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Comparison of dissimilarity measures for cluster analysis of

X-ray diffraction data from combinatorial libraries
Yuma Iwasaki1,2, A. Gilad Kusne3,4 and Ichiro Takeuchi4

Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as
developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning
techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition–phase maps
from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property
analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is
the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data
issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a
function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis
and the choice of measure’s performance impact on automatic composition-phase map determination. Nine dissimilarity measures
are investigated for their impact in analyzing X-ray diffraction patterns for a Fe–Co–Ni ternary alloy composition spread. The cosine,
Pearson correlation coefficient, and Jensen–Shannon divergence measures are shown to provide the best performance in the
presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is
unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides
the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction
patterns in general beyond data from combinatorial libraries.
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INTRODUCTION

Composition-spread experiments enable rapid mapping of
composition–structure–property relationships and are a powerful
tool for materials discovery owing to recent developments in high
throughput materials synthesis and rapid characterization techni-
ques.1–5 Machine learning techniques provide a means to convert
the large volume of diverse, complex data collected from
materials experiments into actionable knowledge refs 6–18 and
have been successfully demonstrated in composition spread
experiments. Of particular interest is the use of machine learning
techniques to rapidly determine potential composition-phase
maps from X-ray diffraction (XRD) data from composition
spreads.19 As the vast number of potential materials of three or
more materials components is overwhelming compared to the
number of expert-analyzed materials (typically unary or binary),
this is primarily an unsupervised learning task. The knowledge
gained from unsupervised learning analysis of phase data
structure can be used to optimize semi-supervised learning
analysis in those cases where phase labeled data exists. These
techniques also promote a reduced reliance on expert human
input, greater throughput, and an end goal of autonomous
materials exploration systems. A variety of machine learning
methods have been investigated in the literature, beginning with
hierarchical clustering of XRD and Raman spectra data, and
continuing with recent investigations in the use of constraint

programming and hyperspectral graph-based techniques for
concurrent composition-phase map determination and constitu-
ent phase identification.19

A key challenge for these methods is the selection of an
appropriate dissimilarity (or similarity) measure, also known as a
kernel function, to quantify the relationship between two pieces
of structure data. Once computed, the dissimilarity between the
two pieces of structure data is translated into dissimilarity
between the structures of the originating samples.
Proper selection of dissimilarity measure is essential to achieving
quality results from unsupervised learning (and semi-supervised
learning) as emphasized by Hastie, et al.20 in their machine
learning textbook Elements of Statistical Learning, “Specifying an
appropriate dissimilarity measure is far more important in
obtaining success with clustering than choice of clustering
algorithm.” This work seeks to provide insight to the experimen-
talist for dissimilarity measure selection through an efficacy
analysis—identifying the impact of dissimilarity measure selection
on composition-phase map accuracy and computation time. While
particularly beneficial to the high-throughput experiment com-
munity where computation time is of concern, the analysis should
also benefit the larger materials research community dealing with
a large amount of XRD data as well. The structural data of interest
for this work is the one-dimensional XRD pattern—a set of
intensities, where each intensity value corresponds to a 2θ value
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or q-spacing. The diffraction data is typically collected as a two-
dimensional image of intensities as a function of the instrument
parameters 2θ and χ, integrated over the χ angle to generate the
one-dimensional diffraction pattern, and the 2θ values are
translated to q-spacing values using the Bragg Law.21

