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Abstract: Aerodynamic instabilities in centrifugal compressors are dangerous phenomena affecting
machine efficiency and in severe cases leading to failure of the compressing system. Quick and
robust instability detection during compressor operation is a challenge of utmost importance from an
economical and safety point of view. Rapid indication of instabilities can be obtained using a pressure
signal from the compressor. Detection of aerodynamic instabilities using pressure signal results
in specific challenges, as the signal is often highly contaminated with noise, which can influence
the performance of detection methods. The aim of this study is to investigate and compare the
performance of two non-linear signal processing methods—Empirical Mode Decomposition (EMD)
and Singular Spectrum Analysis (SSA)—for aerodynamic instability detection. Two instabilities of
different character, local—inlet recirculation and global—surge, are considered. The comparison
focuses on the robustness, sensitivity and pace of detection—crucial parameters for a successful
detection method. It is shown that both EMD and SSA perform similarly for the analysed machine,
despite different underlying principles of the methods. Both EMD and SSA have great potential for
instabilities detection, but tuning of their parameters is important for robust detection.

Keywords: signal processing; centrifugal compressor; surge; inlet recirculation; EMD; SSA

1. Introduction

Centrifugal compressors are machines of great importance for a wide range industries,
operating in petrol engines, turboshaft engines and industrial plants of various kinds [1].
The compressor operating range is limited by choke for high mass flow rates and the
appearance of aerodynamic instabilities at low mass flow rates [2]. The compressor peak
efficiency region is adjacent to the unstable region, therefore, it is not uncommon for
instabilities to appear during standard machine operation, when a slight change in external
conditions takes place. There exist a number of well-described instabilities, such as inlet
recirculation, rotating stall or surge [3,4]. Inlet recirculation and rotating stall, being local
instabilities, are often predecessors of a global instability—surge [5]. The instabilities
in centrifugal compressor may vary in effect, ranging from drop in efficiency for inlet
recirculation [6], through non-synchronous vibrations introduced by rotating stall [7], up
to an abrupt destruction of a compressor in case of surge [3].

The field of instabilities detection is still in development, focusing more and more
on application of data-driven techniques. The most commonly presented methods were
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based on Wavelet Transform [8,9] which performed well for selected instabilities. However,
wavelet transform requires a choice of mother wavelet, which is not always trivial. One of
the major drawbacks of WT is that it uses a fixed decomposition scale for analysis and does
not take the signal’s characteristics into consideration [10]. It also suffers from a leakage
problem [11] that arises due to limited length of the wavelet function. Rotating stall can
be detected by taking advantage of bifurcation theory [12], but the method has not been
extended to detection of other instabilities. Attempts to use singular value decomposition
(SVD) in compressor stability detection were also made [13], displaying valuable results for
surge and stall.

The signature of instabilities in the pressure signal is different for each phenomenon.
With inlet recirculation, a broadband noise without a dominating frequency is observed.
For rotating stall, a periodic component is present in the signal, but the period may differ
depending on the conditions as the number of stall cells may differ in time. For deep surge,
a periodic excitation is present. Therefore, the detection method that can be useful for all of
those unstable phenomena has to be universal.

A number of different types of non-linear signal analysis exist, some of which could
prove advantageous for detection of instabilities, such as superlets [14], intrinsic timescale
decomposition [15], variational mode decomposition [16] or other recent techniques de-
veloped in the field of radio communication [17,18] and radars, where the information of
interest has to be extracted from noise or clutter [19]. Alternatively, a number of machine
learning techniques have been created, which can be used for the purpose of instabilities
detection, as they are used for fault diagnosis [20]. However, use of machine learning
requires a large number of data points and often lacks interpretability, which can be offered
by classical feature extraction techniques.

A promising solution for comprehensive aerodynamic instabilities detection is offered
by Empirical Mode Decomposition (EMD) and Singular Spectrum Analysis (SSA). Both
of those methods are established decomposition techniques performing well in numer-
ous applications. EMD was used for bearings fault detection [21], machining process
monitoring [22,23] or financial predictions [24]. SSA was demonstrated to provide valuable
insights in the same fields [25–27]. Recently, it was shown that SSA can be used for detec-
tion of instabilities such as surge [28] and inlet recirculation [29] which can be regarded as a
surge predecessor [30]. The same capabilities were demonstrated for EMD [31]. Neither of
those studies considered the influence of length of the input signal or stochastic character of
the pressure, as they both used long portions to demonstrate the potential of the methods.
The choice of EMD and SSA as the methods for comparison resulted from their proven
performance for compressor instability detection. A preliminary study on the pace of
detection for EMD and SSA was conducted by the authors [32], which showed that the
method could provide quick and robust indication of the condition. This article builds
upon previous study to provide quantification of methods performance, considering the
stochastic nature of the signal, give more insight into the method operation for compressor
pressure signal and deliver more thoughtful conclusions that can be applied when building
an instabilities detection system.

The requirement of application to the centrifugal compressor instability detection
system is that the methods must be responsive or work in real time to ensure safety of
operation. Thus, a step towards implementation of SSA and EMD into an instabilities
detection system is to validate their potential for robust detection of instabilities based on
a short signal portions. The pace of detection depends on two aspects. The first aspect,
referred to hereafter as sensitivity, is the signal length needed for robust detection, expressed
in number of data points. The shorter a signal portion allowing for a robust detection, the
quicker a method can react to a change in conditions as less acquisition time is needed.
Sensitivity might differ between methods as they might rely on different signal features.
The other aspect is data processing time needed for obtaining an indication of conditions.
Different methods may have a different computational cost, resulting in a longer or shorter
time required for processing of the data. If the computation time is similar or shorter than
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the acquisition time, the detection system can operate continuously in real time as before
the subsequent signal portion is acquired, the previous one was already analysed and the
conditions were defined. Processing time is highly dependent on the method algorithm,
but also on its implementation, consisting of both software and hardware. Implementation
aspects were not optimized in this work and the methods were benchmarked using a
predefined setup.

