 8.12 0.014 5.08 0.014 8.16 0.016 6.25 0.013 7.46 0.017 20.42 

38 0.085 0.085 1.00 0.085 1.00 0.087 1.13 0.085 1.00 0.085 1.00 0.085 1.22 0.085 1.00 0.085 1.25 0.085 1.22 0.085 1.72 0.086 1.22 

39 0.002 0.002 1.26 0.002 1.31 0.002 1.43 0.002 1.46 0.002 1.12 0.002 1.69 0.002 1.33 0.002 1.88 0.002 1.42 0.002 1.44 0.002 1.31 

40 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

41 0.222 0.212 3.57 0.212 3.57 0.212 3.53 0.212 4.84 0.212 8.28 0.212 8.37 0.213 3.68 0.212 8.40 0.223 3.47 0.212 6.78 0.213 25.48 

42 0.296 0.274 4.98 0.273 5.86 0.272 6.62 0.269 8.73 0.273 10.90 0.266 13.47 0.272 6.39 0.267 13.99 0.294 4.38 0.268 21.70 0.278 29.19 

43 0.274 0.264 4.73 0.259 5.63 0.258 6.39 0.256 7.79 0.257 11.35 0.253 11.57 0.257 6.40 0.253 11.84 0.272 5.39 0.257 15.31 0.262 28.43 

44 0.002 0.002 1.30 0.002 1.44 0.002 2.16 0.002 1.72 0.002 1.48 0.002 3.84 0.002 1.48 0.002 4.10 0.002 1.52 0.002 2.05 0.002 5.99 

45 0.223 0.223 1.96 0.224 1.99 0.215 2.72 0.223 2.45 0.222 4.20 0.216 6.53 0.224 1.99 0.217 6.65 0.219 3.02 0.221 4.35 0.214 22.38 

46 0.035 0.035 1.00 0.035 1.00 0.035 1.00 0.035 1.00 0.035 1.00 0.037 1.98 0.035 1.00 0.037 2.26 0.036 2.06 0.035 1.00 0.036 10.43 

Table 23. Classification errors and the values of the parameter k obtained for ERP 

  



ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.159 0.160 1.08 0.162 1.62 0.161 1.59 0.161 1.41 0.162 3.35 0.161 6.61 0.162 1.47 0.161 7.01 0.159 1.52 0.160 4.67 0.158 13.29 

2 0.854 0.822 21.38 0.809 26.59 0.808 26.47 0.824 24.83 0.853 5.29 0.809 26.12 0.816 22.65 0.809 26.52 0.805 26.66 0.855 13.57 0.811 24.99 

3 0.532 0.587 9.80 0.533 9.53 0.528 6.52 0.560 11.65 0.548 2.78 0.577 9.55 0.560 8.91 0.582 9.69 0.545 3.95 0.548 6.43 0.532 5.55 

4 0.193 0.211 2.65 0.188 5.12 0.186 7.32 0.207 3.45 0.173 3.92 0.182 6.44 0.191 3.75 0.180 7.54 0.193 1.52 0.177 5.33 0.188 14.64 

5 0.005 0.001 4.54 0.001 4.06 0.001 4.06 0.001 5.37 0.000 4.42 0.001 8.68 0.001 4.34 0.001 8.68 0.002 10.70 0.000 6.74 0.001 20.75 

6 0.156 0.130 3.45 0.105 20.12 0.105 22.97 0.129 5.63 0.130 10.74 0.115 7.68 0.125 4.26 0.113 9.39 0.115 12.47 0.130 12.11 0.118 9.91 

7 0.002 0.002 1.02 0.002 1.02 0.002 1.02 0.002 1.03 0.002 1.00 0.002 1.06 0.002 1.02 0.002 1.06 0.002 1.00 0.002 1.00 0.002 1.00 

8 0.043 0.043 1.00 0.052 1.89 0.047 1.36 0.043 1.00 0.048 1.12 0.045 1.17 0.043 1.00 0.047 1.23 0.043 1.08 0.047 2.16 0.043 1.16 

9 0.198 0.201 1.34 0.202 2.00 0.203 2.64 0.201 1.66 0.201 5.40 0.192 5.52 0.199 2.10 0.194 5.85 0.196 3.71 0.199 7.27 0.197 17.70 

10 0.176 0.180 1.32 0.179 1.50 0.182 2.22 0.180 1.64 0.178 4.80 0.177 5.76 0.180 1.53 0.177 6.44 0.173 3.12 0.175 7.00 0.171 16.53 