A number of confounding factors can impact the performance
of the dissimilarity measure. Peak shifting can occur in XRD data
due to lattice expansion or contraction, so that two samples
sharing the same structure may have differing XRD patterns. The
texturing of samples is another challenge. Samples that share the
same structure but have different texturing can result in
differences in peak heights with a significant likelihood that some
peaks may reduce in intensity to the point of being lost in
measurement noise. Finally, the typical one-dimensional XRD
pattern used to identify material structure is a data reduction from
the two-dimensional Ewald’s sphere.21 This data reduction along
with measurement signal to noise issues can result in a potential
loss of distinguishing information so that two different structures
have similar diffraction patterns. The optimal choice of measure
takes all of these factors into account to accurately determine
dissimilarity, typically through increased complexity of the
measure itself and increased computational cost. The data analyst
must therefore make a cost benefit decision between accuracy
and computational cost. For high-throughput combinatorial
library data analysis, computational cost—and the resulting
computation time, hold a high priority. This is true also of
analyzing other large data sets of collected XRD patterns, which
may have been collected in an Edisonian sample-by-sample study.
When dealing with non-high-throughput studies where sample
synthesis can take an appreciable amount of time, the experi-
mentalist may choose to select those XRD dissimilarity measures
with the best performance, despite computational cost.
Various measures have been used throughout the literature. In

this work, we seek to investigate a set of common measures for
their relative computational cost in comparing one-dimensional
XRD data and their relative accuracy in resulting cluster-based
composition-phase map determination. A range of measures have
been investigated in the past. Long, et al. reported on the use of
the Pearson correlation coefficient as part of a software package
to perform hierarchical cluster analysis (HCA) for composition-
phase map determination.22 The software package, CombiView,
also allows the user to select from a range of measures.23 Kusne,
et al.24 demonstrated the speed and accuracy of using the L1
norm with a mean shift theory clustering method to provide
analysis of XRD data as the data was being collected. Baumes,
et al.25 investigated the use of the dynamic time warping (DTW)
measure to assist in XRD analysis and found it to be resilient to

peak shifting when the range of peak shifting was known. LeBras,
et al.26 and Ermon, et al.27 later applied DTW as part of larger
constraint programming-based algorithms for concurrent
composition-phase map determination and constituent phase
identification from XRD data. Another study in the use of high
speed methods by Kusne, et al.28 demonstrated the efficacy of the
cosine metric in a regularized least square method for concurrent
composition-phase map determination and constituent phase
identification from both XRD data and Raman spectra.1

In this work, we investigate a set of measures for accuracy and
computational cost in analyzing XRD data from the Fe–Co–Ni
ternary-alloy thin-film composition spread.29 This work provides
the basis for a broader analysis of dissimilarity measures and their
efficacies over the wide range of materials systems and their
respective structure data artifacts, such as extreme variations in
peak heights, variations in number of peaks, and greater number
and complexity of phase regions. This work also serves to
demonstrate a system for rapid analysis of combinatorial spreads
(Fig. 1). The system begins with the synthesis of the thin film
composition spread using a combinatorial co-sputtering techni-
que, followed by rapid characterization of composition using
wavelength dispersive spectroscopy and structure via XRD. The
dissimilarity is computed between each composition-spread
sample and a set of machine learning analysis techniques are
used to sort the samples into clusters of similar structure and to
identify potential constituent phases. The samples are then
visualized in a composition diagram with color-coded cluster
labels. Contiguous regions of the composition diagram that share
a cluster label correspond to potential phase regions of a
composition-phase map. Dimension reduction techniques such
as multidimensional data scaling are used to visualize the high
dimensional XRD data in two or three dimensions to facilitate user
evaluation of the analysis results.

Dissimilarity measures

The data of interest for this work is the one-dimensional XRD
pattern from a Fe–Co–Ni composition spread. Each diffraction
pattern is described by a set of intensities with a 1-to-1
correspondence to a set of 2θ values. The diffraction patterns
are measured over the same set of 2θ, here indexed with i∈{1…N}.
There were 1125 diffraction patterns uniformly covering the entire
Fe–Co–Ni ternary composition-phase map taken in the 2θ range of
42.6° to 47.0° (with λ = 0.15418 nm for Cu Kα).29 To demonstrate
the robustness of the overall analysis protocol developed here, we
have also applied it to another ternary system, namely, Fe–Ga–Pd
composition spread, and the results are presented in the supple-
mentary section22. 2θ is used here rather than q-spacing due to