The main motivation of this study is evaluation of EMD and SSA for application in a
real-time centrifugal compressor instability detection system. It was shown in previous
studies [29,31] that both of the methods can be used to extract the features of instabilities
from a pressure signal of a centrifugal compressor, but neither of those studies focused
on the pace of detection. Through analysis of the methods’ sensitivity, understanding the
behaviour of components for varying parameters, it is possible to evaluate the potential of
EMD and SSA for real-time instability detection. The parametric study can also demonstrate
which parameters should be optimized and which have little influence on the detection
performance. Based on the analysis of the components, the advantages and limitations of
the methods are presented

2. Materials and Methods
2.1. Decomposition Methods

Decomposition methods can be used on the input signal to filter the unwanted com-
ponents and extract others that can highlight changes in the system of interest. The
performance of the methods differs and might be specific to the area of application due to
different underlying physics of the changes to be detected and character of the input signal.
Understanding the rationale of method operation and why it performs well for a particular
case is essential for generalization of the findings to a whole class of problems. In the next
sections, the basics of EMD and SSA are introduced.

2.1.1. Empirical Mode Decomposition

EMD is based on the assumption that signal consists of a sum of simple oscillatory
modes—intrinsic mode functions (IMFs)—and a residue [33] that can be extracted with
EMD. The method was first introduced in a work by Huang [34], in which a detailed
mathematical explanation can be found. EMD is able to deal with non-stationary and
non-linear due to its direct and adaptive algorithm, with a decomposition base derived
from the data. IMFs, as a result of their derivation, can reflect changes in both amplitude
and frequency of phenomena in the analyzed signal. The IMFs are extracted with an
empirical procedure in an iterative manner, making use of the envelope of the signal. To
do so, all the local extrema are connected by cubic spline, creating the envelope. The first
component of decomposition h1 is obtained from Equation (1), where x(t) is original time
series, m1 is the envelope mean.

h1(t) = x(t)−m1(t) (1)

Then, it is checked if a stoppage criterion is satisfied by h1(t). There exist a number
of different criteria, with different influence on the produced IMFs [35]. A Cauchy type
criterion is used, as it was originally introduced by Huang [34] and is the most basic
among all of the criteria. This criterion is based on difference between two subsequent
sifting iterations and can be presented as in Equation (2). This criterion in several code
implementations can be overridden by putting explicitly the number of sifting iterations
that are to be made.

SDn =
∑N

t=1 |hn−1(t)− hn(t)|2

∑N
t=1 h2

n−1(t)
(2)
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If the stoppage criterion is not met and maximum number of iterations is not reached,
then the next process step takes place. The h1(t) is treated as an input data point and h2(t)
is created by subtracting the mean of h1(t) envelope from itself.

h2(t) = h1(t)−m2(t) (3)

The process is repeated until the function meets IMF criteria. Assuming its being
repeated n times, hn(t) is designated c1(t) and becomes first IMF (labelled further IMF 1).
To continue the sifting process, c1(t) is extracted from the original data x(t), the output of
this operation is termed residue r1(t).

r1(t) = x(t)− c1(t) (4)

The residue r1(t) is taken as the original data and the sifting process is repeated, until
the final residue rk(t) is either a constant or a monotonic function. The signal after decom-
position is divided into k intrinsic mode function and a residue containing information
about trend in the data.

x(t) =
K

∑
k=1

ck(t) + rk(t) (5)

The IMFs have to be extracted one by one, starting from the lowest ones. There is no
possibility of extracting a single higher mode without extracting the lower ones beforehand.

2.1.2. Singular Spectrum Analysis

SSA is a nonparametric time series analysis method, which expands on Principal
Component Analysis. A comprehensive description of the method and its full mathematical
formulation was presented by Golyandina [36]. SSA reduces a signal to a finite number
of independent components, ordered according to the variance content in each of them.
These components are known as Reconstructed Components (RCs). SSA permits to isolate
components of the original signal for better understanding of the phenomena and to obtain
characteristic features which may be used for monitoring. SSA is a sequential procedure
taking advantage of matrix transformations. In a first step called embedding, a trajectory
matrix X is constructed by concatenating a series of lagged vectors. These lagged vectors
are derived from the original signal, x(t), according to the parameter L—window length. A
trajectory matrix X is a Hankel matrix of dimension [L× K], where K = N − L + 1, where
N is the total length of a signal x(t).

X =


x1 x2 · · · xK
x2 x3 · · · xK+1
...

...
. . .

...
xL xL+1 · · · xN

 (6)

The next step is the decomposition of the trajectory matrix X, which is obtained with
the eigenvalue decomposition of the squared matrix S = XXT of dimension [L× L]. This
decomposition provides a set of eigenvalues in decreasing order (λ1 ≤ λ2 ≤ · · · ≤ λL) and
their corresponding eigenvectors (u1, u2, . . . uL) of S. Thus, the decomposition of S leads
to obtaining L components, the sum of which results in the original trajectory matrix X.
Each individual component Xi is defined through an eigentriple (Equation (8)).

X =
L

∑
i=1

Xi (7)

Xi =
√

λiuivT
i (8)
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where

vi =
XTui√

λi
(9)

Principal components are obtained by projecting the trajectory matrix onto the eigen-
vectors (Equation (10)).

pi = XTui =
√

λivi (10)

Each individual component matrix Xi contains particular information of the original
trajectory matrix X and hence, each one contributes more or less towards the reconstruction
of X. As the eigenvalues λi are in decreasing order, the first individual component matrices
contribute more than the last individual component matrices. In order to reconstruct each
individual component, it is necessary to convert the individual component matrices by
diagonal averaging. The details of the procedure can be found in [36]. L independent
RCs are obtained by the decomposition of a signal x(t). Therefore, the original vector
signal x(t) = (x1(t), x2(t), . . . , xN(t)) ∈ RN is now decomposed into a set of reconstructed
components, as shown in Equation (11).

x(t) =
L

∑
i=1

RCi (11)

The RCs can be grouped to reconstruct a portion of the trajectory matrix but they
can also be used individually to investigate the information included in each one of them.
The latter approach is used in this study. It should be noted that each of the RCs can be
extracted individually and independently of other RCs.

