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Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

Comparison of Feedforward and Feedback Neural Network

Architectures for Short Term Wind Speed Prediction

Richard L. Welch, Stephen M. Ruffing, and Ganesh K. Venayagamoorthy

Abstract-This paper compares three types of neural

networks trained using particle swarm optimization (PSO) for

use in the short term prediction of wind speed. The three types

of neural networks compared are the multi-layer perceptron

(MLP) neural network, Elman recurrent neural network, and

simultaneous recurrent neural network (SRN). Each network is

trained and tested using meteorological data of one week

measured at the National Renewable Energy Laboratory

National Wind Technology Center near Boulder, CO. Results

show that while the recurrent neural networks outperform the

MLP in the best and average case with a lower overall mean

squared error, the MLP performance is comparable. The

better performance of the feedback architectures is also shown

using the mean absolute relative error. While the SRN

performance is superior, the increase in required training time

for the SRN over the other networks may be a constraint,

depending on the application.

I. INTRODUCTION

THE limited existing reserves of fossil fuels and the

harmful emissions associated with them have led to an

increased focus on renewable energy sources in recent years.

Among renewable energy sources, wind energy is the one

with the lowest cost of electricity production [1], but is

feasible only as long as weather conditions allow. To

maintain economical power dispatch of wind generated

electricity, it is important to be able to make short term

predictions of future wind speed, which directly affects

generation capacity. Without this ability, a wind farm

operator is prone to allocate more generation units or

supplemental energy reserves than necessary in order to

ensure budgeted electricity outputs are met [1], with an end

result of increased operating costs.

Numerous examples exist in literature of training neural

networks (NNs) to make short term wind speed predictions.

The neural network types utilized in these studies generally

consisted of either the feedforward multi-layer perceptron

(MLP) network [2], [4]-[6] or recurrent neural network

(RNN) [7], [8] structure. Research has shown the recurrent

neural network structure to be effective for time-series data

forecasting [7] and, therefore, it is assumed to be the best

architecture for short term wind speed predictions.

Manuscript received March 9, 2009. This work was supported in part by

a U.S. Department of Education grant: GAANN # P200A070504, a NSF

grant EFRI # 0836017, and Missouri S&T's Intelligent Systems Center.

R. L. Welch, S. M. Ruffing and G. K. Venayagamoorthy are with the

Real-Time Power and Intelligent Systems Laboratory, Department of

Electrical and Computer Engineering, Missouri S&T, Rolla, MO 65409

USA (e-mail: rwelch@ieee.org, smrr34@mst.edu & gkumar@ieee.org).

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

In this study, the short term wind speed prediction

abilities of an MLP, RNN, and simultaneous recurrent neural

network (SRN) are investigated. The training algorithm used

is particle swarm optimization (PSO). The resulting neural

networks trained with this training algorithm are compared.

Previous work has shown temperature to be the most

important meteorological parameter in predicting short term

future wind speed [2]. Humidity and current wind speed

have also been identified as key indicators. The data used to

train the neural networks in this paper, therefore,

incorporates the following three inputs (in addition to a bias

value) recorded by instruments on or near the 82 meter tall

M2 tower of the National Renewable Energy Lab (NREL)'s

National Wind Technology Center (NWTC) site [3] located

5 miles south of Boulder, Colorado:

• Current wind speed measured at 80 m in mls

• Current temperature at 2 m in degrees C

• Current percent relative humidity

The training data includes values for each of these inputs

in one minute intervals, with each data point representing the

mean of readings taken every two seconds during that

minute. This training data is used to optimize the values of

synaptic weights of each neural network in order to provide

the best prediction of 80 m wind speed fifteen minutes into

the future.

The remainder of this paper is organized as follows: A

detailed examination of three neural networks used is given

in section II; in section III, the training method is explained

in detail, with the results given in section IV. Section V

gives the conclusions of this work.

