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Abstract According to American College of Emergency

Physicians, emergency department (ED) crowding occurs

when the identified need for emergency services exceeds

available resources for patient care in the ED, hospital, or

both. ED crowding is a widely reported problem and sev-

eral crowding scores are proposed to quantify crowding

using hospital and patient data as inputs for assisting

healthcare professionals in anticipating imminent

crowding problems. Using data from a large academic

hospital in North Carolina, we evaluate three crowding

scores, namely, EDWIN, NEDOCS, and READI by

assessing strengths and weaknesses of each score, partic-

ularly their predictive power. We perform these evalua-

tions by first building a discrete-event simulation model

of the ED, validating the results of the simulation model

against observations at the ED under consideration, and

utilizing the model results to investigate each of the three

ED crowding scores under normal operating conditions

and under two simulated outbreak scenarios in the ED.

We conclude that, for this hospital, both EDWIN and

NEDOCS prove to be helpful measures of current ED

crowdedness, and both scores demonstrate the ability to

anticipate impending crowdedness. Utilizing both

EDWIN and NEDOCS scores in combination with the

threshold values proposed in this work could provide a

real-time alert for clinicians to anticipate impending

crowding, which could lead to better preparation and

eventually better patient care outcomes.

Keywords Emergency department crowding . Discrete-event

simulation . Queueingmodel . Edwin . NEDOCS . READI

1 Introduction

Emergency department (ED) crowding is a widely reported

problem and may adversely affect patient care [10, 13]. There

is currently no universally accepted definition for an ED being

in a Bcrowded^ or Bovercrowded^ state [4, 15]. The existing

definitions are rather vague and do not have any time metrics

associated. For example, the American College of Emergency

Physicians (http://www.acep.org/Clinical—Practice-

Management/Crowding) define ED crowding as an event

that occurs when the identified need for emergency services

exceeds available resources for patient care in the ED,

hospital, or both. There have been several attempts in the

literature to provide a quantitative measure for ED crowding.

Patient counts has emerged as a basic tool for measuring the

non-flow of patients through the ED (i.e., patient crowding)

[8], and there have been several more advanced strategies to

quantify the crowdedness in an ED by developing crowding

scores [16]. These crowding scores provide an assessment of

the current crowding level in an ED, and allow healthcare

professionals to anticipate imminent crowding problems and

make better resource allocation and staffing decisions [5].

Three of the more widely used scores in the U.S. are the

National Emergency Department Overcrowding Scale

(NEDOCS), the Emergency Department Work Index

(EDWIN), and the Real-time Emergency Analysis of

Demand Indicator (READI) [9, 11]. The formula for each of
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these scores takes into account various patient, ED, and hos-

pital information, and yields a numerical value that indicates

whether an ED is running smoothly, is crowded but effective,

or is overcrowded at a given point in time.

Since each crowding score takes in specific hospital and

patient characteristics and is judged against its own corre-

spondingmeasurement scale, there are general scalability con-

cerns of the various scoring systems [8, 9]. For example, a

scoring system that performs well at a rural hospital with a

small ED may not perform well at a large, urban hospital

system with an extremely busy ED. Regardless of scalability

concerns, a Bsuccessful^ crowding score should assist medical

professionals through the measurement of current ED condi-

tions, detection of abnormal ED operations, and anticipation

of increased crowding levels. Measuring current crowding

and alerting the ED to predicted overcrowding could assist

medical professionals to make real-time operational changes

thereby improving patient access to care [6].

In this study, we consider a large academic hospital in

North Carolina, where the EDWIN score was used to assess

the level of crowdedness in the ED during the time this study

was conducted. Our main objective is to explore if NEDOCS

or READIwould be a more informative crowding score at this

North Carolina hospital and hospitals alike and if so how they

should be utilized to measure the crowding most effectively.

For this purpose, we built a discrete-event simulation (DES)

model of the ED using hospital and patient data collected

during January 7 to February 3, 2013. As established in [1],

emergency department crowding can be analyzed using an

input-throughput-output approach, where factors contributing

to ED crowding are either inputs, throughputs, or outputs.

This view of the ED and ED crowding is the most widely

accepted [8], and discrete-event simulation can use this ap-

proach to model the operations at an emergency department

as a sequence of discrete events. Discrete-event simulation has

been also well established as a modeling approach for ED

patient flow and crowding research, see, e.g., [1, 3], [7, 18].

Use of simulation is especially suitable to answer what-if

questions which cannot be answered using historical data or

the real system.

After building our simulation model, we first used visual

tools and a statistical test to validate it as a reasonable model

that yields output similar to the actual system. Using both the

actual and simulated data, we then observed how each score

behaves during the course of a typical day with normal oper-

ating conditions. Later, we simulate the ED to test the predic-

tive power of the three ED crowding scores under two hypo-

thetical scenarios where the ED faces a higher-than-usual pa-

tient demand over the course of four days, e.g., due to a short

cold/flu outbreak. In particular, we compare each score in

terms of the probability that the score will detect the presence

of an unusual load.We also propose that each ED score should

be compared to a high percentile threshold based on historical

data from the ED under consideration to detect an overcrowd-

ing event instead of comparing the score to a fixed value as

proposed in the literature. Using historical data from the ED,

this proposed approach takes into account the characteristics

of different EDs and hospitals using the same score. Our sim-

ulation experiments show that when used together with our

proposed threshold, EDWIN and NEDOCS perform well in

detecting abnormal patient loads.