2.1.3. Parameters of EMD and SSA

Both EMD and SSA are adaptive to the data, but they have intrinsic parameters that
need to be defined for a successful decomposition. A fundamental parameter for EMD is
the number of sifting iterations (SN) that affects the number of IMFs created, as well as
their frequency content [35]. IMFs for experimental pressure signals cover a frequency band
located around a central frequency [31]. With a specific number of sifting iterations, EMD
works as a dyadiac filter, resulting in the central frequency of each subsequent IMF being
half of the previous one [33]. With increasing the number of iterations, the IMF central
frequencies are located closer to one another, consequently, the frequency band covered by
each IMF becomes narrower and the number of extracted IMFs increases. To retain physical
meaning of the modes, one should avoid oversifting. A number of sifting iterations around
eight is recommended [35]. A possible benefit of increasing the number of sifting iterations
is the narrower frequency range of all IMFs, which may lead to better extraction of the
instability feature and decrease the variability of the components. The number of sifting
iterations is enforced by the stoppage criterion chosen or can be manually limited to a
desired value. In this analysis, the latter approach was used and stoppage criterion was
set to ensure that a desired number of sifting iterations can always be performed. The
number of sifting iterations was kept constant for each signal portion and set to 8, 16 and
32. Keeping the number of iterations constant did not imply that the same number of IMFs
was created for each signal portion in each condition.

The most important parameter of SSA is a window length L, affecting the embedding
process and the shape of a trajectory matrix. Window length influences the repartition of the
data between the components. Increasing the window length, the number of RCs increases,
resulting in repartition of the data between more components. To deal with the over-
decomposition of the information, grouping of the components is applied [36]. Grouping is
discarded in this study, as the pace of detection if of utmost importance and grouping step
would definitely increase the overall execution time. In this study, it is validated if a single
RC can be used for robust detection and what window length should be used to obtain it.
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The influence of L changes on detection performance are quantified and recommendations
concerning the window length and choice of the component are provided.

2.2. Strategy for Real-Time Detection of Instabilities

The possible implementation of EMD and SSA into a detection system can be com-
pleted in two different ways. One is an online approach, where the new, oncoming data are
appended to the previous readouts. It was proposed for both EMD [37] and SSA [38]. The
drawback of this method is a possible inertia stemming from existing data, which might
negatively impact the pace of detection, important with regards to compressor instability
detection. A simpler approach is analysis of subsequent signal portions to understand
the performance of the compressor, where each portion is processed separately. The latter
method is explored in this study, as it enables clearer understanding of the signal content
and allows for more straightforward comparison between the methods.

To understand the sensitivity of the methods, different lengths of signal portions are
considered. The signal portion length impacts the time needed for detection in two ways.
Firstly, the longer the portion, the longer the acquisition time needed to register it. Secondly,
the longer the signal portion, the longer the processing time. The total time of detection
is a sum of required acquisition time and processing time. When aiming at a real-time
detection, the methods should be capable of processing the data in a time frame similar to
or shorter than the required acquisition time as then the compressor operating conditions
can be identified before the new portion is collected. The processing time depends on
the implementation of the method and hardware used. The comparison in terms of
computational time in this study is performed using MATLAB software implementations
and a PC computer. It allows benchmarking two methods and provides estimation of the
timescale needed for applying each of them, providing some understanding of whether the
methods have a potential to be used in real time. However, it might be assumed that if the
times of acquisition and processing are similar when using PC, the implementation using
FPGA solutions will be at least equally quick [39,40].

As a result of the analysis method applied, a signal portion length N is a parameter for
sensitivity study for EMD and SSA. Pressure signal obtained from the compressor in most
conditions has low signal-to-noise ratio. Therefore, the changes in the signal occurring due
to instabilities are not easily detectable. The length of the portion required for a robust
distinction of the conditions can vary depending on the method used for decomposition.
This study aims at understanding the sensitivity of EMD and SSA and provides comparison
of those two methods for the same data set.

2.3. Processing of the Components for Detection of Instabilities

There exist several approaches for processing the outcomes of decomposition, for
both IMFs or RCs. Research focuses on their energy [31], frequency [21] or amplitude [41],
and variation of those values between conditions. It was demonstrated that for detection
of instabilities in centrifugal compressors, the approach based on root mean squared
values (RMS) of the components can provide insightful results, for both EMD [31] and
SSA [29], hence, a similar approach is used in this study. The energy E is computed using
specific signal portions length N expressed in number of data points. Its value is given by
Equation (12), where x(n) is a component resulting from original signal decomposition.
This is a value representative of a given signal portion of length N. The same approach is
used for IMFs and RCs.

E =
1
N

N

∑
n=1
|x(n)|2 (12)
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A mean energy value for a given component and operating conditions is also used. It
is computed according to Equation (13) where J is the total number of considered signal
portions.

E =
∑J

j=1 Ej

J
(13)

Detection of instabilities is based on a threshold value µ, obtained as a 99.5th percentile
of energy E distribution in stable conditions. By formulating the threshold as a high
percentile of the data distribution, rather than the maximum value from the set, the outliers
can be disregarded. The operating conditions of a compressor are unstable if for a given
signal portion the E value is above the threshold. The threshold value µ is obtained
separately for each set of parameters, including window length, number of siftings and
signal length. In practical application, such a system would operate in a loop which would
only be interrupted if a detection takes place. The flowchart of the approach is presented in
Figure 1.

END

START

Collect signal  of
defined length 

Decompose the
signal 

Compute  of the
component

Loop

N

Instability detected

Y

E>

Figure 1. Flowchart of a detection approach.

2.4. Test Rig and Pressure Signals

Pressure data were obtained from two locations inside the centrifugal compressor
shown in Figure 2. The air was supplied to the compressor through an inlet pipe (A) and
Witoszynski nozzle (B), which accelerated the flow before the impeller (C). Downstream of
the rotor, air passed through a vaneless diffuser (D), and a circular volute (E). The flow was
afterwards directed into an outlet pipe, at the end of which throttling value was mounted.

The sampling rate of 100 kHz was used, allowing to capture a wide range of flow
structures. The test stand was equipped with dynamic subminiature Kulite transducers
connected to an Iotech Wavebook 516/E data acquisition system. The natural frequency of
the sensor was 1500 kHz, significantly above the data acquisition frequency. The data from
this machine were previously analysed and described [1,9], therefore, it can efficiently be
used for benchmarking of different methods.
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Figure 2. Centrifugal compressor under investigation; cross-section of the machine and photo of the
test rig.

