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ABSTRACT

There exists a temptation to utilize the distribution-free methods of ASTM D2915-70T for
the comparison of the strengths of lumber populations, a use outside the intent of the
standard. Tt is shown that the precision of such procedure is highly dependent on the form
of the parent distribution of strength. Since this form is in general unknown, the confidence
to be ascribed to inferences concerning near-minimum values of two lumber populations is

also unknown and may well be inadequate.

Additional keywords: statistical analysis, models.

INTRODUCTION

It is well recognized that the mean
strength of a population of lumber is of
secondary importance to some “near-mini-
mum” value, commonly the so-called 5%
exclusion limit, from which allowable
stresses are derived. Two populations may,
of course, be equal in mean but differ in the
fifth percentile; conversely, two populations
may be equal in the fifth percentile but
differ in mean. Thus the comparison of the
means of two populations of lumber does
not necessarily afford information concern-
ing their relative merit as a structural mate-
rial. It therefore becomes pertinent to con-
sider the precision of comparisons between
exclusion-limit estimates. A well-defined
theory exists for the comparison of means;
comparable theory for the case of exclusion
limits appears to be lacking.

ASTM Standard D2915-70T, in taking a
distribution-free approach, provides for the
use of the interpolated fifth percentile from
a sample of size 58, provided this value is no
greater than 1.05 times the first-order sta-
tistic, X, s« (i.€. the lowest of the 58 values).
If this is not the case, then 1.05 x;1 5x may be
used. In effect, this is saying that the inter-
polated fifth percentile can be used, pro-
vided the associated confidence interval is
sufficiently narrow; if this is not the case,
a conservative value is to be taken. In prac-
tice, it appears that the latter course will
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almost always be called for. Accordingly,
there is a temptation to use the first-order
statistic of a sample of size 58 for com-
parison of exclusion limits of different popu-
lations. This, however, is outside the intent
of ASTM D2915-70T and, as will be shown
below, is a potentially misleading procedure.

It must be realized that x; 54 is not, in the
usual sense, an estimate of the fifth per-
centile. Tts use arises as follows: let xg.05
denote the true, but unknown, fifth per-
centile. Under a distribution-free approach,
we wish to select an order statistic x;, such
that

P(xi,n <

XO.OS) > 0.95 (1)
i.e. such that the probability that x;, is, at
most, the fifth percentile is at least 95%. It
turns out that the smallest sample size with
which this can be achieved is n =58, and
with this the first-order statistic, i = 1, must
be used. The real meaning of the above is
that, if we follow this procedure, then about
95% of the time the value chosen will not
exceed the true fifth percentile. How close
it is to the true fifth percentile is not speci-
fied, nor is the scatter that will arise in
repeated samplings of the same population.
It is, in fact, what is called a lower 95%
content tolerance limit with 95% confidence
coefficient.

Unfortunately, the appearance of the term
“95% confidence” seems to have given some
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people the impression that a reasonably high
level of precision is associated with the
value, as a measure of the fifth percentile.
In reality the precision of the first-order
statistic as the estimate of anything is not
a factor in the definition. The first-order
statistic may well be serviceable as a near-
minimum value for use with a single popu-
lation because, as noted, the value will
exceed the true fifth percentile on the
average, only one time in twenty. But this
property has little relevance to the question
of whether one population is “better” than
another as regards their near-minimum
values.

If the first-order statistic is subject to a
relatively large but unrecognized sampling
error, then there is a danger that, on the
basis of this statistic, one population would
be judged as “better” than another when
there was, in fact, negligible difference or
even a real difference in the other direction.
The possibility of such an event cannot be
denied; whether, however, it is of practical
significance is open to question. In this
paper, therefore, the relevant properties of
the first-order statistic will be investigated
quantitatively, under assumptions that ap-
pear to be reasonably realistic for lumber
strength distributions. The arguments are
highly technical and should not concern the
general reader; it is necessary that they be
outlined to provide the basis for the results
obtained and the conclusions consequent
thereon. In this way some feeling can be
gained for the consequences of using the
ASTM distribution-free procedure to com-
pare populations.

ANALYSIS

To obtain a more concrete picture of the
situation, it is necessary to determine the
properties, in particular the mean and vari-
ance (or standard deviation), of the first-
order statistic for several assumed parent
distributions. This, in fact, has been at-
tempted by Habermann (1973) by Monte
Carlo methods for a few specific cases. Our
approach differs in that it is analytic,
although we shall concentrate on the same
distributional forms as Habermann, namely
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the normal, log normal, Weibull and gamma,
all of which have been used to model lumber
strength distributions.