Fig. 1 Composition spread analysis flow chart: The strategy begins with the a synthesis of the composition spread and rapid characterization
of composition and structure, followed by b computing dissimilarity measures, c composition-phase map determination and constituent
phase identification via machine learning, and d visualization of analysis results via the use of a composition diagram and data dimension
reduction techniques applied to the structural data

Cluster analysis of XRD data

Y Iwasaki et al

2

npj Computational Materials (2017)  4 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



the simplicity of having equal sampling spacing of Δ(2θ) between
each intensity measurement, allowing the use of the index i as the
dependent variable. The results of this work should generalize to
an equivalent set of q-spacing values with uniform spacing and
the appropriately interpolated XRD intensity values. For two
diffraction patterns s and t, the dissimilarity measure is defined as
D(s,t). For D(s,t) = 0 the two diffraction patterns are assumed to be
identical and the corresponding samples are assumed to share the
same structure. Larger values of the dissimilarity measure imply
greater dissimilarity between the samples’ structures.
The set of dissimilarity measures investigated in this work fall

into a group of categories (with some falling into more than one):
the L1 norm (‘Manhattan’), L2 norm (“Euclidean”), and the cosine
metric are geometry-based measures; Pearson correlation coeffi-
cient and Spearman rank correlation coefficient are statistics-
based dissimilarity measures; DTW and the earth mover’s distance
(EMD), also known as the “Wasserstein distance”, are measures
specifically developed for feature preservation, i.e. resilience to
peak shifting; and the Jensen–Shannon divergence (JSD) is based
in information theory. These measures, except for DTW and EMD,
satisfy the requirements of a metric. DTW is not a metric as it does
not satisfy the triangle equality. EMD is a metric under two
conditions –the ground distance used must be a metric and the
areas under the two diffraction patterns being compared must be
equal. While the ground distance used here is the L1 norm metric,
the areas under any two diffraction patterns are not necessarily
equal, and EMD is therefore not assumed to satisfy the
requirements of a metric. This work introduces the Normalized
and Constrained Dynamic Time Warping measure (NC-DTW) as a
novel means for computing XRD dissimilarity, and which like the
DTW measure, does not satisfy the triangle inequality.

L1 & L2 norms. The L1 and L2 norms are special cases of the
p-norm, given by:

Dp�normðs; tÞ ¼
X

N

i¼1

ðsi � tiÞ
p

 !1=p

; ð1Þ

where p = 2 is the L2 norm, commonly known as the Euclidean
distance, and p = 1 is the L1 norm, also known as the Manhattan,
taxi-cab, or city block distance.

Cosine metric. The cosine metric gives the cosine of the angle
between two vectors, thus measuring only the vector orientation
difference, ignoring differences in vector magnitude.
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Pearson product-moment correlation. The Pearson product-
moment correlation is a measure of linear correlation between
two spectrums.
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where s and t indicate the average values of si and ti, respectively.
The Pearson product–moment correlation is related to the cosine
metric by replacing values of si and ti with si � s and ti � t,
respectively.

Spearman rank correlation coefficient. Each component si is
ranked by decreasing value, converting si and ti into their
ranks Si and Ti, respectively. For example, if Sl is the
second largest value from the set of all si, Sl = 2. The Spearman

measure is computed using:

DSpearmanðs; tÞ ¼
6
Pn

i¼1di

n3 � n
; ð4Þ

where di = |Si−Ti| is the difference in rank for si and ti.

Jensen–Shannon divergence (JSD). The JSD is a symmetric version
of the Kullback–Leibler divergence DKL, which measures the
information lost when using s to represent t.

