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A novel versatile digital signal processing (DSP) based 

equalizer using support vector machine regression (SVR) 

is proposed for 16-quadrature amplitude modulated (16-

QAM) coherent optical orthogonal frequency-division 

multiplexing (CO-OFDM) and experimentally compared to 

traditional DSP-based deterministic fiber-induced 

nonlinearity equalizers (NLEs), namely the full-field 

digital back propagation (DBP) and the inverse Volterra-

series transfer function based NLE (V-NLE). For 40-Gb/s 

16-QAM CO-OFDM at 2000 km, SVR-NLE extends the 

optimum launched optical power (LOP) by 4 dB compared 

to V-NLE by means of reduction of fiber nonlinearity. In 

comparison to full-field DBP at a LOP of 6 dBm SVR-NLE 

outperforms by ~1 dB in Q-factor. In addition, SVR-NLE is 

the most computational efficient DSP-NLE. © 2015 Optical 

Society of America 

OCIS codes: (060.2330) Fiber optic communications, (060.4080) 

Modulation, (060.1660) Coherent communications.  
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     Endeavors to surpass the Kerr-induced nonlinearity limit have 

been performed by either inserting an optical phase conjugator 

(OPC) at the middle point of the link [1] or using electronic-based 

nonlinearity compensators (NLC) such as digital back-propagation 

(DBP) placed in the receiver [2] or transmitter [3], phase-

conjugated twin-waves (PC-TW) [4], and nonlinear equalizers 

(NLEs) based on the inverse Volterra-series transfer function (V-

NLE) [5]. Unfortunately, OPC significantly reduces the flexibility in 

an optically routed network requiring both symmetric 2nd order 

chromatic dispersion (CD) and power evolution, DBP is extremely 

complex and PC-TW halves the transmission capacity. V-NLE has 

been considered as a simple and effective method for combating 

fiber nonlinearities, however it still requires a significant amount of 

floating-point multiplications. Additionally, in coherent 

communication systems the interaction between nonlinear 

phenomena, CD, and frequency fluctuations of source and local 

oscillators (LO) results in stochastic nonlinear distortion, which can 

be partially mitigated using either frequency referenced carriers [3] 

or nonlinear mapping based on statistical learning such as artificial 

neural networks (ANN) [6] and support vectors machines (SVM) 

[7].  

     On the other hand, coherent optical orthogonal frequency-

division multiplexing (CO-OFDM) is an excellent candidate for long-

haul communications because of its high spectral efficiency and 

tolerance to CD and polarization-mode dispersion (PMD). However, 

due to its high peak-to-average power ratio (PAPR) the nonlinear 

cross-talk effects among subcarriers such as cross-phase 

modulation (XPM) and four-wave mixing (FWM) are enhanced, 

causing a stochastic-like interference to the extent of becoming an 

insurmountable obstacle. Owing to the vulnerability of CO-OFDM in 

nonlinear distortion, it is envisaged that NLC will enhance the 

capacity and transmission-reach in coherent optical core networks 

[8], thus avoiding highly dissipative regeneration electronics [3]. 

However, NLC feasibility demands the employment of versatile (i.e. 

independent from link parameters) techniques of low complexity 

for real-time applications. 

     In this letter, it is experimentally compared, for the first time, V-

NLE and full-field DBP-NLE with a novel SVM-based regression 

(SVR) NLE in 40-Gb/s 16-quadrature amplitude modulation (16-

QAM) CO-OFDM at 2000 km. In contrast to nonlinear classifiers 

such as ANN [6] and SVM [7], SVR projects the obtained data on a 

hyperplane where constellation regions are easier to decode.  It is 

shown that SVR-NLE can extend the optimum launched optical 

power (LOP) by 4 dB compared to both linear equalization and V-

NLE by means of reduction of fiber nonlinearity. In comparison to 

full-field DBP-NLE at a LOP of 6 dBm, SVR-NLE outperforms by ~1 

dB in Q-factor. In addition, it is shown that SVR is significantly less 

complex than full-field DBP and V-NLE. 

     Fig. 1 depicts (a) the block diagram of the CO-OFDM receiver 

equipped with NLE, and (b) the proposed SVR-NLE comprised of k 

hidden nodes (support vectors) with each node being associated to 

each subcarrier k. The received symbols for each subcarrier x{k} are 

processed by the NLE supported vectors which are scaled by weight 
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values (i.e. the Lagrange multipliers) for each subcarrier wk,i after 

which, the outputs for different k are summed.   