The outline of the article is as follows. In Section 2, we

provide a background and literature review on the three

crowding scores under consideration. In Section 3, we discuss

the data and the ED operations in the hospital under study.

Section 4 introduces our simulation model and discusses the

statistical analysis of the input data. In Section 5, we present

results on the validation of our simulation model and provide

observations on how the three crowding scores behave under

normal operating conditions. In Section 6, we utilize the model

results and statistical analysis to evaluate how well EDWIN,

NEDOCS, and READI detect the onset of a hypothetical event

that results in an increased rate of arrivals. Finally, in Section 7

we discuss our conclusions and limitations of this study.

2 Background on ED crowding scores

We start by defining the three crowding scores of interest. The

variables used in each formula are described in detail in Table 1.

The formula for calculating the EDWIN score is given as

follows [2]:

EDWIN ¼

X 5

i¼1
niti

N BT−BAð Þ

where the numerator represents a weighted sum of the num-

ber of patients from all five triage categories present in the ED.

Here, severity level ti is the reverse of the ith level of severity as

determined by the Emergency Severity Index (ESI), i.e., ti
= 6 − i. (ESI is one of the most widely used triage systems in

US hospitals, see, e.g., [14].) According to ESI, a patient who

receives a smaller index level is more urgent. Hence, for the

score value to increase with increased severity of illness, ti is set

to (6 − i). Once an ED patient has been admitted to the hospital,

i.e., a patient who is occupying an ED bed while awaiting an

open inpatient bed, he or she is considered a Bhold^ and is no

longer included in the numerator of the EDWIN score. The

denominator of the EDWIN score, on the other hand, represents

the total ED capacity as a product of the number of attending

physicians (N) and the total number of available beds (exclud-

ing the Bhold^ beds). It is suggested in the literature that an

EDWIN score of less than 1.5 indicates an Bactive but

manageable^ ED, 1.5 to 2 represents a busy ED, and a score

of over 2 corresponds to an overcrowded ED [2].
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The NEDOCS score, which is based on a linear regression

model, is given as follows [17]:

NEDOCS ¼ 85:8�
M

BT

� �

þ 600�
BA

Bh

� �

þ 5:64�W

þ 0:93� Atime þ Rh � β

where the first variable M
BT

� �

is the ratio of total numbers of

ED patients and beds, the second variable BA

Bh

� �

is the ratio of

the numbers of Bhold^ and inpatient beds, the third variable

(W) is the most recent waiting time for an ED bed, the fourth

variable (Atime) is the longest current boarding time, and the

fifth variable (Rh) is the number of ED patients on a ventilator.

(The weight for the number of patients on a ventilator (β) is

left as a flexible parameter that could be set to a value between

13.4 and 20 depending on the importance of this variable for

the ED under consideration.) The NEDOCS score is evaluated

on a scale from 1 to 200, where a higher score indicates a

higher congestion level. In particular, [17] suggests that a

score of 100 or larger indicates an overcrowded ED.

Finally, the READI score is defined as follows [12]:

READI ¼ BRþ PRð Þ � AR

where the bed ratio (BR) is the ratio of predicted number of

ED patients at the top of the next hour and the total number of

ED beds, the provider ratio (PR) is the ratio of number of

arrivals per hour and the number of patients seen per hour

by the ED physicians, and the acuity ratio (AR) is given by

the ratio of a weighted sum of the number of patients from all

five triage categories at the ED (the same as the numerator of

the EDWIN score) and the total number of patients at the ED

[9, 11]. (The exact calculations for BR, PR, and AR are given

in Table 1.) A READI score value of greater than 7 is said to

indicate an overcrowded ED [12].

A common criticism of these three ED crowding scores is

that they are difficult to assess for accuracy. In order to eval-

uate their abilities [9, 11] compared clinicians’ perceptions of

crowding to the results reported by the crowding scores,

where clinician perspectives have been generally gathered

through survey. A more objective standard of assessment for

these scores is not available [11]. In [16], the EDWIN and

NEDOCS scores were calculated every two hours, and com-

pared against physicians and nurses ratings of crowding as

measured by a visual assessment scale. EDWIN and

NEDOCS demonstrated a high correlation with these clini-

cians’ perceptions [16], but in other studies, READI does

not seem to provide reliable results which agree with

Table 1 Variables utilized in crowding scores

Details Used in

Variable Description EDWIN NEDOCS READI

i ESI level of severity ✓ ✓

ni Number of patients in the ED that fall into the ith ESI level ✓ ✓

ti Reversed severity level, i.e., ti = 6 − i ✓ ✓

N Total number of attending physicians working in the ED ✓

M Total number of patients in the ED, i.e., ∑5
i¼1ni ✓

BT Total number of treatment beds in the ED ✓ ✓ ✓

BA Patient holds, i.e., number of patients who have been admitted to the hospital but are occupying an ED bed

while awaiting an open inpatient bed

✓ ✓

Bh Total number of hospital (non-ED) beds ✓

W Most recent waiting time for an ED Bed ✓

Atime Longest current wait of admitted patients for an inpatient bed to open ✓

Rh Number of ED patients on a ventilator ✓

β A real number from 13.4 to 20, which is set by the user ✓

PA Predicted arrivals for each hour of the day ✓

PD Predicted departures for each hour of the day ✓

Pbed Number of patients in ED beds ✓

Ah Number of arrivals per hour ✓

Hj Number of patients seen per hour by physician j, as determined by historical ED data ✓