DJSDðs; tÞ ¼
1

2
DKLðs; tÞ þ

1

2
DKLðs; tÞ ð5Þ
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Earth mover’s distance (EMD). The EMD is computed by solving a
transport problem. The intensity values of the diffraction patterns
being compared are interpreted as mass, with each unit of
intensity equal to a unit of mass. The measure is computed as the
minimum total work required to deform one diffraction pattern,
by moving mass, into the second diffraction pattern.30 The EMD
has a computational complexity of O(n2) and is therefore more
computationally expensive than the previously mentioned dis-
similarity measures, where Dp-norm, Dcosine, Dpearson, Dspearman and
DJSD have O(n) computational complexity. A fast-EMD algorithm
with O(n) complexity is used here to reduce computation time.30

Dynamic time warping (DTW). DTW measures the minimum non-
linear warping required to map one numeric array to another.
DTW also has a computational complexity of O(n2). In this study, a
fast-DTW algorithm with O(n) was employed to shorten the
calculation time.31

Normalized and constrained dynamic time warping (NC-DTW). This
work introduces the NC-DTW measure as a means for computing
XRD dissimilarity. For NC-DTW, each diffraction pattern is normal-
ized by its maximum value. Additionally, the range of potential
warping paths from one array to another is limited by setting a
window size. The window size defines the maximum number of
indices each intensity value can be warped by, e.g. for a window
size of r, hi can only be warped to a value in the set [hi-r, … , hi+r].

32

Specifically, if the window size is set to 0.5 degrees, two diffraction
patterns that share a peak which is separated by less than 0.5
degrees will be identified as similar, while two peaks separated by
more than the window size will be considered dissimilar.

RESULTS

Performance: composition-phase map determination accuracy

A dissimilarity matrix was computed for the Fe–Co–Ni XRD
patterns for each measure. The dissimilarity matrices were then
used to sort samples into groups of similar structure using
agglomerative HCA and k-medoids clustering—both methods that
rely only on the dissimilarity matrix rather than the original XRD
data. For HCA, cluster–cluster dissimilarity was computed using
ward’s, average, centroid, complete, Mcquitty and median linkage
methods. A discussion of the clustering methods and their
respective efficacies can be found in ref. 20. The HCA and k-
medoids clustering results were then compared to cluster labels
defined by expert analysis29 using multi-class F-measure to
compute accuracy. The number of clusters was varied between
2 and 10 to observe the impact of cluster number choice on
accuracy and to ensure that data effects such as outliers do not
skew the overall analysis of measure performance. For visual
analysis, the samples were color coded for cluster membership
and plotted as a function of composition. The resulting diagram
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provides a potential composition-phase map with cohesive
regions of shared cluster label corresponding to potential phase
regions. The phase map deduced from individual XRD patterns
of the spread wafer is shown in Fig. 2a2 with the equilibrium
phase diagram shown in Fig. 2a1 for reference. The automated
composition-phase maps for each measure are shown in Fig. 2b–i
for HCA using average linkage method. The number of cluster was
set to 5 because the known composition-phase map has five
regions with bcc, fcc, hcp, bcc + fcc and no XRD peak detected
region.

The Spearman metric performed poorly for all the clustering
techniques and number of clusters tested, sorting the majority of
data points into one cluster and the rest of the clusters containing
one or two points from the edge of the composition diagram, and
is excluded from the figure. It was found that the Spearman
metric’s poor performance is due to the statistical distribution of
XRD intensities. Figure 3 shows the data distribution (histogram)
with respect to the diffraction intensity for the four XRD pattern
used in the later qualitative metric multidimensional data scaling
(MMDS) analysis (Section 2.1.1). The majority of intensity values