     Distribution of noisy possible constellation point is learnt during 

an initial training process. Once these distributions are learnt, the 

detector can make decision for the new unknown observation 

symbols. The hyperplane is obtained through approximation of a 

nonlinear function using a set of Kernels (sigmoid function) of l 

training dataset {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑙 , 𝑦𝑙)}. In Fig. 2, an 

example is depicted for SVR showing how a data-set with noise can be extracted using the Kernel “trick” and thus controlling “overfitting”.  In Fig. 2(a) the graphical representation depicts a 
data-set with noise using vectors of +1,-1; and in Fig. 2(b) it is shown 

how the useful data could be extracted via a powerful Kernel 

without being corrupted by the noisy data. 
 

 
(a) 

 

 
(b) 

 

Fig. 1. (a) Block diagram of the CO-OFDM receiver equipped with NLE. 

(b) Proposed SVR-NLE.  
      

                                
                                 (a)                                                                 (b) 
 

Fig. 2. SVR example: (a) data-set with noise; (b) example of using 

powerful Kernel “trick” to distinguish useful data from noisy data. 

 

     Afterwards, SVR maps the data to a high-dimension feature space 

using a nonlinear mapping φ (Kernel-based sigmoid function) and then linear regression is formulated by introducing the “ε-insensitive” loss function in the following form: 

 

          𝑓(𝑥, 𝑤) =  ∑ 𝑤𝑘,𝑖𝜑𝑘,𝑖(𝑥)𝑀𝑖=1 + 𝑏                                (1) 

 

where 𝑓(𝑥, 𝑤) is the target linear model, 𝜑𝑘,𝑖(𝑥) denotes a set of 

nonlinear transformations of input x, and b is the bias term. The 

number of vectors in every hidden node is equal to the number of 

points of the constellation, i.e. M in (1), which in the case of 16-QAM 

is 16. Afterwards, (1) can be learnt through training process by 

minimizing the error: 
 𝜓(𝑤, 𝜉) = 12 ‖𝑤‖2 + 𝐶 ∑(𝜉𝑘− + 𝜉𝑘+)                             (2) 

 

where 𝜉𝑘−, 𝜉𝑘+ are slack variables [7] corresponding to the 

upper and lower bounds on the output function, and C is the 

penalty parameter which controls the trade-off between the 

slack variable penalty and the margin [7]. Depending on how 

much loss is ignored, the solution of (2) can be approximated 

by the Lagrange-based loss function 𝐿(𝑦, 𝑓(𝑥, 𝑤)), and thus, 

the adopted “𝜀-insensitive” loss function can be expressed as:  

 𝐿𝜀(𝑦, 𝑓(𝑥, 𝜔)) = { 0   𝑖𝑓 |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝜀|𝑦 − 𝑓(𝑥, 𝑤)| − 𝜀, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            (3) 

 

     The procedure of SVR involves 2 stages:  

 Training:  

a) Arrange the data to form SVR packet with label (I and 

Q);  

b) Perform (I, Q) data scaling to [0,1];  

c) Select the sigmoid Kernel function;  

d) Use cross validation to find the best C and the 

standard single-mode fiber (SSMF)-induced 

nonlinearity parameter; 

e) Use C and nonlinearity parameter to build the SVR for the whole “training set”.  
 Testing:  

a) Approximate functions of the form presented in (1) with “ε-insensitive” loss function. Loss is zero if 

difference between f(x,w) and measured value is < ε. Vapnik’s “ε-insensitivity” loss function defines an ε 

tube around f(x,w) [9]. If predicted value is within the 

tube, the loss (error, cost) is zero while for points 

outside the loss equals to the magnitude of the 

difference between the predicted value and the 

radius ε of the tube; 

b) Compare predicted labels (y-output) to pre-stored 

transmitted label for bit-error-rate (BER) estimation. 

In SVR, even if the processing of the initial training 

sequence might be computational consuming, for a 

highly stable link, where CD and nonlinear effects do 

not change over time, the regression coefficients 

should only be found once. Moreover, there is no 

oversampling as in V-NLE because SVR-NLE is 

performed in a subcarrier-by-subcarrier OFDM 

process. 

     The block diagram of V-NLE is depicted in Fig. 3, which is 

similar to [5, 6]. For V-NLE, 3rd order Volterra Kernels were 

considered to reduce the complexity, which is identical to 

that reported in [5, 6] to account for single-polarization 16-

QAM CO-OFDM. In contrast to SVR-NLE, V-NLE is placed after 

the analogue-to-digital converters (ADCs) as depicted in Fig. 