II. NEURAL NETWORKS

Neural networks comprise one of the five main

computational intelligence paradigms [9], and are known as

universal approximators. The first (and most popular)

network is the MLP network; the second is the RNN; finally,

the third neural network that is investigated is SRN. In each

case, the network inputs are as discussed in the previous

section, and the output is just the wind speed 15 minutes into

the future. All input values are normalized by their

maximum value during the week's worth of training data

prior to being presented to the network.

A. Multi-Layer Perceptron Network

The MLP network is a member of the feedforward

network architecture, and is the simplest of the networks

under investigation. In this network, there are 3 layers, each

composed of neurons. The 3 layers are the input, hidden, and
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Fig. 2. Diagram of an Elman RNN. WS(t) , T(t), RH(t), and WS(t+15) are

the wind speed, temperature, and relative humidity at time t, as well as the

predicted wind speed at time t+15, respectively.

output layers. The input layer (with a linear activation

function) is fed the input values which are then multiplied by

an input weight matrix W, passed through the hidden layer

(using the sigmoid activation function), multiplied by an

output weight matrix V, and finally fed to the output layer

(which uses a linear activation function). A diagram of the

MLP used is shown in Fig. 1.

WS(t) 0 0
T(t) 0 att) 0 d(t)

• \\1S(t+15)

0
•

RH(t) •
0

Bias 0 0
Fig. 1. Diagram of a MLP showing inputs and outputs. WS(t) , T(t), RH(t),

and WS(t+15) are the wind speed, temperature, and relative humidity at time

t, as well as the predicted wind speed at time t+15, respectively.

WS(t)

T(t)

RH(t)

Bias

d(t-l)

o
a(t) 0 d(t

o
o
o

\\1S(t+15)

The equations (1) through (4) are used to calculate the

output y from a given input x.

x(t) = [WS(t),T(t),WH(t),Bias] (1)

To compute the output of an RNN, the same equations

from an MLP are used, except for (1) which is replaced by

(5).

B. Recurrent Neural Network

The RNN is a member of the feedback architecture, and as

mentioned this type of architecture has been shown to excel

at time series prediction. The RNN is similar to the MLP in

general structure except that it contains a feedback loop

(with unit delay) from some later stage of the network back

to the input layer. In this study, an Elman network is used

which takes the output from the hidden layer; another type

ofRNN is the Jordan network which takes its feedback from

the output layer. This feedback is stored in another layer

called the context layer which allows the network to retain

an internal memory. A diagram of the Elman RNN is shown

in Fig. 2.

The Elman structure is chosen over the Jordan network in

this study due to the hidden layer being wider than the

output layer. This wider layer allows more values to be fed

back to the input, thus allowing more information to be

available to the network.

(5)

WS(t) 0
T(t)

a(t) 0 d(t

0 \\1S(t+15)
RH(t)

0
Bias

0

x(t) = [WS(t),T(t),WH(t),Bias,d(t-1)]

C. Simultaneous Recurrent Neural Network

As with the RNN, the SRN is a member of the feedback

architecture. However, the SRN differs from the RNN in that

the feedback portion does not contain a delay unit and

instead this feedback value is taken directly from the later

stage of the network. Again as with the RNN, the SRN can

come in either an Elman or Jordan configuration. In this

research, the Elman approach is used. A diagram of the

Elman SRN is shown in Fig. 3.

d(t-l)

(3)

(2)

(4)

1
d(t) =-1---a(-t)

+e

art) = W X x(t)

y(t) =V X d(t)

Fig. 3. Diagram of an Elman style SRN. WS(t) , T(t), RH(t), and WS(t+15)

are the wind speed, temperature, and relative humidity at time t, as well as

the predicted wind speed at time t+15, respectively.

One major difference between an SRN and the RNN is

that since the feedback does not contain a delay, the input

values must be propagated several times through the

network until the output reaches equilibrium. This process of

repeatedly applying the inputs is called an internal
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MLP 6.504 6.252 6.088 19.01 hours

SRN 6.263 6.143 5.922 55.21 hours

RNN 6.445 5.959 5.655 20.04 hours

(8)

300250

- - - MSE While Training MLP

- . MSE While Training RNN

- MSE While Training SRN

1()() 150 200

heration

50

p

I (Ylargel - Yaclual)
Fitness = ..!:.i-::!] _

Examples of how the fitness of the best gbest particle

improves over time for each network are given in Fig. 4.