Fig. 2 Result of the hierarchical cluster (HC) analysis in the Fe–Co–Ni ternary alloy system with different dissimilarity measures. a1 Known
phase diagram (ref. 35). a2 Phase map deduced from individual XRD patterns of spread wafer (ref. 29). b–i Result of the HC analysis with
different measures: b Euclidean metric. c Manhattan metric. d Cosine metric. e Pearson metric. f JSD. g EMD. h DTW i NC-DTW
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occur at low values, and are typical of noise with no diffraction
peaks. The Spearman metric calculates ranks primarily with noise,
leading to improper dissimilarity measures and poor clustering,
and was therefore found to be an inadequate metric for XRD
analysis.
F-measure is an accuracy measure that combines two proper-

ties, precision and recall. Precision is defined as the number of
samples properly identified as belonging to a phase region, or true
positive (TP) count, divided by the sum of the number of TP and
the number of samples incorrectly labeled as belonging to the
phase region, or false positive. Similarly, recall is defined as the
ratio of TP to the sum of TP and the samples incorrectly labeled as
not belonging to the cluster, or false negative. The F-measure is
defined as the harmonic mean of precision and recall, with larger
values corresponding to higher accuracy. To compute the F-
measure, each sample is labeled by its phase region, given by the
expert derived composition-phase map. The set of samples in
each expert labeled cluster Am are indexed by cluster label m and
the set of samples in the computed clusters Cn are indexed by
cluster label n. Associations between true cluster labels and
automated cluster labels are permuted through permutations of n
and the maximum F-measure is recorded:

F ¼
X

K

m¼1

jAmj

N
max
n

2RmnPmn

Rmn þ Pmn

ð6Þ

Pmn ¼
TP

TP þ FP
¼

jAm\Cnj

jCnj

Rmn ¼
TP

TP þ FN
¼

jAm\Cnj

jAmj

where |Am| and |Cn| are the number of samples in clusters Am and
Cn, respectively. K is the total number of clusters and N are the
number of XRD patterns, i.e., K = 5 and N = 1125.
Figure 4 shows the mean and standard deviation (indicated by

error bars) of F-measure accuracies, over both clustering method
and number of clusters, computed for each dissimilarity measure
as a function of computation time. The F-measure accuracy for
each measure and clustering method with the number of clusters
varied from 2 to 10 are shown in the Supplemental Figure S3.
Figure 4 shows that the cosine, Pearson and JSD measures all

perform better than the Euclidean, Manhattan, DTW, and EMD
measures in F-measure accuracy. This result is consistent with
intuition from Fig. 2a–i. The cosine, Pearson and JSD measures also
come at a significantly reduced computational cost than the DTW
and EMD measures. Of interest is the significantly greater
computational cost of the cosine metric compared to the Pearson
metric, as these only differ in a simple computation, the
subtraction of variable mean in the Pearson metric. The difference

in computational time was found to be due to the use of different
computation packages as discussed in the Supplemental.
This work introduces the use of the NC-DTW measure, which

utilizes prior knowledge of the maximum peak shift magnitude to
improve peak-mapping and dissimilarity evaluation. Here the NC-
DTW peak shift window is set to 0.6 degrees, permitting peak
matching across +/−0.6 degrees, as the magnitude of peak shift
for the bcc structure is approximately 0.6 degrees. As seen in
Fig. 5, use of the NC-DTW measure provides the greatest accuracy,
while still at a significant computational cost (2003.41 s). Also the
clustering result shown in Fig. 2i is quite similar to the correct
composition-phase map shown in Figure 2a. The light blue, red,
green and blue regions in Fig. 2i represent bcc, hcp, fcc and bcc +
fcc phases, respectively.
To gain further insight into the relative performance of the

various measures, a qualitative analysis using MMDS was
performed.

