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[1] The spontaneously propagating shear crack on a frictional interface has proven to be a
useful idealization of a natural earthquake. The corresponding boundary value problems
are nonlinear and usually require computationally intensive numerical methods for their
solution. Assessing the convergence and accuracy of the numerical methods is
challenging, as we lack appropriate analytical solutions for comparison. As a complement
to other methods of assessment, we compare solutions obtained by two independent
numerical methods, a finite difference method and a boundary integral (BI) method. The
finite difference implementation, called DFM, uses a traction-at-split-node formulation of
the fault discontinuity. The BI implementation employs spectral representation of the
stress transfer functional. The three-dimensional (3-D) test problem involves spontaneous
rupture spreading on a planar interface governed by linear slip-weakening friction that
essentially defines a cohesive law. To get a priori understanding of the spatial resolution
that would be required in this and similar problems, we review and combine some simple
estimates of the cohesive zone sizes which correspond quite well to the sizes observed in
simulations. We have assessed agreement between the methods in terms of the RMS
differences in rupture time, final slip, and peak slip rate and related these to median and
minimum measures of the cohesive zone resolution observed in the numerical solutions.
The BI and DFM methods give virtually indistinguishable solutions to the 3-D
spontaneous rupture test problem when their grid spacing Dx is small enough so that the
solutions adequately resolve the cohesive zone, with at least three points for BI and at least
five node points for DFM. Furthermore, grid-dependent differences in the results, for each
of the two methods taken separately, decay as a power law in Dx, with the same
convergence rate for each method, the calculations apparently converging to a common,
grid interval invariant solution. This result provides strong evidence for the accuracy of
both methods. In addition, the specific solution presented here, by virtue of being
demonstrably grid-independent and consistent between two very different numerical
methods, may prove useful for testing new numerical methods for spontaneous rupture
problems.
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to three-dimensional spontaneous rupture, J. Geophys. Res., 110, B12307, doi:10.1029/2005JB003813.

1. Introduction

[2] The shear crack, propagating spontaneously under the
influence of assumed initial stresses, and sliding under a
specified friction law, is a useful, if highly simplified, model
of a natural earthquake. Even when the rupture is idealized

as a discontinuity surface embedded in an otherwise linearly
elastic continuum, the spontaneous rupture problem is
highly nonlinear. The nonlinearity is attributable to the fact
that rupture evolution and arrest are determined as part of
the problem solution, not specified a priori. That is, the
problem is a mixed boundary value problem in which the
respective (time-dependent) domains of the kinematic and
dynamic boundary conditions have to be determined as part
of the problem solution itself. There are no analytical
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solutions to problems of this class, and we must rely heavily
upon numerical solutions for insight into the behavior of
this model of the earthquake process.
[3] The challenge of validating numerical methods for the

solution of spontaneous rupture problems, in the absence of
analytical solutions for reference, was discussed by Day and
Ely [2002]. As they point out, the achievement of nearly
identical numerical results using progressively finer discreti-
zation of the domain,while important, may not be sufficient to
prove accuracy in this class of problems. Day and Ely took an
experimental approach to validation, using scale model
earthquake experiments of Brune and Anooshehpoor [1998]
to test the finite difference method of Day [1982b]. Day and
Ely’s numerical simulations of those experiments incor-
porated the geometry and experimentally measured bulk
and surface properties of the sliding blocks and then repro-
duced the timing, shape and duration of acceleration pulses
recorded adjacent to the experimental fault surface. While the
comparison provided indirect evidence about the accuracy of
the numerical procedure, it could not measure the accuracy of
the numerical method separately from adjustments to consti-
tutive parameters and other modeling considerations.
[4] In this paper, we offer another approach to assessing

the accuracy of numerical solutions. We compare 3-D
solutions obtained by two independent numerical methods,
a finite difference method and a boundary integral (BI)
method. In the absence of a strict mathematical proof that
either method converges to an exact solution for spontane-
ous rupture problems, this comparison provides validation
for both numerical approaches, because these numerical
methods have a high degree of independence. The BI
method might, in fact, be appropriately called a semian-
alytical method, because it discretizes only the fault surface
points; the reaction of the continuum to slip at those points
is represented exactly, through a closed form Green’s
function. In contrast, the finite difference method uses a
volume discretization to approximate the differential equa-
tions of motion throughout the 3-D problem domain.
Bizzarri et al. [2001] made similar comparisons of finite
difference and BI solutions to 2-D rupture problems. The
semianalytical character of the BI method restricts its
applicability to problems in which the fault surface is
embedded in a uniform infinite space, but renders it highly
efficient and accurate for solving such geometrically limited
problems and hence suitable for confirming the accuracy of
the finite difference method. The finite difference method,
while much more flexible than the BI method, is susceptible
to numerical limitations such as numerical dispersion that
do not beset the latter.