For described investigation, data for different operating conditions were considered.
The conditions were imposed through throttling at the outlet of the machine. The throttling
level was defined through throttle opening area (TOA), being the relation of the open
channel area to its total area. To obtain data for given operating conditions, the throttling
level was set to the desired value of TOA, and pressure recording of over 2 million data
points (over 20 s) was made. It was repeated for each TOA of interest to map the whole
operating range. Consequently, over 2 million data points were available for each TOA
value. For this study, TOA values used ranged from 35%, where the machine was working
in a stable regime to 8.5%, where deep surge was present. In between those values, a
transition region, as well as a local instability—inlet recirculation were observed. Table 1
summarizes TOA values subjected to analysis in this study and observed flow conditions.

Table 1. TOA values and corresponding operating conditions.

TOA [%] General Condition Detailed Condition

5–8.5% Unstable Deep surge
12–17% Unstable Mild surge
18–26% Transient Inlet recirculation
27–35% Stable Optimum performance

The presence of inlet recirculation was observed for the sensor ps−imp1 located up-
stream of the impeller. Surge had the strongest signature for the ps−out sensor at the
outlet [9]. Therefore, sensors from these two locations were used in the study—ps−imp1
for inlet recirculation and ps−out for surge. For each TOA value, 20 s of the signal were
collected, resulting in over 2 million data points.

The decomposition with EMD and SSA is performed on non-overlapping signal
portions of length N extracted from a longer signal. Overlapping was not considered in this
study as authors aimed at assessing the original method’s performance and its change with
intrinsic method parameters. Using the overlap could also negatively influence the pace
of detection as the same portion of data would have to be decomposed more than once.
Varying length of the portions is used to evaluate the sensitivity of the methods. For each
length, the accuracy of prediction is demonstrated to understand its effect for both methods.
This allows to establish how sensitive a method is to the appearing instability and how
quick a detection could be made. The sensitivity is validated for signal portions N = 1000,
5000, 10,000 and 50,000 samples, equivalent to 0.01, 0.05, 0.1 and 0.5 s of wall clock time or
1, 5, 10 and 50 revolutions of the impellerm respectively. A total of 40 windows were used
for each operating point to account for the stochastic character of the pressure signal.
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3. Results

The results are divided into two sections according to the instability that is to be
detected. The first one discusses the sensitivity of the methods for inlet recirculation and
the second one demonstrates how well surge can be detected with EMD and SSA.

3.1. Overview of the Signals

To understand the character of the analysed data and the decomposition, a raw signal
along with selected IMFs resulting from decomposition is presented in Figure 3. It can be
noticed that first IMFs and first RCs differ significantly in terms of signal frequency. For
EMD, each subsequent IMF is of lower frequency, while for SSA, the RCs do not have to
be ordered by the frequency. For EMD, the IMFs should be zero-mean simple harmonic
oscillations [33], while in SSA, the components can exhibit any behaviour. IMFs 6 and 7
have similar frequencies and amplitudes in the selected signal, which may indicate the
possibility of mode mixing. RCs 3 and 4 show beating-like behaviour, which suggests that
the signal character changes importantly for the same operating conditions and within a
short time contained in the presented time frame.

0 0.002 0.004 0.006 0.008 0.01
0

0.2
0.4

Raw signal

0 0.002 0.004 0.006 0.008 0.01
-0.1

0

0.1
IMF 1

0 0.002 0.004 0.006 0.008 0.01

-0.05

0

0.05

IMF 2

0 0.002 0.004 0.006 0.008 0.01
-0.1

0

0.1
IMF 6

0 0.002 0.004 0.006 0.008 0.01

Time [s]

-0.1

0

0.1
IMF 7

a)

0 0.002 0.004 0.006 0.008 0.01
0

0.2
0.4

Raw signal

0 0.002 0.004 0.006 0.008 0.01

-1
-0.5

0
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0 0.002 0.004 0.006 0.008 0.01

-0.5

0

0.5
RC 2

0 0.002 0.004 0.006 0.008 0.01

-0.2

0

0.2
RC 3

0 0.002 0.004 0.006 0.008 0.01

Time [s]

-0.1

0

0.1
RC 4

b)

Figure 3. Raw signal and selected components from its decomposition with (a) EMD and (b) SSA at
TOA 25% for ps−imp1 outlet sensor.

3.2. Inlet Recirculation

Inlet recirculation is often the first instability appearing when the mass flow of the
compressor decreases, preceding the onset of surge [6]. It forms near the leading edge of
the impeller blade, at the inlet to the compressor. It has a form of a recirculating zone of
fluid, which might be local or occur around a whole annulus of the compressor and change
its size with varying mass flow [42]. Inlet recirculation is responsible for increased loss
in the compression system [6] and can be regarded as an early symptom of approaching
surge [29]. Thus, its detection is important from the perspective of economy and can be
taken advantage of for early detection of surge onset. Inlet recirculation in the studied
compressor was manifested in a pressure signal by a broadband noise of frequency around
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1000 Hz, but with no dominating frequency discovered [9]. It had the strongest signature in
the signal from the sensor located on the shroud before impeller. Therefore, the data from
this sensor were used for the study of EMD and SSA.

3.2.1. EMD-Based Detection

EMD decomposes the signal into a number of IMFs, the content of which depends on
the input signal and decomposition parameters. The choice of IMFs which can be used as
indicators is not straightforward and requires prior knowledge of the system dynamics or
thorough analysis. In this study, the choice of IMFs was made based on analysis of mean
energy changes of IMFs. Those changes are presented in Figure 4, where the mean energy
E of IMFs is plotted for different number of sifting iterations and operating conditions. The
values are obtained for each IMF and TOA value and interpolated in between to provide a
comprehensible visualisation of the changes. With the energy of IMFs being linked to the
presence and intensity of instabilities [31], increased energy regions allow to understand
which IMFs hold features of instabilities.
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Figure 4. Mean energy E of dynamic pressure signal from ps−imp1 sensor before impeller for
signal portions of length N = 10,000; (left) 8 sifting iterations, (middle) 16 sifting iterations,
(right) 32 sifting iterations.

