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'I'11cr(. cxists a tc~ii~ptatioll to utilize the distribution-frer nIcthods of ASTM U2915-70T for 
thc comparison of the stl.cngths of lunrber populations, a use outside the intent of the 
stantla1.d. I t  is shown that the precision of such procedure is highly dependent on the form 
of the parent distribution of strength. Since this form is in general unknown, the confidence 
to 1)e ascrihed to infel.cnces concerning near-minimunl values of two lulllbcr popnlatio~ls is 
also ~mknown and may well I)e inadequate. 

:itlrlitiot~c~l kcywortls: statistical analysis, models. 

INTIKIDUC:TIO~ almost a l w ~ ~ y s  be called for. Accordi~lgly, 
there is a temptation to use the first-order 

It is \.ell recognized that the inem sttltistic of sample of 58 for 
strt:ilgth of a population of lumber is of of exclllsion limits of different popu- 
secondary importance to sonle "near-mini- lations. This, however, is outside the intent 
mum" vahle, commonly the so-called 5% ASThl n21)15-70T as will 
cmlusioil limit, from which allowable is ;, procc.dllre. 
stresses are derived. Two populations may, I t  must be realized that xl,,, is not, in the 
of collrse, be eilual in mean but differ in the sense, estimate of the jZifth per- 
fifth percentile; conversely, two populations centile. Its use arises as follows: let xo,05 
may be equal in the fifth percentile but dellote the true, but unknown, fifth per- 
differ ill mean. Thus the colilparison of the celltile, a distributiol,-free 
ineans of two populations of lumber does we wish to select an order statistic Xi,,,  
not necessarily afford inforinatior~ concern- that 
ing their relative merit as :L structural mate- 
rial. I t  therefore becon~es pertinent to con- P(xi,n < x ~ . ~ ~ )  + 0.95 (1  
sider the precision of comparisons between 
exclusi~ii-limit estimates. A well-defined i.e. such that the probability that xi,,, is, at 
theory exists for the comparison of means; the fifth percelltile is at  least 95%. I t  
comparable theory for the case of exclr~sion tnrns out that the smallest sample size with 
limits appears to be lacking. which this can be achieved is n = 58, and 

ASTM Stand:Lrd D2915-70T, i l l  taking a with this the first-order statistic, i = 1, must 
distribution-free approach, provides for the be used. ~ h ~ :  real meallirlg Of the above is 
use of the interpolated fifth percelltile from that, if we follow this procednre, thell about 
a sample of size 58, provided this value is no 95% of the time the value chosen will not 
greater than 1.05 times the first-order sta- exceed the true fifth percentile. E [ ~ ) ~  close 
tistic, x~, :x ,  (i.e. the lowest of  the 58 values). it is to the true fifth percentile is llot speci- 
If this is not the case, then 1.05 XI,;,, may be fie& nor is the scatter that will arise in 
used. 111 effect, this is saying that the inter- repented of the same popu]ation. 
polated fifth percentile can be used, pro- ~t is, ill fact, \vhat is called a lower 95% 
vided the associated confidence interval is content tolerance limit with 95% confidence 
sufficiently narrow; if this is not the case, coefficient. 
a conservative value is to be taken. In prac- Unfortunately, the appearance of the term 
tice, it appears that the latter course will "95% confidence" seems to have given some 
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people the impression that a reasonably high 
level of precision is associated with the 
value, as a measure of the fifth percentile. 
111 reality the precision of the first-order 
statistic as the estimate of anything is not 
a factor in the definition. The first-order 
statistic mav well be serviceable as a near- 
minimum value for use with a single popu- 
lation because. as noted. the value will 
tweed the true fifth percentile 011 the 
avc-rage, only one time in twenty. But this 
property has little relevance to the question 
of whether one population is "better" than 
a~lother as regards their near-minimum 
val~~es .  

If the first-order statistic is su1)iect to it 

relatively large hut unrecognized sampling 
error, then there is a danger that, on the 
basis of this statistic, one population would 
be judged as "better" than another when 
there was, in fact, negligible difference or 
even a real difference in the other direction. 
The possibility of such an event cannot be 
denied: whether, however, it is of practical 
significance i~ open to question. In this 
paper, therefore, the relevant properties of 
the first-order statistic will be investigated 
quantitatively, under assunlptions that ap- 
pear to be reasonably realistic for lumber 
strength clistributioiis. The argu~nents are 
hirhlv technical and should not concern the 

L, , 
general reader; it is necessary that they be 
outlined to provide the basis for the results 
obtained and the conclusions consequent 
thereon. I11 this way some feeling can be 
gained for the consequences of using the 
ASTM distribution-free procedure to com- 
pare populations. 

the normal, log normal, Weibull and galrima, 
all of which have been used to model lumber 
strength distributions. 