BR Bed ratio, BR = (Pbed + PA − PD)/BT ✓

PR Provider ratio, PR = Ah/∑jHj ✓

AR Acuity ratio, AR ¼ ∑initi=P bed ✓
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clinicians’ perceptions of crowding [9, 11]. Additionally, the

published threshold values for each crowding score may not

align with clinician’ perceptions of crowding. However,

NEDOCS, and to a slightly lesser extent EDWIN, have dem-

onstrated strong predictive power for ED crowding, particu-

larly through the correlation with ambulance diversion as an

indicator of increased ED crowding [9, 16].

3 Data

The data for this study came from a large public, academic med-

ical center that provides tertiary care. It is one of only six Level I

TraumaCenters in the state ofNorthCarolina. The hospital system

has an active residency program and approximately 800 inpatient

beds. The ED saw approximately 68,000 patients in calendar year

2013, during which the data used in this study was collected, and

sees some of the highest acuity patients in the state.

The ED at this institution is divided into several sections

based on operating hours, patient type, and patient severity.

The two main sections, A and B, remain open during all hours

of the day and see primarily acute patients. Less acute patients

are seen in two additional sections, C and D, during the regular

working hours of the ED (9:00 a.m. to 2:00 a.m.). Pediatric

patients (those under the age of 18) are seen in a specific

pediatric section during regular working hours. During non-

regular hours, all patients are seen in sections A and B.

Sections C and D have separate physician and nurse teams

from A and B, and C is used primarily for patient holds and

patients that are receiving medicine (such as IV medicine) but

do not require more resource-intensive care. (This study ex-

cluded behavioral health [psychiatric] patients who are seen at

a separate area from the main ED sections.) Based on the ED

regular working hours, there are between 41 and 65 ED beds

available at any given hour of the day.

The hospital provided hourly scheduling data for residents,

physicians, and nurses, as well as specific patient data (exclud-

ing data for behavioral health patients) for January 7 to

February 3, 2013. The data for each patient seen during this

time period consisted of the patient’s triage category as desig-

nated by the Emergency Severity Index (ESI) as in [14] and

four key timestamps:

& arrival time: patient arrives to the ED, either by ambu-

lance or walk-in;

& bed time: patient is assigned to an ED bed or treatment

space;

& disposition decision time: physician or resident makes

the decision to admit the patient to an inpatient hospital

bed, or to complete medical care and send the patient

home;

& discharge time: patient leaves ED, either for admission to

an inpatient hospital bed or to depart for home.

The patient flow through the ED, as well as the associated

timestamps, are shown in Fig. 1. For each section of the ED,

the corresponding number of available beds is given in

parentheses.

According to the provided data, the ED saw 5100 patients

during the chosen time period of January 7 to February 3, 2013.

From this data, approximately 4 % were excluded as bad data.

Possible reasons for exclusions included missing timestamps,

invalid acuity scores, data suggesting departure before arrival or

other out-of-order timestamps, and unrealistic total service

times (one minute from arrival to discharge, for example). We

used the cleaned data to estimate distributions and parameters

that are needed in the simulation model and also in the calcu-

lation of the crowding scores. We found that 1 %, 13 %, 60 %,

22 %, and 4 % of all adult patients fell into ESI categories 1, 2,

3, 4, and 5, respectively, whereas the respective percentages for

pediatric patients were 0.5 %, 11 %, 42 %, 40 %, and 6.5 %.

About 20 % of all incoming patients were estimated to be

pediatric patients. We also found that almost all ESI 1–2 and

none of ESI 5 adult patients were admitted to the hospital,

whereas 30 % and 3 % of ESI 3 and 4 adult patients, respec-

tively, needed inpatient care and hence were admitted to a

Fig. 1 Patient flow through emergency department
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hospital ward. For pediatric patients, the admission rates were

similar except that only about 18 % of pediatric ESI 3 patients

were admitted to an inpatient hospital ward.

The existing patient tracking system at this hospital did not

provide explicit data on the use of ventilators, which is needed

in the NEDOCS formula. Therefore, we used the average

number of patients who are later admitted to an ICU as a proxy

for the average number of patients who were on a ventilator.

From the data, we found that around 2 % of all patients were

later admitted to an ICU and on average there were around 66

patients in the ED. Based on these figures, we estimated the

average number of patients who occupy the ED and are later

admitted to an ICU as 1.3. This is consistent with the ED

management’s expectation of having on average one patient

on a ventilator at all times. In addition, in the NEDOCS for-

mula, we set β (the weight for the number of patients on a

ventilator) to 13.4, the lowest possible value, because the

number of patients on a ventilator does not seem to contribute

drastically to crowding at this ED. Finally, based on the ED

management’s observations, on average a physician sees two

to three patients per hour at this ED. (To be conservative, we

set this provider productivity rate to two patients per hour in

READI score calculations, which is the only place it is needed

in this study.) We provide further details on the input data

analysis in Section 4.