Inlet recirculation can be observed as an increase in energy value for a number of
IMFs, with peak location changing for varying number of sifting iterations. When the
number of sifting iterations is set to 8, the strongest trace of inlet recirculation is held by
IMF 6. Increasing the number of siftings to 16 and 32, the peak shifts to IMF 8 and IMF 10,
respectively. The overall number of meaningful (non-zero) components also increases.

Figure 5 depicts the influence of signal length and number of sifting iterations on
the mean value and dispersion of selected IMFs. The selection was based on the best
performance for inlet recirculation detection (Figure 6). Performance is understood as the
number of correct detection of unstable conditions to the total number of signal portions
considered for those conditions. The length of the signal in the analysed range does not
impact much the mean energy value across TOAs, as shown in the example of IMF 7
obtained for different signal lengths in Figure 5a). Even for the smallest N, the mean value
captures well the presence of inlet recirculation. What differs is the dispersion of the data,
which is the highest for the shortest signal length and in general decreases with increasing
N. The dispersion also varies with TOA, being relatively small in stable conditions and
increasing as the inlet recirculation sets in.
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a) b)

Figure 5. Mean energy E (solid lines) and confidence interval (dashed lines) for different method
parameters: (a) varying signal length N for SN = 8; (b) varying number of siftings for N = 10,000.

Figure 5b demonstrates the mean and dispersion of the data for best-performing IMFs
taken for different number of sifting iterations. The overall shape of the distribution is
similar in a whole operating range. The number of sifting iterations does not seem to have
influence on the dispersion—neither positive, nor negative. For the chosen approach to
detection, the changes in number of sifting iterations in the analysed range do not affect the
mean value or dispersion of the data, thus, they should have no influence on the sensitivity
of the method.

The performance of EMD for varying signal length N and number of siftings SN is
presented in Figure 6. The performance is the lowest for the shortest signal, but still can
reach close to 90% for selected IMFs and number of siftings. Increasing signal length results
in improvement of the performance. Over 95% accuracy can be reached for N = 5000, over
99% accuracy for N = 10,000 and 100% for N = 50,000. An important observation is that
the best-performing IMF changes with the number of siftings. For SN = 8, IMF 6 provides
the best performance, with IMF 7 being only slightly worse. For SN = 16, the best is IMF 8,
with 7 and 9 following closely. For SN = 32, IMF 9 is the best, closely followed by 10 and 11.
The overall trend is that the feature of interest is pushed towards higher IMFs due to IMFs
having narrower frequency spectrum.

8 16 32

Siftings

1,000

5,000

10,000

50,000

S
ig

n
a

l 
L

e
n

g
th

IMF 6

88.5

97.9

99.6

100.0

89.4

90.6

93.7 83.8

82.1 75.0

79.2

81.3

8 16 32

Siftings

1,000

5,000

10,000

50,000

S
ig

n
a

l 
L

e
n

g
th

IMF 7

89.9

97.3

99.4

100.0

87.9

97.7

98.5

99.8

88.3

88.3

92.1

82.5

8 16 32

Siftings

1,000

5,000

10,000

50,000

S
ig

n
a

l 
L

e
n

g
th

IMF 8

88.5

94.2

96.3

100.0

89.0

96.9

99.2

100.0

83.8

94.2

96.7

98.8

8 16 32

Siftings

1,000

5,000

10,000

50,000

S
ig

n
a

l 
L

e
n

g
th

IMF 9

91.2

95.0

98.7

84.8

97.1

98.7

100.0

87.1

98.3

99.0

100.0

60.0

8 16 32

Siftings

1,000

5,000

10,000

50,000

S
ig

n
a

l 
L

e
n

g
th

IMF 10

86.9

92.7

94.8

97.7

100.0

86.7

97.1

99.2

100.0

19.8

71.5

74.8

8 16 32

Siftings

1,000

5,000

10,000

50,000

S
ig

n
a

l 
L

e
n

g
th

IMF 11

92.7

92.7

93.1

99.2

85.0

95.2

98.8

100.0

9.0

61.0

82.7

48.3

Figure 6. Inlet recirculation detection accuracy for IMFs 6 to 11 with different signal length N and
different sifting iterations number; colorscale is used only for values above 75% for easier interpretation.
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3.2.2. SSA-Based Detection

The inlet recirculation can also be captured by using changes in energy of RCs pro-
duced by SSA, as was shown by Logan et al. [29]. In that study, RC 2 was used for extraction
of inlet recirculation features in centrifugal compressors. The optimal window length
proposed for using RC 2 was 80, but the optimum was defined using difference in RMS
between the peak of inlet recirculation and the reference conditions. However, the most
prominent peak at the maximum does not guarantee the best identification across the whole
region of instability, especially considering the dispersion of the data.

The influence of window length L on the mean energy E for the first three RCs is
presented in Figure 7. Only first RCs are shown, as it is expected that instabilities will be
expressed in the components with high variance. The window length L varied from 15 to
200 data points and computations were performed for signal length N = 10,000. Depending
on the window length, the traces of inlet recirculation are clearly present in RCs 2 and 3.
Some effects of recirculation appear even in RC 1 for the almost all values of L. RC 2 isolates
well the inlet recirculation for L = 30, 50 and 75. For higher values of L, a more consistent
indication of recirculation can be obtained from higher components, as the behaviour of
energy is more consistent throughout the TOA range. The drop in E of RC 2 for L = 100 is
not expected, as the recirculation intensity was high in that region [9]. This implies that
some of the energy from the phenomenon was passed to a different RC.
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Figure 7. Mean energy E of RCs from 1 to 3 over different operating conditions for varying window
length and signal length N = 10,000.

By choosing the window length, changes are introduced to the decomposition. These
changes are more complex than those caused by changing the number of sifting iterations
for EMD. There are as many components created as the window length L, therefore increas-
ing L leads to decomposing the signal into more components. Consequently, the feature
contained in a specific RC in case of lower L value can be shared between two or more RCs
for a higher L or shifted to different RCs. RC 2 energy chosen as a feature representing inlet
recirculation is only useful for specific window lengths. When the window is too short, the
separation of signal into components is not sufficient and features of interest are poorly
separated. For the shortest window, most of the energy is captured by RC 1. The energy
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of RC 1 for the inlet recirculation region decreases with increasing window length, as the
features are better separated. When the L is over 30, the inlet recirculation peak gets shared
between the RC 2 and RC 3 which is not desired if a single RC is to be used for monitoring.

a) b)

Figure 8. Mean energy E (solid lines) and confidence interval (dashed lines) for different method
parameters: (a) varying signal length N for L = 50; (b) varying window length L for N = 10,000.