Qualitative analysis: dimension reduction with metric multidimen-
sional data scaling (MMDS). To gain a qualitative understanding
of the clustering performance of each measure, MMDS was used
to map the measure space (defined by the minimum number of
dimensions required to preserve the dissimilarities between each
set of samples) to the more easily visualized two or three-
dimensional space, while minimizing the loss of inter-sample
dissimilarities.22 The two or three-dimensional projection allows
for a more easily visualization of cluster results to identify the
impact of measure choice on cluster performance.
The four XRD patterns were selected with different composi-

tions as shown in Fig. 5a. A solid-red and a solid-black pattern
represent Ni fcc and Co hcp structures, respectively. Though a
solid-blue and dot-blue patterns show different peak intensity,
both of them show the Fe bcc structure. The compositions of the
solid-red, solid-blue, dot-blue and solid-red patterns are samples
whose compositions are Fe5.9Co7.7Ni86.5, Fe85.3Co6.5Ni8.2,
Fe89.8Co4.3Ni5.9, and Fe1.3Co77.4Ni21.3, respectively, as shown in
Fig. 5a’.
Figure 5b–i is the 2D MDS results for four selected patterns on

the Euclidean, Manhattan, cosine, Pearson, JSD, EMD, DTW, and
NC-DTW measures, respectively. The better dissimilarity measures
result in the solid-blue and dotted-blue patterns appearing closer
due to similar structural phase (bcc), while the distance between
the different structure phases should be large. On the 2D MMDS
mapping in the Euclidean, Manhattan, EMD, and DTW the distance
between the solid-blue and dotted-blue is large in spite of the fact
that they are from the same structural phase because these
measures are strongly affected by the peak intensity difference.
On the other hand, the cosine, Pearson, and JSD dissimilarities
allow us to locate same structural phases closer in the 2D MMDS
mapping since they mainly judge the peak shape, not peak

Fig. 3 Data distribution (histogram) with respect to the diffraction
intensity for four selected XRD patterns

Fig. 4 The computational cost and F-measure for each measure.
F-measure statistics were computed over the various clustering
techniques and over the range of cluster number 2–10
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intensity differences. The cosine, Pearson and JSD metrics permit
us to separate the different structural phases and cluster the same
structural phases in the defined space.
When the structural phases are roughly divided into only fcc,

bcc and hcp phases, and we expect to obtain the “correct” cluster
result as shown in Fig. 2a (known composition-phase map), A2
and B2 (A1 and L10) have to be recognized as the same structural

phase in metric space because both of A2 and B2 (A1 and L10) are
based on the bcc (fcc) structure. In order to end up with the
“correct” clustering result, the peak shift information due to the
difference in the lattice constant need to be accounted for, and
the diffraction peaks from A2 and B2 (A1 and L10) need to be
identified as arising from the same/equivalent reflections. The
EMD and DTW were expected to take care of the peak shift issue

Fig. 5 Result of the MMDS analysis. a Four selected XRD patterns. The solid-blue and dotted-blue are form the bcc phase. The solid-red and solid-
black are fcc and hcp structural phase, respectively. a′ Composition mapping for four selected XRD patterns. b–i Result of the 2D MMDS
analysis with different metric. b Euclidean metric. c Manhattan metric. d Cosine metric. e Pearson metric. f Jensen–Shannon Divergence.
g EMD. h DTW i NC-DTW
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because of their robustness against such peak shifting. However,
the EMD and DTW led to poor cluster results as shown in Fig. 2g,h
due to the following two reasons. First, EMD and DTW are strongly
affected by the peak intensity difference, and accordingly, the
distance between the solid-blue and dotted-blue in the MMDS
space (Figs. 5g,h) is large despite the fact that they are from the
same structural phase. Second, misidentification of diffraction
peaks may occur. For example, the DTW has “mixed-up” the fcc
and bcc peaks since the distance between solid-red (fcc) and solid-
blue (bcc) is very small in Fig. 5h due to the measures’ robustness
against peak location differences.
The NC-DTW measure introduced in this work resolves these

issues. Compare to the MMDS mapping for DTW in Fig. 5h, the
distance between solid-blue and dotted-blue in Fig. 5i is small due
to the normalization. This indicates that the normalization
decreases the influence of peak intensity differences on cluster
results. Moreover, the peak shift window constraint allows us to
increase the distance between fcc and bcc by defining an
allowable peak shift range.
From these qualitative and quantitative analyses, we conclude

that the cosine and Pearson metrics should be the measures of
choice in cluster analysis of XRD patterns due to their high
accuracy and low computational cost. Furthermore, when prior
knowledge of the maximum peak shift magnitude is available, the
NC-DTW should be selected if adequate time exists for the
increased computational cost.