11 0.204 0.209 1.87 0.209 2.33 0.203 3.37 0.209 2.64 0.204 6.00 0.199 6.06 0.208 2.43 0.200 6.50 0.204 2.55 0.203 8.26 0.201 16.65 

12 0.043 0.024 6.94 0.018 7.39 0.016 8.04 0.023 8.76 0.032 5.44 0.013 7.69 0.021 6.77 0.013 7.71 0.013 8.25 0.029 10.43 0.013 8.03 

13 0.118 0.124 1.22 0.124 1.91 0.126 2.09 0.124 1.58 0.125 1.81 0.117 4.63 0.125 2.02 0.115 4.83 0.111 3.61 0.126 2.12 0.121 10.78 

14 0.004 0.005 1.82 0.005 2.05 0.005 2.70 0.005 1.94 0.004 1.24 0.005 2.64 0.005 2.12 0.005 2.76 0.004 1.22 0.004 2.42 0.004 2.77 

15 0.009 0.010 1.81 0.009 2.23 0.010 2.28 0.010 2.32 0.009 3.59 0.009 5.37 0.010 1.75 0.009 5.40 0.009 4.15 0.009 4.19 0.009 15.50 

16 0.009 0.027 4.38 0.027 4.63 0.016 12.61 0.027 4.15 0.009 1.00 0.013 2.41 0.027 4.12 0.011 1.87 0.009 1.00 0.012 4.27 0.009 1.00 

17 0.188 0.175 7.14 0.155 9.61 0.157 11.48 0.165 9.42 0.168 6.63 0.169 12.41 0.164 7.76 0.162 13.91 0.166 11.46 0.167 12.89 0.170 20.35 

18 0.053 0.052 7.00 0.044 10.34 0.040 10.68 0.050 10.50 0.051 4.18 0.051 16.14 0.052 8.86 0.047 17.26 0.052 6.18 0.049 9.31 0.049 18.66 

19 0.562 0.518 10.87 0.509 10.34 0.504 14.44 0.514 15.14 0.519 8.29 0.498 18.89 0.515 12.39 0.500 20.24 0.555 3.24 0.518 21.35 0.538 24.50 

20 0.417 0.418 4.71 0.389 10.65 0.384 11.27 0.408 7.19 0.396 6.92 0.398 10.53 0.411 5.35 0.384 12.72 0.418 1.96 0.401 11.73 0.400 22.71 

21 0.035 0.036 3.26 0.037 3.74 0.038 4.40 0.035 5.70 0.034 5.11 0.037 8.93 0.036 5.68 0.037 9.58 0.034 7.03 0.033 8.85 0.034 20.15 

22 0.191 0.229 4.40 0.219 5.85 0.215 6.37 0.224 7.27 0.202 2.17 0.208 8.85 0.219 6.16 0.206 9.61 0.195 1.70 0.227 7.76 0.192 8.43 

23 0.285 0.315 3.84 0.312 5.05 0.290 8.65 0.305 6.87 0.291 4.51 0.285 13.19 0.310 5.41 0.285 13.77 0.287 1.81 0.282 15.16 0.283 19.38 

24 0.032 0.027 8.95 0.029 9.03 0.030 11.28 0.027 12.11 0.027 7.48 0.027 15.43 0.027 9.55 0.028 16.44 0.032 4.18 0.025 18.14 0.027 26.63 

25 0.243 0.240 3.05 0.233 4.33 0.230 5.08 0.239 6.12 0.233 8.54 0.222 10.03 0.235 4.69 0.221 11.25 0.221 11.20 0.228 16.59 0.230 23.71 

26 0.020 0.022 2.86 0.018 4.25 0.020 4.67 0.020 4.83 0.016 5.32 0.020 8.27 0.021 4.26 0.019 8.99 0.020 3.13 0.017 6.27 0.017 22.63 

27 0.182 0.149 7.58 0.148 8.24 0.148 11.46 0.148 10.52 0.156 11.14 0.146 14.14 0.147 8.42 0.146 16.48 0.145 24.65 0.151 23.15 0.156 28.29 

28 0.134 0.103 10.12 0.099 17.32 0.095 22.83 0.100 15.93 0.111 12.16 0.096 20.48 0.100 12.16 0.094 23.41 0.099 25.32 0.103 26.64 0.107 19.07 