For convenience, we shall suppose, in all
cases, that the mean and variance of the
parent distribution are p. = 100 and ¢* = 400,
respectively, (i.e. coefficient of variation =
20%). Results for other values can be ob-
tained by appropriate rescaling.

Normal

First, let us suppose the parent population
to be normally distributed and, as a bench-
mark, consider the parametric version of the
lower 95% content tolerance limit with 95%
confidence coefficient. This is given by x, =
x —ks, where x and s are the usual sample
estimates of mean and standard deviation
and for sample size n = 58, k takes the value
2.031 (see, e.g. the tables of Owen 1962).
According to Jennett and Welch (1939), x,
is distributed, approximately, as a normal
variate with mean p-kac and variance
{1I/n+b%k?/2(n~1)]e> where, for n =58,
a=~0996, b2~ 0.996. The mean of x; is,
thus,

E(x ) =

. E(X - ks) = u - kao

100 - 2.031 x 0.996 x 20

= 59,54 (2)

(which is approximately the 2.15 percentile),
and the variance of x; is

Var(x,) = Var(x - ks) = 1, bzkz» <
L x n o 2(n-1y] ©
L, 0096 x 2,017
58 2 X 57 x
= 21.3122 [= 4.61652J ) (3)
In other words, the mean and standard

deviation of the parametric tolerance limit
are 59.54 and 4.6165, respectively, and the
coefficient of variation is 4.6165/59.54 =
7.8%.

Because of the central role of the normal
distribution in statistical theory, the prop-
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TanLe 1. Properties of the first-order statistic for a Weibull parent distribution (n = 58)

: Actual 5th

k E(x1’58) Var(x],sg) C.V. Percentile Percentile
2.0 66.86 7.4200(=2.7240%) 4.1 1.40 71.52
2.5 62.59 17.8746(-4.2278%) 6.8 1.31 69.32
3.0 59.30 31.5255(=5.6148°%) 9.5 1.25 67.67
3.508772 56.68 47.0784(=6.8614%) 2.1 1.21 66.65
4.0 54.65 62.5731(=7.9103%) 14.5 1.18 66.14
4.3 53.12 76.4287(=8.7424%) 16.5 1.15 65.65
5.0 51.54 93.0908(=9.6484%) 18.7 1.13 65.19

ertics of order statistics in this case have Weibull

been widely studied. Thus, either directly
from published tables (e.g. Harter 1960)
or by extrapolation, we have that the mean
and variance of the first-order statistic of a
standard normal variable, sample size n=
58, are E(Zng) = —230635 and Val’(zlyr,g)
=0.20819, respectively. With x normally
distributed with mean x and variance o2, it
follows that

E(x1.5:) = p—2.30635¢0 = 53.87
( which is approximately the 1.06 percentile)

and Var(x; ;) = 0208192 = 83.2760(=
9.1256%). That is, the mean and standard
deviation of the distribution-free tolerance
limit are 53.87 and 9.1256, respectively,
and the coefficient of variation is 9.1256/
53.87 = 16.9%. The actual value of the fifth
percentile is 66.70.

Log normal

Suppose now that the strength distribu-
tion is log normal, but with mean and vari-
ance still 100 and 400, respectively. Then,
by the Taylor series expansion for the
expectation of functions of random variables
(details from author on request) it can be
shown that E(xp;) =71.14 (which is
approximately the 1.09 percentile) and
Var(x;5:) = 20.5770( = 4.53622). That is,
for the log normal, the distribution-free
tolerance limit has mean 71.14, standard
deviation 4.5362, and coefficient of variation
45362/71.14 = 6.4%. The actual value of
the fifth percentile is 77.89.

In contrast to the cases considered above,
the Weibull distribution, in its general form,
has three parameters—namely the location,
scale, and shape. We shall write the density
function as

- 4

(4)

where the location, scale, and shape param-
eters are ¢, d, and k, respectively. This dis-
tribution has mean

p=c+dr(l1+1/k)
and variance
o = d2[r(1+ 2/k) -1*(1+1/k)].

We must, therefore, be given more than the
mean and variance in order to determine
the parameters. The most convenient ap-
proach would seem to be to select values
for the shape parameter, k, and solve for the
location and scale parameters. For example
with k = 2 we have

100 = ¢ + dr(1.5)

400 = d2[r(2) —-1r3(1.5)],
whence c =61.7388

d =43.1731.