2. Theoretical Formulation

[5] We treat the problem of an isotropic, linearly elastic
infinite space containing a surface S across which the
displacement vector may have a discontinuity. The linear-
ized equations of motion for the space are

S ¼ r a2 � 2b2
� �

r � uð ÞIþ rb2 ruþ urð Þ ð1aÞ

�u ¼ r�1r � s; ð1bÞ

in which S is the stress tensor, u is the displacement vector,
a and b are the P and S wave speeds, respectively, r is
density, and I is the identity tensor.
[6] The surface S has a (continuous) unit normal vector

n̂. A discontinuity in the displacement vector is permitted
across the interface S. On S we define limiting values of
the displacement vector, u+ and u

�, by

u� x; tð Þ ¼ lim
e!0

u x� en̂ xð Þ; tð Þ ð2Þ

(in this linearized theory, we can neglect the time
dependence of n̂). We denote the discontinuity of the vector
of tangential displacement (i.e., the ‘‘slip’’) by s 
 (I � n̂n̂)
� (u+ � u

�), its time derivative (the ‘‘slip rate’’) by _s, and
their magnitudes by s and _s, respectively. The traction
vector S � n̂ is continuous across S. The shear traction
vector T is given by (I � n̂n̂) � S � n̂, and its magnitude t is
bounded above by a nonnegative frictional strength tc.
[7] We formulate the jump conditions at the interface as

tc � t � 0 ð3Þ

tc _s� T_s ¼ 0: ð4Þ

Equation (3) stipulates that the shear traction be bounded by
the (current value of) frictional strength, and equation (4)
stipulates that any nonzero velocity discontinuity be
opposed by an antiparallel traction (i.e., the negative side
exerts traction �T on the positive side) with magnitude
equal to the frictional strength tc. However, note that (4) has
been written in a form such that it remains valid when _s is
zero. In fact, when equality does not pertain in (3), (4) can
be satisfied only with _s equal to zero.
[8] The frictional strength evolves according to some

constitutive functional which may in principle depend upon
the history of the velocity discontinuity, and any number of
other mechanical or thermal quantities, but is here simpli-
fied to the well-known slip-weakening form, introduced by
Ida [1972] and Palmer and Rice [1973] by analogy to
cohesive zone models of tensile fracture. In that form, tc is
the product of compressive normal stress �sn (as sn 
 n̂ � S
� n̂ is positive in tension) and a coefficient of friction mf(‘)
that depends on the slip path length ‘ given by

R t

0
_s(t0) dt0,

tc ¼ �snmf ‘ð Þ: ð5Þ

We use the linear slip-weakening form in which mf is given
by

mf ‘ð Þ ¼
ms � ms � mdð Þ‘=d0 ‘ < d0

md ‘ � d0;

8

<

:

ð6Þ

where ms and md are coefficients of static and dynamic
friction, respectively, and d0 is the critical slip-weakening
distance [e.g., Ida, 1972; Andrews, 1976; Day, 1982b,
Madariaga et al., 1998, Dalguer et al., 2001]. In the event
that the normal stress and frictional parameters are constant
over the entire fault, as will be the case in the test problem
considered here, this idealized model results in constant
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fracture energy G with G = jsnj(ms � md)d0/2. This simple
model provides an adequate basis for testing the numerical
methods, though it may have significant shortcomings as a
model for earthquakes, in which interface frictional proper-
ties may be better represented by more complicated
relationships that account for rate and state effects [e.g.,
Dieterich, 1979; Ruina, 1983] and thermal phenomena such
as flash heating and pore pressure evolution [e.g.,
Lachenbruch, 1980; Mase and Smith, 1985, 1987; Rice,
1999]. Moreover, the energy dissipation may not be
confined mostly to the fracture surface, but rather
distributed in a damage zone of finite thickness around
the surface [e.g., Andrews, 1976, 2005; Dalguer et al.,
2003a, 2003b].
[9] Jump conditions (3)–(4), combined with the friction