4 Discrete-event simulation model and input analysis

Using the provided hospital, ED, and patient data, we first

created a discrete-event simulation model of the ED using

Arena simulation software. In particular, we modeled the ED

operations as a queuing model with multiple classes of pa-

tients that seek service from multiple, and possibly non-iden-

tical, resources (beds). Arrivals to this queueing system are

non-stationary, i.e., the rate of arrivals depend on the hour of

the day, and service times consist of two phases: the time

interval between bed time and disposition decision time, and

the time interval between disposition decision time and dis-

charge time. By simulating this model, we produce the ESI

levels and four critical timestamps of each simulated patient,

which is then incorporated with the remaining staffing and

hospital data, and used to calculate the crowding score values

for analysis.

In our simulation model, a simulated patient encounters the

following processes and decisions in the given order: Arrival

to the system; decisionmade for allocation of appropriate beds

based on age and ESI level; join queue for an ED bed; enter

bed and incur bed-to-decision service time; decision made for

admit or discharge; incur decision-to-discharge service time;

and depart ED.We used the raw patient data to fit distributions

to the arrival process and the service time distributions, and

incorporate the results into the model. Goodness of fit for

testing various distribution functions is assessed using the

Kolmogorov-Smirnov (K-S) test and the squared-error value.

In the remainder of this section, we provide details on how we

fit distributions to the interarrival and service times.

4.1 Arrival process

The interarrival times (to the nearest minute) are calculated

using sample means of all patient arrivals (without separating

according to ESI, gender, etc.). A distribution is later fit to this

interarrival data by evaluating hourly groupings of interarrival

times. We found that an exponential distribution provided a

good fit for the interarrival data with with p-values of greater

than 0.13 using the K-S test and squared-error values of less

than 0.003. (Note that a large p-value for the K-S test and a

small squared-error value are indicative of a good fit.)

Therefore, we concluded that the arrival process can be ap-

proximated by a Poisson process. The hourly rates for the

patient arrival schedule in the Arena model were determined

by using the average hourly arrival rate seen in the month of

patient data, and can be seen in Table 2 and also visually

observed in Fig. 3.

4.2 Service time distribution

Based on the preliminary analysis of the data and also taking

into account the operational structure at the ED, we model the

total time a patient spends in an ED bed as the sum of two

separate service times. Part 1 of service begins when the pa-

tient is assigned a bed (i.e., bed time) and ends at the point in

time which a patient receives a decision regarding their admis-

sion to inpatient care (i.e., disposition decision time). Part 2 of

service begins at disposition time and ends when the patient

departs the system, either to go home or to transfer to an

inpatient bed. This division of the total service requires the

fitting of two separate distributions in order to describe the

service process.

Table 2 Patient arrival rates (patients/h)

Hour Rate Hour Rate

2 a.m. – 3 a.m. 3.0 2 p.m. – 3 p.m. 10.2

3 a.m. – 4 a.m. 2.9 3 p.m. – 4 p.m. 12.0

4 a.m. – 5 a.m. 2.3 4 p.m. – 5 p.m. 11.1

5 a.m. – 6 a.m. 2.3 5 p.m. – 6 p.m. 11.1

6 a.m. – 7 a.m.  2.2 6 p.m. – 7 p.m. 10.5

7 a.m. – 8 a.m. 3.6 7 p.m. – 8 p.m. 9.7

8 a.m. – 9 a.m. 6.5 8 p.m. – 9 p.m. 9.0

9 a.m. – 10 a.m. 9.0 9 p.m. – 10 p.m. 6.4

10 a.m. – 11 

a.m.

10.9 10 p.m. – 11  

p.m.

6.1

11 a.m. – 12  

p.m.

11.3 11 p.m. – 12  

p.m.

6.0

12 p.m. – 1 p.m. 11.8 12 a.m. – 1 a.m. 4.4

1 p.m. – 2 p.m. 11.5 1 a.m. – 2 a.m. 3.7

Shading indicates regular business hours
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It is reasonable to assume that patients with different sever-

ity levels may require different distributions of service times.

Additionally, the availability of resources (in this case beds,

physicians/residents, and nurses) also affects service times,

and varies throughout the day. For these reasons, we tested

several combinations of hourly and ESI divisions of the ser-

vice data for goodness of fit under a number of distribution

functions (namely, Beta, Erlang, Exponential, Gamma,

Johnson, Lognormal, Normal, Triangular, Uniform, and

Weibull). The results of the best fit are presented in Table 3,

which we used to establish Part 1 and Part 2 service times in

the simulation model.

The hours for the Part 1 service distributions were deter-

mined based on the staffing levels and hours of the ED sec-

tions. From 2:00 a.m. to 9:00 a.m., there are fewer physicians,

residents, and nurses working, compared to the regular work-

ing hours. Since the regular working hours (9:00 a.m. to

2:00 a.m.) see a variety of patient arrival rates, this large time

period was split in half to allow for better fits to the Part 1

service data. Splitting the Part 1 service by ESI in addition to

arrival hour also mimics the true behavior of the ED since ESI

1 and 2 patients are sent to different sections than ESI 3, 4, and

5 patients. We see in Table 3 that the best fit for all Part 1

service distributions have small squared-error values and large

p-values for the K-S test.