Impact of measure on parameter selection: number of clusters. For
this study, expert derived labels were available to quantify the
accuracy of clustering. However, for the high throughput systems
described in Fig. 1, this is rarely the case. Typically, only the
structure and composition data is available and the automated
clustering results are presented to the expert for verification.

For these cases, a set of factors can impact performance—the
choice of measure, the choice of clustering method, and the
choice of clustering method parameters. There are numerous
methods for quantifying clustering performance when correct
class assignment is unknown,20 though expert analysis is typically
taken as the final say. These methods are used for identifying the
optimal cluster method parameters, including the number of
clusters. For this work, cluster performance is determined by the
bootstrap method, which minimize cluster instability.33 Figure 6a
shows the cluster instability calculated by the bootstrap method
for the HCA-average linkage method with the JSD metric in the
Fe–Co–Ni system. When the number of clusters is equal to six, the
cluster analysis is the most stable. Therefore, this result suggests
setting the number of cluster to six.
Figure 6b shows the cluster result with six clusters by the HCA-

average linkage method with the JSD metric. Comparing to Fig. 2f,
the bcc phase was separated into two phases (blue and pink region
in Fig. 6b). This result reflects the difference of lattice constant
which causes the peak shift in XRD pattern. The Co atomic radius is
slightly smaller than the Fe atomic radius, and as a result, the
diffraction peak of bcc structure with Co-rich composition shifts to
the higher angle as shown in Fig. 6c, which displays XRD patterns
in the black rectangle (FexCo100-xNi2.5±1.0) in Fig. 6b.
The result in Fig. 6b can be explained by the Strukturbericht

designation, where Fe50Co50 and Fe50Ni50 can be the B2 and L10
structure, respectively. Therefore, the pink, blue, red, black, light
blue and green region represent the A2, B2, A1, A3, L10 and A1 +
A2 structure in Fig. 6b.

Existing problems and future work
Window size in NC-DTW: In Section 2.1, the window size r was
set to 0.6 degrees. since we knew that the magnitude of the peak
shift was about 0.6 degrees. in the Fe–Co–Ni system. However, the

Fig. 6 Automated determination of the cluster number using the bootstrap method. a Result of cluster instability by the bootstrap method. b
Result of cluster analysis with six clusters determined by bootstrap method. c Composition spread for XRD pattern in the black rectangle
(FexCo100-xNi2.5±1.0) in Fig. 5b
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magnitude of the peak shift is usually unknown when the
combinatorial data is analyzed for the first time. Therefore, a
method which determines the window size automatically is
essential when the NC-DTW is used in the cluster analysis. One
possible method to decide the window size is a deductive
approach by the condensed matter theory. For example, Ab initio
calculation might allow us to estimate the magnitude of peak shift
on XRD patterns. Another possible method is a recursive approach
by statistics. For example, the magnitude of peak shift might be
predicted by supervised machine learning when a large amount of
data for XRD patterns from other materials has already been
stored in a database.
Extension to the other fields: The cluster analysis with the cosine,
Pearson, JSD, and NC-DTW are found to be the ideal metrics for
combinatorial XRD data. It would be interesting to determine the
best metric for Raman spectroscopy (Raman), X-ray magnetic
circular dichroism (XMCD) and other physical property data. One
must carefully choose the appropriate metric(s) to use taking into
account the detailed characteristics of different types of physical
property data. For example, the cosine metric which determines
the only peak shapes (not peak intensity) is not likely to be
suitable for XMCD data because peak intensity information of
XMCD is very important. We have previously shown that Pearson
is effective as one metric for carrying out clustering of Raman
spectroscopy data.34 We are currently in the process of evaluating
different metrics for a variety of data formats from other materials
characterization techniques.