For convenience, we shall suppose, in all 
cases, that the mean and variance of the 
parent distribution are p = 100 and 2= 400, 

a ion = respectively, (i.e. coefficient of vari t '  
20%). Results for other values can be ob- 
tained by appropriate rescaling. 

a lo11 First, let us suppose the parent popul t '  
to be normally distributed and, as a bench- 
mark, consider the parametric version of the 
lower 95% content tolerance limit with 95% 
confidence coefficient. This is given by xl = 
ji - ks, where 2 and s are the usual s:imple 
estimates of mean and standard deviation 
and for sanlple size n = 58, k takes the value 
2.031 (see, e.g. the tables of Owen 1962). 
According to Jennett and Welch ( 1939), x, 
is distributed, approximately, as a normal 
variate with mean pkac  and variance 
[ l / n  + b2k2/2(n- l)]tr2 where, for n=58 ,  
a - 0.996, b2 2, 0.996. The mean of xl is, 
thus, 

E(x ) = E(; - ks) = u -  k a ~  
R 

AxALYSIS 

To obtain a more concrete picture of the 
sitnation, it is necessary to determine the 
properties, in particular the mean and vari- 
ance (or standard deviation), of the first- 
order statistic for several assumed parent 
distributions. This, in fact, has been at- 
tempted by Habermann (1973) by Monte 
Carlo methods for a few specific cases. Our 
approach differs in that it is analytic, 
although we shall concentrate on the same 
distributional forms as Habermann, namely 

(which is approximately the 2.15 percentile), 
and the variance of xc is 

In other words, the mean and standard 
deviation of the parametric tolerance limit 
are 59.54 and 4.6165, respectively, arid the 
coefficient of variation is 4.6165/59.54 = 
7.8%. 

Because of the central role of the normal 
distribution in statistical theory, the prop- 



TAI~LE 1. Pro)~ertien of the first-order statistic for a Weihrlll pizrent distribution ( n  = 58) 
. .- 

C . V .  P e r c e n t i l e  
Actual 5th 

k E ( x l  ,58) V a r ( x ,  ,58) P e r c e n t i l e  

erticss of order statistics in this case have 
been widely studied. Thus, either directly 
from published tables (e.g. Harter 1960) 
or by extrapolation, we have that the mean 
and variance of the first-order statistic of a 
standard normal variable, sample size n = 
58, are E (Z1  5R) = -2.30635 and Var(Zl,58) 
= 0.20819, respectively. With x normally 
distributed with mean p and variance o" it 
follows that 

E (XI ,,,) = p - 2.30635~ = 53.87 
(which is approximately the 1.06 percentile) 

and V a r ( ~ , . ~ ~ )  = 0.20819t;2 = 83.2760(= 
9.1256". That is, the mean and standard 
deviation of the clistribution-free tolerance 
limit are 53.87 and 9.1256, respectively, 
and the coefficient of variation is 9.12561 
53.87 = 16.9%. The actual value of the fifth 
percentile is 66.70. 

Log norrnul 

Suppose now that the strengtll distribu- 
tion is log riormal, but with mean and vari- 
ance still 100 and 400, respectively. Then, 
1,y the Taylor series expansion for the 
expectation of functions of random variables 
(details from author on request) it can be 
shown that E ( X ~ , , ~ )  =71.14 (which is 
approximately the 1.09 percentile) and 
Var (x , , ; ,~ )  = 20.5770( = 4.53622 ) . That is, 
for the log normal, the distribution-free 
tolerance limit has mean 71.14, standard 
deviation 4.5362, and coefficient of variation 
4.5362171.14 = 6.4%. The actual value of 
the fifth percentile is 77.89. 

In contrast to the cases considered above, 
the Weibull distribution, in its genoral form, 
has three parameters-namely the location, 
scale, and shape. We shall write the density 
function as 

where the location, scale, and shape param- 
eters are c, d, and k, respectively. This dis- 
tribution has mean 

and variance 

We must, therefore, be giver) more tl-ian the 
mean and variance in order to (leternline 
the parameters. The most convenient ap- 
proach would seem to be to select values 
for the shape parameter, k, and solve for the 
location and scale parameters. For example 
with k = 2 we have 

100 = c + dr(1 .5)  
400 = d 2 [ r ( 2 )  - r2(1.5)] ,  

whence c = 61.7388 
d = 43.1731. 