For Part 2 of service, we first split the patients into admitted

and non-admitted patients. After the disposition decision has

been made, patients who will not be admitted to inpatient care

from the ED wait under an hour before they are discharged to

home, whereas admitted patients wait on average four to six

hours for an inpatient bed to become available. This drastic

difference in wait times for admitted versus non-admitted pa-

tients implies a natural separation when considering fits for

Part 2 of service. The admitted patients are further divided by

ESI, as ESI 1 and 2 patients were admitted to inpatient care

faster than the less medically severe ESI 3, 4, and 5 patients.

For the given distributions in Table 3 that are fit to Part 2

service time data, although the p-values for the K-S test were

not high, the squared-error values turned out to be at most

0.009, which supports that these distributions provide a rea-

sonable fit to the data.

5 Validation of the simulation model

After building our simulation model in Arena using the input

distributions and parameters from Section 4, we first validated

the model as a reasonable recreation of this ED. For this pur-

pose, we used both statistical and visual tools.

A statistical test for validation Using our simulation model,

we conducted a single replication of 28 days after a warm-up

period of 365 days. (The actual patient data provided to us was

collected over 28 days as well.) We then calculated the aver-

age length of stay (LOS) for all patients in the ED and the

average EDWIN, NEDOCS, and READI scores during the

busy hours of 4 pm tomidnight each day, using both the actual

and simulated data. To reduce the effects of any autocorrela-

tion present in these data sequences, we used observations for

every other day, which resulted in 14 data points per sequence.

Then, we applied paired t-tests to test whether the differences

between the mean performance measures for the actual and

simulated systems were zero. We obtained the following 95%

confidence intervals on the mean differences: (−0.093, 0.663)

hours for LOS, (−0.143, 0.087) for EDWIN, (−0.496, 17.254)

for NEDOCS, and (−0.432, 0.992) for READI; resulting in

Table 3 Service Time Distributions by ESI Level, Hour, Patient Type. [WEIB(α, β), GAMM(α, β), and BETA(α, β) represent a Weibull, Gamma,

and Beta distribution, respectively, with shape parameter α and scale parameter β in minutes]

Service Part 1

Arrival Hour ESI Best Fit p-value Squared-Error Sample Size

2:00 a.m. - 9:00 a.m. 1, 2 9 + WEIB(260,1.1) >0.15 0.018 83

2:00 a.m. - 9:00 a.m. 3, 4, 5 ERLA(123,2) >0.15 0.003 560

9:00 a.m. - 2:00 p.m. 1, 2 5 + ERLA(133,2) >0.15 0.008 163

9:00 a.m. - 2:00 p.m. 3, 4, 5 GAMM(104,2.37) 0.145 0.001 1399

2:00 p.m. - 8:00 p.m. 1, 2 GAMM(209,1.46) 0.136 0.014 259

2:00 p.m. - 8:00 p.m. 3, 4, 5 ERLA(91.8,3) >0.15 0.001 1551

8:00 p.m. - 2:00 a.m. 1, 2 5 + GAMM(238,1.34) >0.15 0.020 130

8:00 p.m. - 2:00 a.m. 3, 4, 5 GAMM(116,2.38) >0.15 0.002 782

Service Part 2

Departure Type ESI Best Fit p-value Squared-Error Sample Size

Non-Admitted All 0.5 + 44(BETA(0.682,1.29)) <0.005 0.007 3016

Admitted 1, 2 45 + WEIB(192,1.01) 0.0234 0.009 476

Admitted 3, 4, 5 45 + GAMM(215, 0.723) 0.0318 0.001 1435
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respective p-values of 0.13, 0.61, 0.25, and 0.41. These results

provide statistical support that our simulation model is valid in

terms of the average LOS and the three crowding scores under

consideration during busy hours.

Visual comparison of output data from the simulation

model and actual system We simulated the ED over artificial

dates of January 8–15, 2013, after a warm-up period of 24 h, for

a total of 100 replications, and used the output to calculate three

crowding scores as well as the average LOS of all patients in the

ED by every hour of the day for each of the 100 replications.

Figure 2 shows the average crowding scores and LOS based on

100 replications of the given week. Solid horizontal lines for

each crowding score indicate the corresponding threshold value,

as recommended in [11, 14, 17], above which indicates a

crowded scenario and under which indicates normal operating

conditions. The average length of stay is estimated by dividing

the total time spent (from arrival to discharge) for all current

patients in the ED by the number of current patients, captured

at each hour over the given week. We calculated a 95 % confi-

dence interval on the simulated average crowding scores and

LOS but plot only the mean in Fig. 2 since the confidence inter-

vals were small. Figure 2 also plots the crowding scores and

LOS from the true patient data corresponding to the given week.

Figure 2 shows that the simulation model provides a rea-

sonable approximation of ED crowding behavior observed

during the simulated time period. The real patient data over

January 7–13 is significantly less smooth as compared to the

simulation model data, as the simulation model shows the

average of 100 trials of the given week. However, the simu-

lation output and real data match very well in terms of the

mean scores and their general trend.