IV. RES ULTS

The resulting worst, average, and best MSE of each

network trained with PSG, along with the time required to

run the entire optimization process for each network is given

in Table I.
TABLE I

RESULTS OFTRAINING EACHNEURALNETWORK USING PSO

p

Before the actual training of the neural networks takes

place , the parameters of the PSG algorithm (w, c, and C2) as

well as the number of particles used for the PSG

optimization are optimized as is done in [13]. This

optimization process results in using 30 particles with an

initial value of w found to be 0.7492 (this value is linearly

decreased to half its initial value at the final iteration), while

the optimal values of CI and C2 are found to be 0.8107 and

2.5000, respectively. After all PSG parameters are

optimized, each of the previously mentioned networks are

trained with PSG for 300 iterations with all of the optimal

settings and using the 10080 points of training data from the

week of 11/10/2008 through 11/16/2008, with each data

point corresponding to the one minute average of readings

taken every two seconds. This training is repeated 20 times

in order to average out variations in performance that occur

due to the stochastic aspects of the PSG algorithm.

Fig. 4. Mean squared error of the best gbest particle for training all networks.

Network Worst MSE Average Best MSE Run Time
Type (x 10-4) MSE (x10-4) (x10'4) Required

recurrence , and is required because the feedback value

depends directly on the output of the hidden layer (without

delay). Because of these internal recurrences, the same

equations used to obtain an output for the RNN can be used

for the SRN, except that they must be repeated multiple

times until the output y in (4) stabilizes. To insure stability

of the output, internal recurrences are executed until two

successive outputs differ by no more than 0.01 or 20

iterations have been reached.

In this study, each network has 4 input neurons (one for

each of the inputs and also a bias value) and I neuron in the

output layer since the network will produce one output

value. However, to keep the number of synaptic weights the

same (and hence of amount of information that each network

contains), the MLP has 10 neurons in its hidden layer while

the RNN and SRN each have 5 neurons in the hidden layer,

which also means that the context layers are 5 neurons wide.

This gives W a size of 4x I0 and V a size of l O> I for the

MLP case; the RNN and SRN both have a W of size 9x5 and

a V of size 5x I; in all cases , the total number of weights is

50. The hidden layer size is chosen rather arbitrarily since

the optimum number cannot be known without trial and

error or analyzing the degree of freedom of the training data

[10].

III. TRAINING PROCEDURES

In the case of each of the previously mentioned neural

networks, both the input and the output weights need to be

trained in order to allow the network to provide an adequate

output. In this study, particle swarm optimization [I I] is

used for this process and is implemented in Matlab. Previous

work has shown that the PSG algorithm demonstrates

superior performance compared to backpropagation

algorithms when used to train feedforward neural networks

such as an MLP [12].

PSG is a computational optimization technique that

utilizes a group of particles that fly through a

multidimensional problem space, where each particle

represents a potential solution. The number of dimensions in

the problem space is equal to the number of parameters that

need to be optimized. Because each of the networks being

investigated has the same number of synaptic weights , the

number of dimensions of each particle in each case is 50.

The implementation used in this study is the standard

canonical form, with velocity update given by (6) and

position update given by (7) . In each equation, e is the

particle number and d is the particle dimension.

Additionally, the fitness value used during the PSG process

is given in (8). In (8), p is the number of training points in

the training set.

ved(H l) =wxved(t)

+c] X rand] X (Pbesl,ed - xed(t))

+c2xrand, X (gbesl,d - xeit))

(6)

The performance of the best of each network along with

the absolute relative error (ARE) as calculated in (9) is also

compared. A sampling of each for a small selected time

frame is shown in Figs. 5-10.

(7)
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Fig. 8. The absolute relative error of the best RNN network trained using

PSG.
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Fig. 9. The actual performance of the best SRN network trained using PSG,

showing both actual wind speed and predicted wind speed.