29 0.833 0.623 21.64 0.623 21.64 0.623 21.64 0.743 23.79 0.833 1.00 0.623 21.64 0.623 21.64 0.623 21.64 0.623 21.64 0.833 1.00 0.623 21.64 

30 0.146 0.150 1.49 0.148 2.40 0.150 2.69 0.150 2.46 0.143 4.94 0.145 5.59 0.150 2.25 0.146 5.89 0.146 1.58 0.142 6.26 0.143 17.66 

31 0.004 0.003 2.70 0.003 2.70 0.003 2.70 0.003 3.55 0.003 3.55 0.003 4.95 0.003 2.71 0.003 4.95 0.004 3.10 0.003 3.67 0.003 9.54 

32 0.056 0.057 2.48 0.055 3.90 0.054 3.75 0.054 4.52 0.053 3.61 0.051 8.07 0.054 4.00 0.050 8.11 0.052 7.00 0.054 4.38 0.054 8.99 

33 0.039 0.041 1.94 0.037 3.78 0.037 3.75 0.040 3.92 0.038 4.33 0.035 8.19 0.038 3.57 0.035 8.98 0.038 5.43 0.038 4.93 0.037 18.91 

34 0.100 0.093 3.02 0.092 3.95 0.091 4.55 0.093 5.08 0.093 5.23 0.091 6.71 0.091 4.01 0.091 7.68 0.094 13.15 0.093 5.10 0.094 21.94 

35 0.094 0.098 2.56 0.097 3.33 0.094 3.32 0.097 3.83 0.091 5.84 0.089 5.71 0.093 3.45 0.087 5.80 0.087 8.80 0.092 5.61 0.089 21.11 

36 0.018 0.020 2.44 0.019 3.77 0.020 4.92 0.020 3.69 0.018 3.52 0.018 5.87 0.019 3.26 0.017 6.54 0.018 3.75 0.018 3.71 0.018 16.81 

37 0.109 0.090 14.16 0.085 13.38 0.085 13.41 0.081 16.87 0.090 8.22 0.084 21.66 0.086 14.95 0.086 20.34 0.091 16.83 0.082 16.35 0.092 26.51 

38 0.039 0.039 1.04 0.040 1.17 0.039 1.67 0.039 1.06 0.039 1.00 0.038 2.73 0.039 1.19 0.037 2.61 0.039 1.91 0.039 1.00 0.039 1.90 

39 0.006 0.003 6.92 0.002 6.04 0.002 6.29 0.002 6.42 0.002 4.84 0.002 11.55 0.002 6.74 0.002 11.18 0.002 6.39 0.002 5.97 0.002 11.76 

40 0.000 0.000 2.58 0.000 2.58 0.000 2.58 0.000 3.37 0.000 3.37 0.000 4.86 0.000 2.75 0.000 4.86 0.000 1.37 0.000 3.37 0.000 9.39 

41 0.206 0.196 3.53 0.194 3.81 0.195 3.93 0.195 4.93 0.196 8.70 0.195 7.75 0.195 3.85 0.195 8.31 0.205 4.93 0.197 7.21 0.197 26.63 

42 0.269 0.246 7.01 0.243 7.62 0.242 8.57 0.240 10.52 0.245 10.48 0.236 14.78 0.241 8.26 0.235 16.70 0.266 5.66 0.240 20.30 0.250 29.49 

43 0.262 0.251 4.92 0.249 5.70 0.248 5.73 0.247 6.97 0.247 9.74 0.241 10.05 0.248 5.70 0.241 10.71 0.259 4.92 0.245 12.45 0.249 28.65 

44 0.002 0.002 1.70 0.002 2.84 0.001 3.57 0.002 2.13 0.002 2.29 0.002 5.14 0.002 2.47 0.002 5.50 0.002 3.89 0.002 6.40 0.002 8.48 

45 0.150 0.150 1.08 0.152 1.47 0.153 1.70 0.151 1.31 0.152 4.04 0.154 4.38 0.152 1.42 0.153 5.10 0.150 1.54 0.152 4.94 0.150 15.32 

46 0.071 0.074 2.24 0.064 6.22 0.058 7.70 0.070 5.11 0.066 8.14 0.062 6.84 0.070 4.55 0.060 7.24 0.061 10.64 0.066 9.28 0.060 17.43 

Table 24. Classification errors and the values of the parameter k obtained for EDR 