In addition to providing a visual comparison for the output

from the actual and simulated systems, Fig. 2 is also useful for

generating insights into the performance of the three crowding

scores under consideration. In Fig. 2, the EDWIN score can be

observed to abruptly spike at around 2:00 a.m. and drop sharp-

ly at around 9:00 a.m. on each day of the given time period in

both the real patient data and the simulated data, which agrees

with what this hospital had observed from its own EDWIN

reporting system. The staffing numbers and ED section hours

undergo sharp changes at these hours which are causing these

spikes in the EDWIN score. Both the Bnumber of physicians^

and the Bnumber of ED beds^ terms are in the denominator of

the EDWIN score, hence at 2:00 a.m. the drop in physicians

and beds inflate the EDWIN score. Similarly, at 9:00 a.m. the

number of physicians and beds return to daytime levels, which

drops the EDWIN score.

From Fig. 2, we also observe that EDWIN follows a trend

that is similar to the average LOS curves, especially regarding

the time it peaks every day. Although we know the drastic

spiking to be artificial due to staffing changes, EDWIN sug-

gests an increase in crowdedness during the early morning

hours of each day. These early morning hours generally do

not see a high number of patients. The highest peaks of the

NEDOCS score values occur before the highest peaks for the

average LOS. The READI score values generated from the

true patient data appears far too jagged to draw strong conclu-

sions about the current or impending level of crowdedness.

The simulation results show a smoother READI score due to

averaging over 100 replications, but the range of score change

is still less significant than in EDWIN or NEDOCS. Also, like

NEDOCS, READI appears to peak before the average LOS

peaks.

Fig. 2 Crowding score results and average length of stay from the data and simulation model
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6 Simulation results – under high patient demand

In this section, we adapt our baseline model to simulate

Bunusual^ conditions in the ED, specifically an event that

causes a spike in the number of patient arrivals to the ED over

several days. An outbreak of a cold or a flu-like illness could

cause such an increase in arrival rates and we would like to

explore how each crowding score would perform in terms of

detecting its occurrence.We consider two hypothetical scenar-

ios – one mild and one extreme – under which the arrival rates

were artificially increased.

6.1 Mildly loaded scenario

To simulate a mild outbreak, a gradual increase in the number

of patients seen based on a percentage of the normal patient

arrivals is used over a period of several days. In particular, we

assume that the ED may see its first patient due to this out-

break between 8 and 9 a.m. on the first day of the week, where

the patient arrival rate is about 105 % of the normal rate. The

patient arrival rates increase to 125 % of the normal hourly

arrival rates through days 1–3, and on day 4, the outbreak is

Beradicated^ and patient arrival rates gradually decrease back

to the hourly daily patient flows. The exact arrival rate chang-

es by hour are shown in Table 4 and are also plotted in Fig. 3

for visual comparison to arrival rates under normal operating

conditions.

To analyze the success of each crowding score at predicting

and detecting the onset of such an outbreak, we calculate an

hourly threshold score value for each score that mimics how

medical professionals may evaluate the crowding scores in

practice. As the relevance of each crowding score’s interpre-

tation scale varies by hospital characteristics, in practice, med-

ical professionals compare crowding score values to what they

have seen historically to assess the current state of the ED. To

provide an objective comparison that captures this historical

score assessment analytically, we took an alternative approach

and estimated a 90th percentile score value for each hour of

the day for each score. (Depending on the preferences of the

ED management, one could also use different upper percen-

tiles instead of the 90th percentile.) For this, we simulated the

ED system for six months under normal operating conditions

and grouped the resulting values of each score by hour, ranked

each hourly grouping in ascending order, and determined, for

each hour, the threshold value x under which 90 % of the

observations fell. This generated a unique threshold value x

for each hour for each of the three scores. In real time, a similar

hourly threshold based on historical data could be incorporat-

ed into EDmonitoring, where a crowding score surpassing the

threshold value alerts medical professionals to a potential

crowding situation. Figure 4 shows the average simulated

crowding scores from 100 trials of the mild outbreak scenario

plotted against the calculated 90th percentile hourly threshold,

along with the recommended threshold values of 2, 100, and 7

for EDWIN, NEDOCS, and READI, respectively.

Figure 4 shows that the average READI score in the mild

outbreak scenario falls consistently under the 90th percentile

threshold, not raising an alarm as to the presence of an out-

break. Both the average EDWIN and NEDOCS crowding

scores first exceed the 90th percentile threshold in the early

morning hours of Day 2, less than 24 h after the true onset of

the outbreak. However, EDWIN stays consistently over the

threshold starting at 5:00 AM on Day 2, whereas NEDOCS

fluctuates above and below the threshold before remaining

above the threshold starting at 2:00 AM on Day 3.

Additionally, the average EDWIN score comes very close to

the 90th percentile threshold value as early as around noon on

the first day: only 4 h after the true start of incoming outbreak

patients in excess of a normal patient load.

Figure 4 also plots the recommended time-independent

threshold values for EDWIN, NEDOCS, and READI. In the

EDWIN score, the 90th percentile threshold and the average

score under the outbreak scenario only seem to surpass the

published threshold value of 2 in the hours 1–8 of each day.