3 to relax digital signal processing (DSP) complexity by 

means of reducing the number of inverse fast Fourier 

transform (IFFT)/FFT blocks. V-NLE inherits some of the 

features of the hybrid time-and-frequency domain 

implementation, such as non-frequency aliasing and simple 

implementation. From Fig. 3, it can be clearly identified that 

CD, i.e. (HCD)k, and the fiber nonlinearity are combated by the 

linear and nonlinear compensator tool, respectively. Very 

high-order Volterra Kernels have not been considered here, 

thus offering ∼50% reduced computational complexity 

compared to full-field DBP. 
 



  
Fig. 3. Block diagram of the CO-OFDM receiver equipped with the 

benchmark V-NLE. LPF: low-pass filter, ADC: analogue-to-digital 

converter, STP/PTS: serial-to-parallel/parallel-to-serial, CP: cyclic 

prefix, (I)FFT: (inverse) fast-Fourier transform, NLE: nonlinear 

equalizer, NC: nonlinear compensator, HCD: nonlinear system chromatic 

dispersion. 
 

                                                        

                             
 

Fig. 4. Computational complexity comparison between SVR-, DBP- and 

V-NLEs: Blue bars represent the computational complexity of V-NLE for 

different subcarrier number, NSC, and number of spans, Nspan; black-grey 

bars represent the computational complexity of DBP-NLE for different 

subcarrier number, NSC, and transmission lengths, whereas red bars are 

for SVR-NLE considering various NSC, and bits per subcarrier, Nbits (i.e. k). 

      

     Finally, 200 steps/span (denoted as full-field) were taken 

for DBP-NLE following procedure similar to [2]. DBP-NLE is also placed after the ADC’s in the receiver. The number of 

floating-point real-valued multiplications required by SVR 

for decoding each OFDM symbol is: 

 

 𝑁𝑆𝑉𝑅 = 2 · 𝑁𝑆𝐶  (2𝑁𝑏𝑖𝑡𝑠 + 1)                               (4) 

 

where NSC is the number of subcarriers and Nbits is the number 

of bits encoded in each subcarrier. The number of 

multiplications in full-field DBP is: 

 𝑁𝐷𝐵𝑃 = 𝑑𝑙𝑖𝑛𝑘/𝑑𝑠𝑡𝑒𝑝 [8𝑁𝑆𝐶𝐾 𝑙𝑜𝑔2(𝑁𝑆𝐶𝐾) − 9 𝐾 𝑁𝑆𝐶 + 16]  (5) 

 

in which where dlink and dstep are the total link distance and 

the splitting step, respectively, and K is the oversampling 

factor. For a system under test with Nbits = 4, NSC = 512, and 

dlink = 2000 km, and assuming K = 4 and dstep = 1 km, it is 

calculated that NSVR = 17408 whereas NDBP = 145440000, that 

is, a difference of ~4 orders of magnitude. On the other hand, 

the numbers of multiplications required by V-NLE is: 

NVolterra=(Nspan+1)8NSCKlog2(NSCK)+(20Nspan−6)NSCK+16(Nspan+

1) in which where Nspan is the number of spans. The 

computational complexity of V-NLE depends on Nspan but not 

on Nbits, while as shown from (4) SVR-NLE does not depend 

on the link-related parameters but on Nbits since it is sensitive 

to the number of points in the constellation. Fig. 4 shows a 

detailed quantitative comparison in terms of NSC for different 

system parameters. For V-NLE a K of 4 has been set and the 

Nspan has been varied (1, 5, and 10), for DBP-NLE a K of 4 has 

also been set and the total link distance (dlink) has been varied 

(100 km, 1000 km, and 2000 km), whereas for SVR-NLE, the 

Nbits has been swept (k = 1, 2, and 4). It is shown that, for all 

considered NSC values, SVR-NLE outperforms both V-NLE and 

DBP-NLE in terms of computational complexity. Even when 

comparing the best-case scenario of V-NLE, i.e. only 1 span, 

to the worst-case scenario of SVR i.e. 4 Nbits, the latter always 

outperforms. This difference increases accordingly to the 

number of spans, which is the case of long-haul networks. 