For changing signal length N with constant window length L (Figure 8a), the mean
value of energy E remains similar, while dispersion grows with increasing signal length,
similarly as for EMD. The changes in window length for the same signal length (Figure 8b)
affect both mean value and dispersion. No clear relation of dispersion to varying window
length is present. Contrary to EMD-based components, the absolute value of dispersion
remains similar throughout the analysed range of TOA.

Figure 9 presents the detection potential for all of the combination of parameters. It
can be shown that RC 2 performs well in a range of windows from 50 to 100. RC 1 can be
used as a measure of inlet recirculation for the shortest window lengths, but it provides no
differentiation between inlet recirculation and surge, which can be deducted from Figure 7.
For the longest windows, the response of RC 3 to appearance of IR is also visible, but it
is comparable to RC 2 only for L = 75. For most parameters, shortest signal length does
not provide a satisfactory level of detection, reaching close to 80% for most of the window
lengths. For N = 5000, over 95% accuracy can be reached, and for N = 10,000, almost 100%.
Similarly as for EMD, the longer the signal, the higher the accuracy of detection.
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Figure 9. Inlet recirculation detection for RCs 1 to 3 with different signal length N and different
window length L.

3.3. Surge

Surge detection is of utmost importance for the safety of every compressor. Term surge
refers to low-frequency pressure oscillation of the fluid that may lead to high-amplitude
vibrations of the machine, resulting in its destruction [3]. Surge onset may happen abruptly,
therefore, fast surge detection is a must for safety reasons. In this study, the potential
of quick surge detection is evaluated by exploring the possibility of quick and robust
differentiation of stable and unstable conditions, including both mild and deep surge, as
per Table 1.
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3.3.1. EMD-Based Detection

An important and non-trivial issue is the choice for IMF to be used for constructing a
detection feature. IMFs are ordered by decreasing central frequency, therefore, for surge
manifesting at low frequencies and high sampling frequency for the analysed system, it is
expected that higher IMFs would hold the desired information. Surface plots of energy for
all signal lengths obtained for number of siftings SN = 8 are shown in Figure 10.

IMF 9 with the highest detection potential, defined with results from Figure 11, is
highlighted in red and projected onto the side of the plot along with its dispersion. For
the shortest signal (N = 1000) surge is not captured well. An increase in RMS of IMF
9 is observed, but it is not consistent for the whole unstable region. A more consistent
indication is yielded from all the longer signals. With N = 5000, the important increase
in IMF 9 is noted along with higher IMFs. For N = 10,000 the differences between stable
and unstable conditions are more significant and some traces of deep surge are getting
captured at the end of the TOA range. For the longest signal N = 50,000, a deep surge peak
visible for IMF 13 begins to dominate the energy distribution. The dispersion of the energy
for IMF 9 is similar to what was observed for EMD with inlet recirculation—the longer
the signal portion N, the lower the dispersion. The dispersion also grows with increasing
levels of instability. For the shortest signal, in the highly unstable range, the lower values
of dispersion are almost zero or equal to zero. This stems from the fact that for some signal
portions, the decomposition was stopped before IMF 9 was obtained. The effect of varying
the number of sifting iterations is not explicitly presented, but it is similar to what was
observed in case of inlet recirculation, which can be deduced based on the results presented
in Figure 11.

a) b)

c) d)

Figure 10. Surface plot of energy in the studied range for varying signal lengths: (a) N = 1000,
(b) N = 5000, (c) N = 10,000, (d) N = 50,000; solid line represents the mean energy of IMF 9, marked
with red line on the surface plot and dashed lines represent energy confidence intervals.
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Depending on the number of siftings, different IMF work best for detecting surge.
For 8 siftings—IMF 9, for 16 siftings—IMF 12, while for 32 siftings—IMF 14. The shortest
signal length does not provide good detection performance for surge, barely exceeding
50%. However, from N = 5000 inclusive, a 100% accuracy can be obtained for the IMF 9
with SN = 8. For each value of SN, an IMF with over 99% accuracy can be defined. Overall,
very good detection performance is offered by EMD, provided that a correct IMF is chosen.
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Figure 11. Surge detection accuracy for IMFs 8 to 16 with different signal length N and different
number of siftings.

3.3.2. SSA-Based Detection

For surge detection with SSA, similarly as for inlet recirculation, the appropriate
component to be used has to be defined. Figure 12 presents the influence of window
length for RC 1 to RC 3 for a signal portion N = 10,000. For RC 1, the behaviour for all
window lengths is similar, reacting to appearance of unstable structures and surge. The
increase in value is present from the very limit of the TOA range (35%), but the slope
changes importantly at around 20%. Therefore, regardless of the window length, the basic
differentiation between stable and unstable is possible. A downward shift in absolute value
is visible with increasing window length, coming from the energy being spread in between
the higher number of components.

For RC 2, the relation for changing window length is not that structured. For the
two shortest window lengths, their value almost monotonically decreases with decreasing
TOA—the majority of energy is transferred to RC 1 as the instabilities appear in the flow.
For L from 50 to 100, the energy level is stable for the most part and decreases for the
region of surge instability. For the longest window L = 200, the increase in energy of RC 2
is present for the mild surge region and a drop takes place when deep surge occurs. Only
for this window length, the separation of components is sufficient to distinguish mild from
deep surge. The overall shape of the mean energy is not as smooth as in case of EMD. It
might be attributed to variations in the frequency content of RCs and transfer of energy in
between the components.
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Figure 12. Mean energy E of RCs from 1 to 3 for varying window length and signal length N = 10,000.