law (5)–(6) and appropriate initial stress conditions on S,
provide a model of fault behavior which is complete in the
sense that no memory variables have to be specified to
explicitly track the state of rupture at each point. That is,
these conditions alone can model initial rupture (when the
initial transition from inequality to equality occurs in (3)),
arrest of sliding (when (3) undergoes a transition from
equality back to inequality), and reactivation of slip (if
condition 3 switches back again from inequality to equality).
[10] In the test problems considered here, the problem

symmetries preclude the normal stress on the fault from
fluctuating from its initial value during the rupture process.
Thus tensile motion (interface separation) does not occur. For
the sake of completeness, however, we also describe an
extension of the set of jump conditions appropriate to the
more general problem in which normal stress fluctuations are
present. In that case, the interface may undergo separation
over portions of the contact surface S if there is a transient
reduction of the compressive normal stress to zero [Day,
1991]. We denote the normal component of the displacement
discontinuity on S by Un, with jump conditions

sn � 0; ð7Þ

Un � 0; ð8Þ

snUn ¼ 0; ð9Þ

corresponding to nontensile normal stress, no interpenetra-
tion, and loss of contact only if accompanied by zero normal
stress, respectively. Again, these jump conditions are
adequate to cover multiple episodes of tensile rupture and
crack closure, without need for any memory variables to
track the state of rupture. (To model a nonzero tensile limit
smax > 0, sn is just replaced by sn � smax in conditions (7)
and (9).)

3. Finite Difference Method

[11] Several different finite difference methods have been
used to solve the spontaneous rupture problem [e.g.,
Andrews, 1976; Miyatake, 1980; Day, 1982b; Madariaga
et al., 1998]. These have been limited for the most part to
faults consisting of planar segments, although a few recent
solutions are for nonplanar faults [e.g., Cruz-Atienza and

Virieux, 2004; Kase and Day, 2004; Zhang et al., 2004]. An
important factor influencing the accuracy of these methods
is the technique used to represent the displacement discon-
tinuity and traction at the fault plane [Andrews, 1999;
Dalguer and Day, 2004]. Here we use the finite difference
method of Day [1982b], which incorporates what Andrews
[1999] has called the traction-at-split-node (TSN) method to
treat the displacement discontinuity. It has recently been
recoded for modern high-performance multiprocessor clus-
ters, using message passing (MPI) to implement concurrency
[Ely, 2001]. This version of the code is called dynamic fault
model (DFM), and here we will use that abbreviation to
refer to our implementation of the TSN finite difference
method. The same method was used in the experimental
tests of Day and Ely [2002].
[12] The DFM method approximates the displacement

field on a Cartesian, tensor product mesh; i.e., the (rectan-
gular) unit cell indexed j, k, l has dimensions Dxj, Dyk, Dzl,
where the Dxj, etc, can be assigned arbitrarily. The problem
domain is thus a rectangular prism with six boundary
surfaces. On each boundary surface, either fixed or free
conditions may be separately specified for each component
of motion. The method solves rupture problems for infinite
(or semi-infinite) domains by placing the appropriate mesh
boundaries sufficiently remote from the rupture surface that
they produce no reflections within some space-time sub-
domain of interest. The material properties of the volume
are isotropic, but may be heterogeneous. Each subvolume
may be elastic, Kelvin-Voigt viscoelastic (used principally
as a regularization device to selectively damp high-frequency
components), or elastoplastic.
[13] The spatial difference operators were constructed by

specializing trilinear elastic finite elements to the Cartesian
mesh, approximating integrals by one-point quadrature, and
diagonalizing the mass matrix (see Appendix A). The
method approximates temporal derivatives by explicit, cen-
tral differencing in time. On a uniform mesh, the method is
second-order accurate in space and time. In that case, the
differencing scheme that results from this procedure is
equivalent (away from the fault surface) to the second-order
partly staggered grid method, which has been reviewed by
Moczo et al. [2006] [see also Abramowitz and Stegun, 1964,
p. 884, formula 25.3.22].
[14] The numerical representation of the jump conditions