Explicit forinulae for the moments of the 
reduced log-Weibull distribution, and fairly 
extensive tables of the mean and variance, 
have been given by White (1967) and, from 
there, approximate values for the case in 
cluestion can be derived by esse~ltially the 
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I. L ( x l  ,5G) Val.(;1 , 5 [ j )  L.V.  P e r c e n t i l e  
Actual 5 t h  
Pe rce r i t  i 1 e  

s'lrne techniclt~es a\ ~lsctl \vitIi tlic lognormal. 
For k = 2, wcx ol,tai11 

( \vllicI~ is approximately the 1.40 percentile) 

and \'ar(x, ;,,) = 7.4200( = 2.7240') 
- 7 I hat is, the distribution-free tolerance limit 
has meail 66.86, standard deviation 2.7240, 
a11d coefficient of variation 2.7240166.86 = 
4.1V. 

The process call 1)e repcatrd for any value 
of k and in this way Table 1 has 1)een ob- 
tained. 

'flje general fomi of thc gamma distril~u- 
tion 'tlso has three parameters, which again 
luay 1)e identified a5 location, scale, and 
shape. \Vc> shall write the density function 
:I\ 

Thc niran is p = c + k / ~  

a~rd  the variance is 

As for the \Veil~ull, mc iuay self,ct vall~es 
tor k and s o l ~ e  tor c and ,\. For example, 
\\.it11 k = 2 

Euplicit for~nulae for thc moments of the 
order statistics for the standard gamma 
( c  = 0, A = 1, k a positive integer) and 

tal~les of the Illeiul and variance of the 
first-orclcr statistic for n = 1(1 )15  11nve 
heen given I,y Chpta ( 1960). Evull~ation 
for larger values of 11 is dernantlirig. and 
extrapolation to as far as 11 = 58, clearly 
precarious. Accordingly, the approxini. '1 t' 1011 

formulae of Blon~ ( 1958) have been rpccial- 
ized for use here. The results are presented 
in Table 2. 

ISII'LICATIONS 

The , ~ / , L L  ratio used in the above ernl~~ples  
differs somewh:lt froln that employed 1)y 
Ha1)errnnna ( 1973) ; nevertheless, the rc~sults 
are reasonably consistent with those of his 
R4oate Carlo study. Although not stated in 
his text, ill the case of the Weibull and of  the 
gamma, he took the location paranleter as 
zero. For example, with this constraint ap- 
plied to the \Veibull with p = 100 and 
tr" 400, the v:llue of k would be somewhat 
greater than 5; thus the relatively high vari- 
ance of the first-order statistic obtained by 
IIa1,ermann is not surprising. A parallel 
argument can 1)e applied to the gamma. 

As has been cle~nonstrated for the normal 
distribution, and is, of course, true in gen- 
eral, the distrihutioii-free method yields, on 
the average, a inore conservative value than 
the appropriate parametric method. More 
importantly, it is clear from the above that 
the properties of the first-order statistic not 
only are highly dependent on the form of the 
parent distribution, but also are very scnsi- 
tive to changes in the shape parameter 
within a single family of distributions. I t  
can also be shown that, although within a 
faillily thc vari:unee of the first-order statistic 
is a decreasing function of the degree of 



skc~w~r~ss  of tlie tlistril)utio~r, ecyllnl values of 
skew~icss clo not correspond to equal pre- 
cisions l)et\vee~i families. 

111 other words, u111ess the shape of the 
pilrc,~it distril)utio~i is know~l, or can be 
safrlp ass~iimed-and if this were the case 
olie would try to avoid distribution-free 
~nethods-the precision of the clistribution- 
frcc. tolc.rn11ce liiilit is unk~iown. For the 
c:ist>s st~ldietl, thc coefficients of variation 
range from 2.0% (for the gamma with 
k = 2 )  to 18.7% (for the TVeibnll with 
k = 5 ) .  It follows that we are in no position 
to make infermces concerning the near- 
minimmm values of two lumber populations 
011 the lxisis of the distribution-free pro- 
ccclui-c 1)ased on ASTSI D2915-70T, an 
:ip~licatiou for which, it is again empha- 
sizctl, thc standarc1 was not inte~itled. 

I t  must be pointed out, in all fainless, that 
tolerance-limit theory has not been well 
developed under parametric assumptions 
other than the nornlal. Thus, even if the 
Form of the underlying distrib~ition \yere 
known, one still might 1)e tempted to use a 
clistril~ntion-free procedure. Indeed, ASTSI 
8915-70T does provide for increasing the 
sanlple size to 93 and 11sing the second- 
order statistic. Although the precision will 
tllcrcby 1)e increased, it will still differ with 
the form of the underlying distribution. 
The same can be said of the IIanson and 
Koopm:ins (1964) tolerance limits, also 
stndicd l~rirfly 11y Habermann. 

For tlie comparison of two sets, a tech- 
11ique that would utilize more infor~liation 
\vould 11e the application of the Slann- 
\Vhitney test (see e.g. Siege1 1956) to, say, 
the first six-order statistics of each set. This 
has a certain intuitive appeal, but the 
properties of this test in such an application 
should 1)e esaminecl before it conld be 
recommended for general use. 
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