     Fig. 5 depicts the experimental setup where an external 

cavity laser (ECL) of 100 KHz linewidth was modulated using 

a dual-parallel Mach-Zehnder modulator (DP-MZM) in I-Q 

configuration. The DP-MZM was fed with OFDM I-Q 

components, which was generated offline. The transmission 

path at 1550.2 nm was a recirculating loop consisting of 

20×100 km spans of Sterlite OH-LITE (E) fiber (attenuation, 

α, of 18.9-19.5 dB/100 km) controlled by acousto-optic 

modulator (AOM). The loop switch was located in the mid-

stage of the 1st Erbium-doped fiber amplifier (EDFA) and a 

gain-flattening filter (GFF) was placed in the mid-stage of the 

3rd EDFA. The LOP was swept by controlling the output 

power of the EDFAs. At the receiver, the incoming signal was 

combined with another 100 KHz linewidth ECL acting as LO. 

After down-conversion, the baseband signal was sampled 

using a real-time oscilloscope operating at 80 GS/s and 

processed offline in MATLAB®. 400 OFDM symbols were 

generated using a 512-point IFFT, 210 subcarriers were 

modulated using 16-QAM, while the rest were set to zero. To 

eliminate the PMD-induced inter-symbol-interference, a 

cyclic prefix (CP) of 2% was included. The SVR training 

overhead was set at 10% similarly to [7] resulting in a 

training length of 40 symbols. The net bit-rate was ~40-Gb/s. 

The offline OFDM demodulator included both timing 

synchronization and frequency offset compensation, as well 

as I-Q imbalance and CD compensation using an overlapped 

frequency domain equalizer employing the overlap-and-save 

 
Fig. 5. Experimental setup of 40-Gb/s CO-OFDM equipped with NLE. ECL: external cavity laser, DSP: digital signal processing, AWG: arbitrary 

waveform generator, AOM: acousto-optic modulator, EDFA: Erbium-doped fiber amplifier, GFF: gain flatten filter, LO: local oscillator. 

 



method. The raw bit-rate for all techniques including linear 

equalization was ~45.6-Gb/s. NLE was assessed by Q-factor 

measurements averaging over 10 recorded traces (~106 

bits), which was estimated from the BER obtained by error 

counting after hard-decision decoding. The Q-factor is 

related to BER by: Q = 20log10[√2𝑒𝑟𝑓𝑐−1(2𝐵𝐸𝑅)]. For 16-

QAM, a BER of 10-3 (FEC-limit) results in a Q-factor of ~9.8 

dB. In Fig. 6, the Q-factor against the LOP is plotted for 40-

Gb/s CO-OFDM at 2000 km for SVR-NLE, DBP-NLE, V-NLE 

and without (w/o) employing NLE. It is shown that SVR-NLE 

can extend the optimum LOP by 4 dB compared to both linear 

equalization and V-NLE by means of reduction of fiber 

nonlinearity. In comparison to full-field DBP-NLE at a LOP of 

6 dBm, SVR-NLE outperforms by ~1 dB in Q-factor. This 

occurs due to the inability of both V-NLE and DBP-NLE to 

combat the stochastic-induced inter-subcarrier intermixing 

based effects of four-wave mixing and cross-phase 

modulation. 
      

 
Fig. 6. Q-factor vs. launched optical power (LOP) for SVR-NLE, DBP-NLE, 

V-NLE and without (w/o) NLE, for 40-Gb/s 16-QAM CO-OFDM at 2000 

km of transmission. 
    

                           
(a)  w/o NLE                               (b) V-NLE 

 

                                       
(c) DBP-NLE                           (d) SVR-NLE 

 

Fig. 7. Received 16-QAM constellation diagram of 40-Gb/s CO-OFDM for 

a LOP of 4 dBm (a) w/o NLE [Q-factor = 8.2 dB], (b) with V-NLE [Q-factor 

= 10.4 dB], (c) with DBP-NLE [Q-factor = 12.5 dB] and (d) with SVR-NLE 

[Q-factor = 14 dB]. Inset: Colour bar. 

       

     In Fig. 7, a comparison is depicted between the received 16-QAM 

constellations of 40-Gb/s CO-OFDM at a LOP of 4 dBm for all three 

aforementioned DSP-NLEs and w/o NLE. From these constellations 

it is evident that SVR-NLE condenses the constellation points more 

effectively in contrast to the two benchmark deterministic NLEs (i.e. 

V-NLE and DBP-NLE) by decreasing the symbol dispersion due to 

its stochastic-induced nonlinearity mitigation capability. 

     In conclusion, a novel SVR based NLE was experimentally 

compared to V-NLE and full-field DBP-NLE in 40-Gb/s 16-QAM CO-

OFDM at 2000 km. SVR-NLE extended the optimum LOP by 4 dB 

compared to V-NLE and outperformed by ~1 dB in Q-factor to full-

field DBP-NLE at a LOP of 6 dBm. Moreover, SVR-NLE is significantly 

less complex than both full-field DBP-NLE and V-NLE. 
 