Figure 13 summarizes surge detection potential of selected RCs. The detection with
RC 1 is the best, as almost for every set of components, 100% detection rate is obtained,
even for the shortest signal length. RC 2 demonstrates some potential with the longest
window, which stems from the increase in the mild surge region. However, the overall
detection rate for RCs is below 50%. RC 3 shows no detection potential with the approach
from this study.
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Figure 13. Surge detection accuracy for RCs 1 to 3 with different signal length N and different
window length L.

3.4. Timing of the Methods

The processing time is crucial in compressors instabilities detection. Figure 14 summa-
rizes the times of processing for signals of different length and different method parameters
in comparison to the acquisition time. Presented results were obtained with use of a PC
class computer (6 core processor at 3.6 GHz) and MATLAB software. The decomposition
was ran 40 times for each of the signal lengths N to obtain a mean value, presented in the
plot. The timing data are demonstrated to provide an estimate of a processing time needed
for each method and compare them using the same computational setup.
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Figure 14. Time of obtaining the components with EMD and SSA for selected parameters for EMD
and SSA; dotted line represents the time needed for acquisition of N data points.

For EMD, the number of sifting is kept at 8 as no benefit of increasing this number was
observed. Detection of inlet recirculation requires computation of 6 IMFs and detection of
surge requires obtaining 9 IMFs. The time for both of those remains below the acquisition
time line. For SSA, it is assumed that only a single, selected RC is obtained. Then, the
window length is important, as it influences the computational effort for decomposition.
In case of SSA, timing for the selected window (L = 75) and longest investigated window
(L = 200) is below the data acquisition time. The time needed for processing increases
almost linearly with signal length. The longer the signal, the larger the time margin
between processing time and acquisition time.

The timing is highly dependent on the machine but also on software implementation.
It was demonstrated that quick processing of the signal can be achieved with use of FPGA
architecture [39,43] and this approach would be favourable when constructing the solution
managing a physical machine. It is expected that the processing times with a specially
designed architecture and optimized software implementation would be similar to or lower
than those of a PC.

4. Discussion

Detection of different aerodynamic instabilities is possible with EMD and SSA, which
was shown previously in literature [29,31]. This work proves that both of those methods
have high sensitivity and can provide indication of operating conditions using short signal
portions. A very accurate detection for most of the instabilities and methods can be achieved
using a signal portion corresponding to 0.1 s. The processing time of such a portion is
shorter than required acquisition time, making it possible for the methods to operate in
real time. Therefore, both EMD and SSA might be considered prospective candidates for a
quick or even real-time instabilities detection system.

To construct a successful detection system, intrinsic decomposition parameters have
to be set and proper decomposition components have to be chosen. The influence of the
intrinsic methods parameters, being number of sifting iterations for EMD and window
length for SSA, was investigated for the compressor pressure signal in the context of
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instabilities detection. In case of EMD, the increase in number of siftings did not provide
any advantage over the base value. The IMF of interest had a higher sequential number
as all IMFs held narrower frequency bands. Increasing the number of sifting iterations
increases the time needed for decomposition and the number of IMFs that have to be
extracted before the IMF of interest is obtained. Therefore, it is recommended to keep the
number of sifting iterations low, as suggested by Wang [35].

The influence of window length for SSA has more dimensions to it, as it affects the
repartition of energy between RCs in a non-trivial manner. With increasing window length,
the number of components increases and features of the signal become more separated.
A long window can lead to over-separation of a feature related to instability into more
components, which results in the need of grouping. Grouping could provide more accurate
results, but requires even more thorough analysis of the system and adds a number of
adjustable parameters, making such an approach less general. The choice of window length
remains case-specific, however, the recommendations made in reference to the compressor
geometry, rotational speed and sampling frequency [29] should be further explored to
observe how universal they prove to be for other machines.

For both methods and both instabilities, the mean value of energy was a very good
indicator of conditions. When examining the robustness of detection based on separate
signal portions, the dispersion of the energy was considerably affecting the results. For
EMD, the dispersion was high for the unstable region, but remained low in stable conditions.
In the case of SSA, it was similar throughout all conditions, being smaller than that of
EMD in unstable regions, but larger in stable regions. For both methods, the longer signal
portion length N resulted in lower dispersion. With the instabilities’ intensity changing
over time for the same TOA value [44], data dispersion is unavoidable. Higher dispersion
for EMD in the unstable region can be caused by mode mixing, a phenomenon inherent to
EMD [34]. The transfer of energy from one IMF to another leads to high variation of energy
for a chosen IMF. One should be aware that for some specific cases, it might be possible
that the dispersion of the data will be unfavourably increased by the decomposition
method. Mode mixing could be diminished by using improvements to EMD, such as
Ensemble Empirical Mode Decomposition [22,45] or Partly Ensemble Empirical Mode
Decomposition [46]. Both of those methods can deal with mode mixing, however, their
application, based on EMD, requires several decompositions, therefore, it is not suited
for quick detection. Despite possible mode mixing, EMD displayed high sensitivity and
accuracy of instabilities detection for the test compressor, and should be capable of similar
performance for other machines.

EMD and SSA differ in principles of operation, as EMD is based on the waveform
of the signal, while the SSA takes advantage of covariance of the trajectory matrix build
from the input. For a compressor signal, it translates into more predictable content of
the EMD components and less predictable content of SSA components. In case of EMD,
the subsequent components represent adjacent frequency bands. For a multi-component
signal as that from the compressor, the central frequency of a specific component remains
relatively constant throughout the operating conditions. Therefore, if the early symptoms
of inlet recirculation are present in the IMF 6, this IMF will hold recirculation features for all
compressor operating conditions. SSA orders the components according to their variance
in respect to the signal [36]. Therefore, the first component will hold the highest variance
part of the signal, which in case of unstable operation will represent the dominating
phenomenon or a piece of it. RC 2 will contain the components of second-largest variance,
RC 3 third, and so on. What is represented by a selected RC depends strongly on the
structure of the signal, which changes importantly throughout the compressor operating
range. There is no guarantee that for the same machine, a selected RC will always represent
the same phenomenon, especially if the dominating phenomenon changes over the range
of operating conditions.