(3) and (4) used in Day’s [1982b] split node treatment has
been described piecemeal in other publications [Day, 1977;
Archuleta and Day, 1980] and was reviewed more system-
atically by Andrews [1999]. For completeness, and to
provide a unified exposition of the shear and tensile faulting
cases, we describe the method in detail here.
[15] Split nodes define the faults, on which all three

components of displacement (and velocity) may have dis-
continuities. Any number of faults is permitted, but each
must coincide with a coordinate plane (the faults collectively
forming a single family of parallel planes). Figure 1
illustrates the basic grid geometry.
[16] As shown in Figure 1, a given fault plane node is

split into plus-side and minus-side parts. The two halves of
a split node interact only through a traction acting on the
interface between them. To give some physical content to
our description, we lump together portions of the difference
equations into terms that can be interpreted as forces and
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inertias acting at the respective half nodes. The plus-side and
minus-side nodes then have respective massesM+ andM� (as
defined in Appendix A), and experience respective elastic
restoring forces, R+ and R� (see Appendix A). The forces
represent the stress divergence terms in the equations of
motion but are partitioned into separate contributions from
each side of the fault plane. At a particular time t, D’Alem-
bert’s principle leads to a force balance (including inertial
forces) equation for each split node. This is approximated by
central time differencing [e.g., Wood, 1990, p. 265] and
integrated to estimate the nodal velocity and displacement
components. Taking a minor liberty with notation, we use the
same symbols to represent nodal displacement in the discrete
equations as we used earlier to represent the displacement
field in the theoretical formulation of the continuum problem,
addingGreek subscripts to denoteCartesian components (x, y,
or z), Roman subscripts to indicate nodal indices on the fault
plane (whichwe take normal to the z axis), and a superscript to
distinguish the two halves of the split nodes. In this notation,
the velocity and displacement components at the split nodes,
_un
± and un

±, are

_u�n t þ Dt=2ð Þ
� �

jk
¼ _u�n t � Dt=2ð Þ
� �

jk
þ Dt M�

jk

	 
�1

� R�
n tð Þ

� �

jk
� ajk Tn tð Þ½ �jk � ajk T0

n

� �

jk

n o

u�n t þ Dtð Þ
� �

jk
¼ u�n tð Þ
� �

jk
þ Dt _u�n t þ Dt=2ð Þ

� �

jk
;

ð10Þ

where Dt is the time step, ajk is the area of the fault surface
associated with the split node jk, [Tn]jk is the fault plane
traction vector at node jk, and [Tn

0]jk is the initial equilibrium
value of [Tn]jk.
[17] Next we define (~Tn)jk as the fault plane nodal traction

components that, when introduced into (10), would enforce
continuity of tangential velocity ( _un

+ � _un
� = 0 for n equal to

x and y) and continuity of normal displacement (uz
+ � uz

� =
0). The resulting expression (suppressing the node indices
jk) is

~Tn 

Dt�1MþM� _uþn � _u�n

� �

þM�Rþ
n �MþR�

n

a Mþ þM�ð Þ þ T0
n ; n ¼ x; y;

~Tn 

Dt�1MþM� _uþn � _u�n

� �

þ Dt�1 uþn � u�n
� �� �

þM�Rþ
n �MþR�

n

a Mþ þM�ð Þ
þ T0

n ; n ¼ z; ð11Þ

where the velocities are evaluated at t � Dt/2, and the
nodal tractions, restoring forces and displacements at t.
All quantities in (11) except Dt have an implied
dependence on the node indices. All jump conditions
on the fault are then satisfied if the fault plane traction Tn
of equation (10) is

Tn ¼

~Tn n ¼ x; y; ~T x

� �2þ ~T y

� �2
h i1=2

� tc;

tc
~Tn

~T x

� �2þ ~T y

� �2
h i1=2

n ¼ x; y; ~T x

� �2þ ~T y

� �2
h i1=2

> tc;

~Tn n ¼ z; ~Tz � 0;