DISCUSSION

We have investigated the effect of the dissimilarity measures on
clustering analysis for XRD data. Clustering with the Euclidean,
Manhattan, cosine, Pearson, Spearman, JSD, DTW and NC-DTW
measures were carried out on XRD data from the Fe-Co-Ni ternary
alloy spread. It was found that the cosine, Pearson, JSD and NC-
DTW measures are the most suitable for XRD data analysis, with
the cosine, Pearson, and JSD measures providing optimal results in
the presence of peak height change and NC-DTW providing
optimal results when prior knowledge of peak shifting magnitude
is available to be incorporated into the analysis. In addition,
selecting the cosine measure over DTW was shown to reduce
dissimilarity computation time by two orders of magnitude
(fastDTW: 1165 s verse cosine metric: 8.52 s). Similar results were
obtained for another ternary system, and the results are provided
in the supplementary section. Dissimilarity measure selection was
shown to provide the translation invariance and scale invariance
required to properly handle peak height and peak shift changes.
For improved results, further physical constraints such as Gibbs
phase rule can be introduced through constraints applied in the
clustering algorithm.19

We have looked at composition spreads of a number of other
materials systems (about 10, all metallic alloys or oxides) using
some of the same metrics and the clustering algorithms. Some
systems were indeed more complicated than others: while most of
the samples were textured, some were polycrystalline, and some
contained diffraction peaks from impurity phases. The result on
the relative performance of different metrics were found to be the
same or very similar to the one described here for the Fe–Co–Ni
spread. We have chosen the Fe–Co–Ni system result for the
current manuscript as the most representative and most
effectively illustrative because it has a known phase diagram,
and because the phases on the composition spread have been
identified “manually” one by one prior to the current work.29

This study provides the basis for a broader analysis of
dissimilarity measures and their efficacy across different material
systems and their respective data features. In particular, future
work will investigate whether the lessons learned in this study
may be extended to systems of greater number and complexity of

phase regions by appropriately increasing the composition
sampling resolution of the composition spread, to ensure well
defined phase regions. Furthermore, the effect of data artifacts
associated with XRD measurement such as limited low 2theta
range sampling or low signal to noise ratio will also be addressed.
Additionally, the impact of uncertainty in measurement and data
analysis will be analyzed for their propagated effects on the final
composition-phase map.
It is important to point out that the challenge of having to

analyze a large amount of data in materials science goes beyond
screening combinatorial libraries. Mapping spatially resolved
properties of samples is increasingly a desirable mode of materials
interrogation as various characterization techniques (such as
scanning probe microscopy and synchrotron micro diffraction)
continue to become powerful with higher and higher spatial
resolution. The present result therefore is applicable to any
experiment where a large number of XRD patterns is collected.

METHODS

The set of dissimilarity measures were computed for the Fe–Co–Ni and
Fe–Ga–Pd XRD using the software packages listed in the Supplemental.
Dissimilarity measure results were then used to cluster the diffraction
patterns into phase regions using agglomerative HCA and k-medoids
clustering. For HCA, cluster-cluster dissimilarity was computed using
ward’s, average, centroid, complete, Mcquitty and median linkage
methods. The clustering results were then compared to phase region
labels defined by expert analysis27, with the accuracy computed using
multi-class F-measure. The number of clusters was varied between 2–10 to
observe the impact of cluster number choice on accuracy and to ensure
that data effects such as outliers do not skew the overall analysis of
measure performance. To gain a qualitative understanding of the
clustering performance of each dissimilarity measure, MMDS was used to
map each measure space (defined by the minimum number of dimensions
required to preserve the dissimilarities between each set of samples) to the
more easily visualized two-dimensional space, while minimizing the loss of
inter-sample dissimilarities.22 The two-dimensional projections were then
used to identify the impact of measure choice on cluster performance.
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