In case of the sensor ps−imp1 used for inlet recirculation detection, it can be seen that RC
1 holds the signature of surge, as it increases for the lowest TOAs. However, it also seems to
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capture some traces of inlet recirculation, as before the TOA where the peak of recirculation
occurs, the increase in energy is observed. It might be possible that for a different machine
with stronger inlet recirculation signature, its effects would affect RC 1 more and would
not be so clearly present in RC 2. With EMD, inlet recirculation features are shared between
several components, however, after defining the one to trace it remains connected to that
component. Knowing a possible frequency range expected for recirculation, one can define
which IMF to trace using stable conditions only. From a physical point of view, there is
less risk of unexpected changes in component energy and one can be certain that it only
reacts to the appearance of inlet recirculation. Therefore, EMD providing higher stability
and confidence of detection can be considered a better choice for inlet recirculation.

For surge, the same principles of each method provide different advantages and
disadvantages. With EMD, one can observe that signature of mild surge is held by different
IMF than deep surge. What is more, these are high IMFs that require previous ones to be
extracted. Due to the large number of IMFs extracted before and changing structure of the
signal, the high IMFs are more prone to appearance of mode mixing, which increases the
dispersion of the data. The choice of a proper IMF is also not trivial and the accuracy of
detection is dependent on sifting parameters, as well as sampling rate, as it would directly
influence the waveform of the signal. For SSA, surge, either mild or deep, is expected to
be a dominating mode in the pressure signal. Having the most important variance, it is to
be captured in the RC 1. Therefore, by choosing the RC 1 for detecting surge, the overall
stability of the system can be monitored. The influence of the intrinsic parameters and
signal length (Figure 13) is also much lower than in case of EMD. Therefore, due to the
much easier choice of components and quicker detection possibility, SSA is considered a
better method for efficient surge detection.

5. Conclusions

In this paper, the operation of non-linear signal processing methods—EMD and
SSA—were investigated and compared for the purpose of quick aerodynamic instabilities
detection in centrifugal compressor. Based on energy of selected components, the overall
detection possibilities and signal length needed for robust identification of inlet recirculation
and surge were compared. It was shown that:

• Both EMD and SSA offer high sensitivity of detection, requiring 0.1 s of data ac-
quisition time for over 99% accuracy in differentiation of the conditions. The data
processing time using PC class computer was around 0.05 s. With processing time
lower than required acquisition time, both methods have potential to be used in
real-time detection systems.;

• When only a single component is of interest, SSA operates quicker than EMD. This
pace advantage comes from that SSA allows to independently obtain each of the
components, unlike EMD, which is sequential and requires all preceding IMFs to be
extracted. With both methods, there should still remain space to increase the number
of extracted components, while remaining below the acquisition time limit;

• EMD can be considered a better method for inlet recirculation detection, as its com-
ponents are more interpretable and confined to physical phenomena than those of
SSA, especially if the phenomena are not dominating in the signal. Thus, a selected
component can be associated with inlet recirculation with higher confidence. SSA can
be regarded better for surge detection as it is faster than EMD and the most important
instability is expected to be found in RC 1;

• The number of sifting iterations has little influence on the overall performance of EMD.
Keeping the value of iterations low ensures quick decomposition and does not decrease
the accuracy of detection compared to a larger number of siftings. Choice of window
length for SSA has more important influence on the outcomes of decomposition,
especially if the feature of interest is not the only one dominating in the signal. If a
dominating feature is to be extracted, the window length has less influence;
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• Both methods rely on low frequency to make a detection, disregarding the high-
frequency components. Therefore, it should be possible to obtain similar indications
with lower sampling frequency. With the same acquisition time, the processing time
could be shorter, making both SSA and EMD even more adequate for quick and robust
detection of instabilities.
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44. Liśkiewicz, G.; Horodko, L.; Stickland, M.; Kryłłowicz, W. Identification of phenomena preceding blower surge by means of
pressure spectral maps. Exp. Therm. Fluid Sci. 2014, 54, 267–278. [CrossRef]

http://dx.doi.org/10.1109/TSP.2015.2401532
http://dx.doi.org/10.1109/ACCESS.2018.2808414
http://dx.doi.org/10.1109/TSP.2021.3095725
http://dx.doi.org/10.1016/j.ymssp.2019.106587
http://dx.doi.org/10.1016/j.ymssp.2006.12.004
http://dx.doi.org/10.1016/j.euromechsol.2018.10.004
http://dx.doi.org/10.1177/0142331219885511
http://dx.doi.org/10.1002/asmb.501
http://dx.doi.org/10.1016/j.ymssp.2012.08.019
http://dx.doi.org/10.1007/s00170-017-1366-y
http://dx.doi.org/10.1016/j.nonrwa.2009.05.008
http://dx.doi.org/10.1515/eng-2015-0036
http://dx.doi.org/10.1016/j.measurement.2020.108536
http://dx.doi.org/10.5293/IJFMS.2009.2.4.409
http://dx.doi.org/10.33737/gpps19-bj-222
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1142/S1793536910000549
http://dx.doi.org/10.1109/ICASSP.2017.7952969
http://dx.doi.org/10.1177/1475921718760483
http://dx.doi.org/10.1049/el.2017.1425
http://dx.doi.org/10.1002/cta.2860
http://dx.doi.org/10.1007/s12206-016-0307-2
http://dx.doi.org/10.1016/j.ast.2021.107073
http://dx.doi.org/10.1109/TIM.2012.2211460
http://dx.doi.org/10.1016/j.expthermflusci.2014.01.002


Sensors 2022, 22, 2063 22 of 22

45. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal.
2009, 1, 1–41. [CrossRef]

46. Zheng, J.; Cheng, J.; Yang, Y. Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating
mode mixing. Signal Process. 2014, 96, 362–374. [CrossRef]

http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1016/j.sigpro.2013.09.013

	Introduction
	Materials and Methods
	Decomposition Methods
	Empirical Mode Decomposition
	Singular Spectrum Analysis
	Parameters of EMD and SSA

	Strategy for Real-Time Detection of Instabilities
	Processing of the Components for Detection of Instabilities
	Test Rig and Pressure Signals

	Results
	Overview of the Signals
	Inlet Recirculation
	EMD-Based Detection
	SSA-Based Detection

	Surge
	EMD-Based Detection
	SSA-Based Detection

	Timing of the Methods

	Discussion
	Conclusions
	References