0 n ¼ z; ~Tz � 0;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð12Þ

with all quantities in (12) evaluated at time t. By
substitution of (12) into (10), it can be verified that the
first two equalities of equation (12) enforce the shear
jump conditions on the fault, conditions (3) and (4), in
the discrete form

tc tð Þ � T2
x tð Þ þ T2

y tð Þ
h i1=2

� 0; ð13Þ

tc tð Þ _uþn t þ Dt=2ð Þ � _u�n t þ Dt=2ð Þ
� �

¼ Tn tð Þf _uþx t þ Dt=2ð Þ � _u�x t þ Dt=2ð Þ
� �2

þ _uþy t þ Dt=2ð Þ � _u�y t þ Dt=2ð Þ
h i2

g1=2; n ¼ x; y: ð14Þ

Note that the parallelism condition (14) has a Dt/2 time
shift between traction and velocity. We use this form,
rather than the more obvious alternative of enforcing this
condition with the slip velocity averaged over times t �
Dt/2 and t + Dt/2, because the latter occasionally results
in spurious oscillations in rake direction near the time of
rupture arrest. Likewise, the last two equalities of (12)

Figure 1. Split node geometry of DFM, illustrated for two
cubic unit cells. Mass (M±) is split, and separate elastic
restoring forces (Rn

±) act on the two halves. The two halves
of a split node interact only through shear and normal
tractions (Tv) at the interface.
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enforce the jump conditions for the normal components
on the fault, conditions (7) to (9), in the discrete form

Tz tð Þ � 0; ð15Þ

uþz tð Þ � u�z tð Þ � 0; ð16Þ

Tz tð Þ uþz t þ Dtð Þ � uþz t þ Dtð Þ
� �

¼ 0: ð17Þ

[18] Note that (12), combined with suitable initial con-
ditions and the constitutive equations for tc, governs fault
behavior (at a given point jk) at all times, including
prerupture, initial rupture, arrest of sliding, and possible
subsequent episodes of reactivation and arrest. With the
above formulation, it is unnecessary to test for these con-
ditions nor to construct separate fault plane equations for
these different conditions.

4. Boundary Integral Method

[19] Boundary integral (BI) methods have been widely
used to investigate spontaneous propagation of cracks in
elastic media [e.g., Das, 1980; Andrews, 1985; Das and
Kostrov, 1988; Cochard and Madariaga, 1994; Perrin et
al., 1995; Geubelle and Rice, 1995; Ben-Zion and Rice,
1997; Kame and Yamashita, 1999; Aochi et al., 2000;
Lapusta et al., 2000; Lapusta and Rice, 2003]. The main
idea of BI methods is to confine the numerical consideration
to the crack path, by expressing the elastodynamic response
of the surrounding elastic media in terms of integral
relationships between displacement discontinuities and
tractions along the path. These relationships involve con-
volutions in space and time of either displacement disconti-
nuities and their histories or tractions and their histories.
Such an approach eliminates the necessity to simulate wave
propagation through elastic media, because that wave prop-
agation is accounted for by the convolutions. The trick is
then to determine the appropriate convolution kernels,
which is possible to do analytically only for the simplest
situations such as crack propagation in an infinite, uniform
elastic solid. Mostly, crack propagation along planar inter-
faces has been studied. Recently, advances have been made
in using BI methods to simulate crack propagation along a
self-chosen path [e.g., Kame and Yamashita, 1999], along a
network of planar paths [e.g., Aochi et al., 2000], and along
a planar path embedded in a half-space [e.g., Chen and
Zhang, 2004]. More complicated problems (such as a
layered elastic medium, etc.) may be possible to consider
by precalculating convolution kernels numerically as briefly
discussed by Lapusta et al. [2000], but to our knowledge
this has not yet been implemented.
[20] The test problem we consider in this work involves a

planar interface in an infinite uniform elastic medium. The
boundary integral methods are highly efficient for such
problems and show good convergence with increasing
numerical resolution. Unlike for DFM, the challenge is
not in simulating the wave propagation directly, but rather
in computing the convolution integrals involved.
[21] We employ the spectral formulation of the boundary

integral method for planar interfaces pioneered by Perrin et

al. [1995] for two-dimensional antiplane problems and
extended by Geubelle and Rice [1995] to three-dimensional
fracture problems. The three-dimensional formulation
allows for displacement discontinuities that are both normal
(opening) and tangential (slip) to the crack interface.
Geubelle and Rice [1995] applied the formulation to nu-
merical simulations of tensile cracking. Here we adopt the
formulation for the shear case, with slip only and no
opening. Hence the displacements normal to the interface
are continuous in our case.
[22] The tractions, tn (x, y, t) = szn (x, y, 0, t), n = x, y, z on

the planar interface z = 0 are expressed as the sum of the
‘‘loading’’ tractions tn