More importantly, this may not be regarded as a sign of an

outbreak because due to the unique staffing levels at this ED, a

similar spiking behavior in the EDWIN score is observed even

under normal operating conditions (see Section 5). Hence, an

Table 4 Mildly loaded hourly

patient arrival rates as percentage

of normal hourly patient arrival

rates

Day Hour Arrival rate Day Hour Arrival rate Day Hour Arrival Rate

1 0–8 100 % 2 13–16 119 % 4 4–6 119 %

1 8–11 105 % 2 16–20 121 % 4 6–7 117 %

1 11–15 107 % 2 20–23 122 % 4 7–9 115 %

1 15–18 108 % 3 0–1 122 % 4 9–11 111 %

1 18–22 109 % 3 1–9 123 % 4 11–13 108 %

1 22–23 110 % 3 9–15 124 % 4 13–14 105 %

2 0–3 110 % 3 15–23 125 % 4 14–16 103 %

2 3–8 112 % 4 0–2 123 % 4 16–23 100 %

2 8–13 115 % 4 2–4 121 % 5–7 0–23 100 %
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EDWIN threshold value of 2 for every hour of the day does

not seem to be an effective threshold for this hospital. On the

other hand, the published threshold values of 100 for

NEDOCS and 7 for READI seem more reasonable as the

score results under mildly loaded conditions and the associat-

ed 90th percentile thresholds fluctuate above and below these

published thresholds.

To explore the predictive power of each score more closely,

we next calculated the percentage of trials (out of 100) for

which each crowding score did not surpass the 90th percentile

threshold before the onset of the outbreak, but did surpass the

threshold only after the patient load increased. In other words,

we estimated the likelihood that each score provided an alert to

clinicians that ED crowding conditions were changing. As a

result of this experiment, we found that EDWIN provided alerts

for the mild outbreak significantly more often than NEDOCS

or READI. With alerts occurring in 73 % of the trials, EDWIN

appears to have more predictive power than NEDOCS, which

alerted in about 47 % of the trials, and READI pales in com-

parison to both other scores with only 6 % of trials resulting in

alerts. Overall, these results and Fig. 3 suggest that EDWIN and

NEDOCS have more predictive power than READI.

Fig. 3 Hourly arrival rates of outbreak scenarios vs. Normal operating conditions

Fig. 4 Crowding score results: mild cold/flu outbreak vs. Threshold values
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We also conducted a statistical test to compare how each

score would perform with respect to LOS in terms of the

predictive power. In particular, for each of the 100 replica-

tions, we determined whether each crowding score and the

LOS successfully predicted the unusual load. We define a

successful prediction as one where the score does not surpass

the 90th percentile threshold before the onset of the mild out-

break but surpassed it only after the patient load increases due

to the unusual event. We let the outcome of each experiment

be one if the crowding score successfully detected the event

and zero otherwise for each replication. We repeated the same

procedure for the LOS, which resulted in four sequences of 0–

1 observations, each sequence having 100 data points. Then,

we divided these 100 data points into 10 groups for each

sequence and took the group means. Finally, we applied a

paired-t test using the resulting ten observations from each

sequence to test the hypothesis that each score has the same

mean fraction of successful predictions as the LOS. We ob-

tained the following approximate 95 % confidence intervals

on the difference between the average fraction of successful

predictions for crowding scores and LOS: EDWIN: [0.002,

0.138], NEDOCS: [−0.282, −0.098], and READI: [−0.689,-

0.511]. Although none of the intervals include zero, we see

that EDWIN and NEDOCS do not perform too differently

from the LOS but READI underperforms.

6.2 Extremely loaded scenario

Although the mild outbreak scenario described in Table 4 is a

reasonable approximation of what this ED typically sees dur-

ing flu season, a more severe cold/flu scenario was also ex-

plored in the interest of further evaluating score behavior. This

scenario, referred to as Bextreme outbreak,^ uses double the

additional arrivals as in Table 4 (e.g., for Day 1 Hour 8–11, the

arrival rate is 110 % of normal conditions), with the same

hourly arrival breakdown. (See Fig. 3 for a comparison of

hourly arrival rates under the normal operating conditions

and the two outbreak scenarios.) Figure 5 shows the extreme

outbreak results in the same manner as in the mild scenario.

The crowding values in Fig. 4 represent the overall average of

100 trials of the extremely loaded model.

In the mild scenario in Fig. 4, we see the simulated

crowding score results crossing the 90th percentile threshold

by a reasonably small margin, but the results far surpass the

threshold values under the extreme scenario in Fig. 5, partic-

ularly in EDWIN and NEDOCS. We also see READI briefly

crossing the 90th percentile threshold value under the extreme

outbreak, unlike the mild scenario, although the READI score

is still very jagged and generally uninformative. EDWIN first

exceeds the 90th percentile threshold and remains above it

starting around 9:00 AM on Day 1, around the true onset of

the extreme outbreak. NEDOCS is shortly behind EDWIN,

exceeding the threshold around 8:00 PM on Day 1. READI

first surpasses the 90th percentile threshold around 10:00 PM

on Day 2, but fluctuates above and below the threshold

throughout the duration of the extreme scenario. The start of

the longest period of time for which READI exceeds the

threshold does not occur until 8:00 AM on Day 3.