Fig. 10. The absolute relative error of the best SRN network trained using

PSG.

In Figs. 5, 7 and 9, the performance of the MLP, RNN,

and SRN networks is shown for a sample of the training

data, respectively. From these figures, it is shown that while

the performance is similar with each network, the feedback

architectures (RNN and SRN networks) slightly outperform

the MLP. In Figs. 6, 8, and 10, the ARE of each network

7400 7450 7500 7550 7600 7650 7700 7750

lime Into Training Data (minutes)

-- Actual Wind Speed

- - - Predicted Wind Speed
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Fig. 7. The actual performance of the best RNN network trained using

PSG, showing both actual wind speed and predicted wind speed.

Fig. 5. The actual performance of the best MLP network trained using

PSG, showing both actual wind speed and predicted wind speed.

Fig. 6. The absolute relative error of the best MLP network trained using

PSG.
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over this sample period is shown. In particular, it is noted

that the feedback architectures again outperform the MLP,

especially between minutes 7600 and 7700. During this time

frame, the magnitude of the ARE is lower for the feedback

architectures than it is for the MLP.

In addition to testing the performance of each network

using the training data set, the networks are tested against

data outside of the training set, in this case using data from

5/10/2008 through 5/16/2008. Examples of this are shown in

Fig. 11-16, in which the results (and ARE) for each network

are given for a subset of the testing period.

14

--Actual Wind Speed

- - - Predicted Wind Speed

4

2

14

I

I,
12 '\

"

10

--Actual Wind Speed

- - - Predicted Wind Speed

4000 4050 4100 4150 4200 4250 4300 4350

lime Into Testing Data (minutes)

O'-_ ---.L__..L-_-----'__---'---__'-----_---.L__-'---_-----J

3950 4000 4050 4100 4150 4200 4250 4300 4350

lime Into Test ing Data (minutes)

Fig. 13. The actual performance of the best RNN network trained using

PSG, showing both actual wind speed and predicted wind speed for a period

in a dataset for a week in May, 2008.

2

1.8

1.6

1.4

Ii!
w

1.2Q)

>
~
a;
a:
Q)

'5 0.8(5

'".0
« 0.6

Fig. 14. The absolute relative error of the best RNN network trained using

PSG.
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Fig. 12. The absolute relative error of the best MLP network trained using

PSG.

Fig. 11. The actual performance of the best MLP network trained using

PSG, showing both actual wind speed and predicted wind speed for a period

in a dataset for a week in May, 2008.

0'-- --'- - - -'---- --'- - - -'-- - '-- -'-- - .1-- ----'
3950 4000 4050 4100 4150 4200 4250 4300 4350
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Fig. 15. The actual performance of the best SRN network trained using

PSG, showing both actual wind speed and predicted wind speed for a period

in a dataset for a week in May, 2008.
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Fig. 16. The absolute relative error of the best SRN network trained using

PSO.

As in the case with the training data, the data shown in

Figs. 11 , 13 and 15 show that the performance of the

feedback networks outperforms the MLP. Figs. 12, 14 and

16 show the ARE of each network.

Finally, the mean absolute relative error is given in Table

II for each of the networks for the entirety of both the

training and testing data sets.

TABLE II

MEAN ABSOLUTE RELATIVE ERROR FOR EACH DATA SET

Network Type Training Data Testing Data

MLP 0.3847 0.5038

RNN 0.3892 0.4354

SRN 0.3795 0.4544

V. CONCLUSIONS

The ability to perform short term wind speed prediction

accurately is a very useful feature for the electric power

industry. This provides wind farm operators the ability to

anticipate wind power output, and participate in the

electricity market and operation of the power network

accordingly. The results obtained in this study show that

while all neural networks investigated have the potential for

short term wind speed prediction, the best results are

generally obtained from the recurrent neural architectures,

especially on data outside the training range. However, with

this increase in accuracy comes an increase in training and

run time due to the feedback loop of these networks.

Future work involves investigating the capabilities of all

networks presented here on seasonal data. Additionally,

SRNs for medium term wind forecasting will be

investigated .
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