Funding. Centre of Excellence (CE110001018); Laureate 

Fellowship (FL120100029); EPSRC (EP/J017582/1, 

EP/L000091/1); FAPESP (2015/04113-0). 

References 

1. I. D. Phillips, M. Tan, M. F. C. Stephens, M. E. McCarthy, E. Giacoumidis, S. 

Sygletos, P.  Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. 

Harper, A.D. Ellis, in OFC (OSA, 2014), p. M3C.1. 

2. G. Gao, J. Zhang, and W. Gu, IEEE Photon. Technol. Lett. 25, 717 (2013). 

3. E. Temprana, E. Myslivets, B.P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, 

Science 348, 1409 (2015). 

4. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, 

Nature Photon. 7, 560 (2013). 

5. E. Giacoumidis, I. Aldaya, M. A. Jarajreh, A. Tsokanos, S. T. Le, F. Farjady, A. 

D. Ellis, and N. J. Doran, IEEE Photon. Technol. Lett. 26, 1383 (2014). 

6. M. A. Jarajreh, E. Giacoumidis, I. Aldaya, S. T. Le, A. Tsokanos, Z. 

Ghassemlooy, and N. J. Doran, IEEE Photon. Technol. Lett. 27, 387 (2015). 

7. M. Li, S. Yu, J. Yang, Z. Chen, Y. Han, W. Gu, IEEE Photon. J. 5, (2013).  

8. S. T. Le, M. E. McCarthy, N. Mac-Suibhne, M. Al-Khateeb, E. Giacoumidis, N. 

J. Doran, A. D. Ellis, S. K. Turitsyn, IEEE J. Lightw. Technol. 33, 2206 (2015).                                       

9. V. Vapnik, Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1982. 

Full References Description 

1. D. Phillips, M. Tan, M. F. C. Stephens, M. E. McCarthy, E. Giacoumidis, S. 

Sygletos, P.  Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. 

Harper, A.D. Ellis, “Exceeding the nonlinear-Shannon limit using Raman 

laser based amplification and optical phase conjugation”, OSA Optical Fiber 

Communication Conference and Exposition and the National Fiber Optic 

Engineers Conference (OFC/NFOEC), San Francisco, California, USA, Paper 

M3C.1 

2. G. Gao, J. Zhang, and W. Gu, “Analytical evaluation of practical DBP-based 

intra-channel nonlinearity compensators,” IEEE Photon. Technol. Lett. 25, 

717 (2013). 

3. E. Temprana, E. Myslivets, B.P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, 

“Overcoming Kerr-induced capacity limit in optical fiber transmission”, 
Science 348, 1409 (2015). 

4. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach and S. Chandrasekhar, 

“Phase-conjugated twin waves for communication beyond the Kerr 

nonlinearity limit”, Nature Photon. 7, 560 (2013). 

5. E. Giacoumidis, I. Aldaya, M. A. Jarajreh, A. Tsokanos, S. T. Le, F. Farjady, A. 

D. Ellis, and N. J. Doran, “Volterra-based reconfigurable nonlinear equalizer 

for dual-polarization multiband coherent OFDM”, IEEE Photon. Technol. 
Lett. 26, 1383 (2014). 

6. M. A. Jarajreh, E. Giacoumidis, I. Aldaya, S. T. Le, A. Tsokanos, Z. 

Ghassemlooy, and N. J. Doran, “Artificial neural network nonlinear 

equalizer for coherent optical OFDM”, IEEE Photon. Technol. Lett. 27, 387 

(2015). 

7. M. Li, S. Yu, J. Yang, Z. Chen, Y. Han, W. Gu, “Nonparameter Nonlinear 
Phase Noise Mitigation by Using M-ary Support Vector Machine for 

Coherent Optical Systems”, IEEE Photon. J. 5 (2013).  

8. S. T. Le, M. E. McCarthy, N. Mac-Suibhne, M. Al-Khateeb, E. Giacoumidis, N. 

J. Doran, A. D. Ellis, S. K. Turitsyn, “Demonstration of Phase-conjugated 

Subcarrier Coding for Fiber Nonlinearity Compensation in CO-OFDM 

Transmission”, IEEE J. Lightw. Technol. 33, 2206 (2015).                                                                          

9. V. Vapnik, Estimation of Dependences Based on Empirical Data: Springer 

Series in Statistics (Springer Series in Statistics), Secaucus, NJ, USA: Springer-

Verlag New York, Inc., 1982. 