Explicit formulae for the moments of the
reduced log-Weibull distribution, and fairly
extensive tables of the mean and variance,
have been given by White (1967) and, from
there, approximate values for the case in
question can be derived by essentially the
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TavLe 2. Properties of the first-order statistic for a gamma parent distribution (n = 58

| [(X1,58) Var(x]’SU)

2 74.22 2.1313(=1.4599°
3 70.90 5.3516(=2.31342
4 68.80 §.5089(=2.9170%
5 67.31 11.3184(=3.3643°

same techniques as used with the lognormal.
For k =2, we obtain

. x1.00) = 66.86
(which is approximately the 1.40 percentile)

Var(xi.¢) = 7.4200( = 2.72402).

and

That is, the distribution-free tolerance limit
has mean 66.86, standard deviation 2.7240,
and coefficient of variation 2.7240/66.86 =
4.1%.

The process can be repeated for any value
of k and in this way Table 1 has heen ob-
tained.

Gammua

The general form of the gamma distribu-
tion also has three parameters, which again
may be identified as location, scale, and
shape. We shall write the density function

das
k k-1
L Alx o)
Flx) r(k

expl-Alx - ¢)]. (5)

The mean is  p=c+k/A

and th(’ variance is
a? =k/A%

As for the Weibull, we may select values
tor k and solve for ¢ and A For example,
with k=2

100 =c+ 2/r
400 = 2/ A%,
whence ¢ =71.7157, A = 0.070710.

Explicit formulae for the moments of the
order statistics for the standard gamma
(¢=0, A=1, k a positive integer) and

. ) . Actual 5th
C.v. Percentile Percentile
2.0 1.39 76.74
3.3 1.29 74.80
4.2 1.25 73.66
5.0 1.22 72.90

tables of the mean and variance of the
first-order statistic for n=1(1)15 have
been given by Gupta (1960). Evaluation
for larger values of n is demanding, and
extrapolation to as far as n=258, clearly
precarious. Accordingly, the approximation
formulae of Blom (1958) have been special-
ized for use here. The results are presented
in Table 2.

IMPLICATIONS

The «/p ratio used in the above examples
differs somewhat from that employed by
Habermann (1973); nevertheless, the results
are reasonably consistent with those of his
Monte Carlo study. Although not stated in
his text, in the case of the Weibull and of the
gamma, he took the location parameter as
zero. For example, with this constraint ap-
plied to the Weibull with p =100 and
o = 400, the value of k would be somewhat
greater than 5; thus the relatively high vari-
ance of the first-order statistic obtained by
Habermann is not surprising. A parallel
argument can be applied to the gamma.,

As has been demonstrated for the normal
distribution, and is, of course, true in gen-
eral, the distribution-free method yields, on
the average, a more conservative value than
the appropriate parametric method. More
importantly, it is clear from the above that
the properties of the first-order statistic not
only are highly dependent on the form of the
parent distribution, but also are very sensi-
tive to changes in the shape parameter
within a single family of distributions. It
can also be shown that, although within a
family the variance of the first-order statistic
is a decreasing function of the degree of
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skewness of the distribution, equal values of
skewness do not correspond to equal pre-
cisions between families.

In other words, unless the shape of the
parent distribution is known, or can be
safely assumed—and if this were the case
one would try to avoid distribution-free
methods—the precision of the distribution-
free tolerance limit is unknown. For the
cases studied, the coefficients of variation
range from 2.0% (for the gamma with
k=2) to 187% (for the Weibull with
k =5). It follows that we are in no position
to make inferences concerning the near-
minimum values of two lumber populations
on the basis of the distribution-free pro-
cedure based on ASTM D2915-70T, an
application for which, it is again empha-
sized, the standard was not intended.

It must be pointed out, in all fairness, that
tolerance-limit theory has not been well
developed under parametric assumptions
other than the normal. Thus, even if the
form of the underlying distribution were
known, one still might be tempted to use a
distribution-free procedure. Indeed, ASTM
2915-70T does provide for increasing the
sample size to 93 and using the second-
order statistic. Although the precision will
thereby be increased, it will still differ with
the form of the underlying distribution.
The same can be said of the Hanson and
Koopmans (1964) tolerance limits, also
studied briefly by Habermann.

For the comparison of two sets, a tech-
nique that would utilize more information
would be the application of the Mann-
Whitney test (see e.g. Siegel 1956) to, say,
the first six-order statistics of each set. This
has a certain intuitive appeal, but the
properties of this test in such an application
should be examined before it could be
recommended for general use.
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