In Fig. 5, we see that the published threshold value of 2 for

EDWIN again does not seem to be useful for this hospital. The

extreme outbreak crowding score generally meetsor surpasses

2 during the 0–9 h of each day, which is known to be due to

the staffing levels at this ED. Similarly, the published thresh-

old value of 7 for READI also does not seem to be useful for

Fig. 5 Crowding score results: extreme cold/flu outbreak vs. Threshold values
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this hospital, as the extreme crowding score fluctuates up and

down around 7. However, the published threshold value of

100 for NEDOCS seems to be reasonable. Throughout the

duration of the extreme outbreak, the NEDOCS score stays

consistently above 100, reflecting that the ED is experiencing

an extreme patient load.

As in the case for the mild scenario, we calculated the per-

centage of trials (out of 100) which resulted in an alert (the

score surpassing the 90th percentile threshold for the first time

after the onset of the extreme outbreak) to clinicians. We found

that all three scores performed similarly under themore extreme

conditions. In particular, EDWIN correctly alerted in 73 % of

the trials, NEDOCS detected the extreme conditions in about

47 % of the cases, and finally, READI alerted correctly only in

6 % of the trials. We also repeated the statistical test to compare

and contrast the performance of each crowding score with LOS

described in the last paragraph of Section 6.1 and found almost

the same 95 % confidence intervals. We have observed that

although the extreme outbreak case yielded identical results

with the mild case in terms of the number of alerts, the alerts

seems to occur earlier in most replications.

7 Conclusions and discussion

With the goal of comparison of three alternative ED crowding

scores in terms of their predictive power, we have utilized

patient data to build a discrete-event simulation model of a

North Carolina academic hospital’s ED.We first validated our

model by comparing its outcomes (average length of stay and

the three crowding scores) to the actual data. We later con-

ducted several experiments using this simulation model to

compare the prediction and detection capabilities of the

EDWIN, NEDOCS, and READI crowding scores under a

hypothetical scenario with raised arrival rates over a period

of four days due to an outbreak.

Our simulation model and resulting analysis led to the fol-

lowing conclusions:

1. EDWIN and NEDOCS appear to be helpful measures of

current ED crowdedness. NEDOCS best depicts the

crowdedness at this ED when we compare the crowding

scores to the average length of stay in the ED. In particular,

under normal operating conditions, NEDOCS peaks slight-

ly before midnight and decreases until 9 a.m. the following

morning, which provides an accurate picture of typical

crowding at this particular ED as perceived by clinicians.

2. EDWIN and NEDOCS demonstrated predictive power

for anticipating impending crowdedness as a result of a

hypothetical disease outbreak. EDWIN captures the sim-

ulated outbreak (both at the mild and extreme levels) the

earliest on average. Furthermore, EDWIN demonstrated

the most predictive power by providing an alert to

changing ED conditions for around 73 % of all the simu-

lated outbreak trials compared to NEDOCS alert rate of

around 47 % across all trials.

3. READI does not appear to be a good fit for this ED. The

overall daily pattern of the READI score in all scenarios

considered (normal operating conditions and extreme

cases) generally does not seem to show the true ebb and

flow of crowdedness at this ED. Furthermore, the READI

score results in a curve that is too jagged and abrupt.

Additionally, the READI score provided alerts in only

6 % of the simulated outbreak trials, which suggests that

READI does not have good predictive power.

Another major outcome of our simulation study was that

the recommended threshold values in the literature for the

three crowding scores did not appear to be ideal for this ED.

The EDWIN and NEDOCS scores approach the threshold

values of 2 and 100, respectively, nearly every night under

normal operating conditions. Even in the mild outbreak sce-

nario, EDWIN and NEDOCS fluctuate above and below their

threshold values throughout the duration of the increased pa-

tient flow, and READI remains below its threshold value. For

this particular hospital, we believe that a more realistic inter-

pretation of these scores would come from comparing them

against an upper percentile (such as the 90th percentile) of

each score (as a function of time) based on historical data.

Our simulation results for the outbreak scenario demonstrated

that such a percentile-based threshold would be an effective

predictive tool for detecting impending crowding.

To summarize, our recommendation for this hospital is to

use EDWIN and NEDOCS for assisting health care profes-

sionals at detecting unusual crowding situations. In particular,

tracking one or both of these scores throughout the day in

conjunctionwith a historical-data-based threshold alert system

(such as the 90th percentile threshold proposed in this paper),

would alert the ED management to an unusual increase in the

crowdedness, which could lead to better preparation and even-

tually better patient care outcomes.

Limitations of this study The discrete-event simulation mod-

el and resulting analysis were based on patient data at one

particular hospital. Therefore, the results presented here may

not extend to hospitals of different sizes or with different char-

acteristics. Additionally, all parameter estimations and distri-

butional fits are based on one month of patient data for a

winter month. Although the historical evidence shows that this

ED does not experience drastic seasonal changes in terms of

patient loads and service times, additional work may be need-

ed to extend our results to other seasons. While we acknowl-

edge that these assumptions created an imperfect simulation

model, the reactions of the crowding scores to these levels of

ED crowdedness yielded meaningful conclusions about their

strengths and weaknesses.
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