0 (x, y, t) that would act on the
interface in the absence of any displacement discontinuity
on that interface plus additional terms due to time-
dependent relative slip (or tangential displacement disconti-
nuities sn(x, y, t)) on the interface, in the form

tn x; y; tð Þ ¼ t0n x; y; tð Þ þ fn x; y; tð Þ � m

2b
_sn x; y; tð Þ; n ¼ x; y

ð18aÞ

tz x; y; tð Þ ¼ szz x; y; 0; tð Þ ¼ t0z x; y; tð Þ: ð18bÞ

In (18a), fn (x, y, t) are functionals of tangential displace-
ment discontinuities; these stress transfer functionals
incorporate much of the elastodynamic response and
involve convolution integrals. The last term on the right
of (18a), �(m/2b) _sn(x, y, t), where m is the shear modulus
and b is the shear wave speed, is separated to reduce the
singularity of the convolution integrals [Cochard and
Madariaga, 1994]; _sn(x, y, t), as before, denote the time
derivatives of the tangential displacement discontinuities.
Equation (18b) reflects the elastodynamic fact that tangen-
tial displacement discontinuities (or slips) on a planar
interface between identical elastic solids do not alter the
stress normal to the interface, and hence the time
dependence of normal stress in the shear case can be
imposed only externally (through dynamic loading, for
example). The normal stress would be altered by the
displacement discontinuity normal to the interface, by
nonplanarity of the sliding surface, or by sliding on a
planar interface between dissimilar elastic solids. However,
we do not consider any of those cases here.
[23] The loading tractions tn

0(x, y, t) are the stresses that
would result along the interface due to external loading if
the interface were restricted against any slip. Hence they
need to be computed from the prescribed loading before
the formulation (18) can be applied. In the test cases
considered here, the tractions before the sliding starts are
given and there is no additional loading, and hence tn

0(x,
y, t) are just equal to the initial tractions prescribed. To
study earthquake problems in general, one can assume
some (simplified) loading scenarios, for example, one in
which, tn

0(x, y, t), n = x, y, grow with time in a prescribed
manner.
[24] The method is called ‘‘spectral’’ because it relates the

functionals fn(x, y, t), n = x, y, to displacement disconti-
nuities sn(x, y, t) in the Fourier domain. For our numerical
implementation, we represent the displacement discontinu-
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ities and stress transfer functionals by their truncated Four-
ier series. The interface is discretized into rectangular
elements, with Ln (even) being the number of elements in
the n direction, and we write

sn x; y; tð Þ ¼
X

Lx=2

k¼�Lx=2

X

Ly=2

m¼�Ly=2

Sn t; k;mð Þ exp 2pi kx=lx þ my=ly

� �� �

fn x; y; tð Þ ¼
X

Lx=2

k¼�Lx=2

X

Ly=2

m¼�Ly=2

Fn t; k;mð Þ exp 2pi kx=lx þ my=ly

� �� �

;

n ¼ x; y:

ð19Þ

In (19), lx and ly are the dimensions of the interface region
simulated, replicated periodically. The periods lx and ly
have to be chosen larger than the domain over which the
rupture propagation takes place, to assure that the influence
of waves arriving from the periodic replicates of the rupture
process is negligible. Let us denote the wave vectors of
Fourier components by q = (k̂, m̂), with

k̂ ¼ 2pk=lx; m̂ ¼ 2pm=ly; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̂2 þ m̂2

q

: ð20Þ

The Fourier coefficients Fn(t; k, m) of the functionals and
Sn(t; k, m) of the displacement discontinuities are then
related by

Fx t; k;mð Þ

Fy t; k;mð Þ

8

<

:

9

=

;

¼ m

2q

k̂2 m̂k̂

m̂k̂ m̂2

2

4

3

5

Z

t

0

CII qbt
0ð Þ

Sx t � t0; k;mð Þ

Sy t � t0; k;mð Þ

8

<

:

9

=

;

qbdt0

� m

2q

m̂2 �m̂k̂

�m̂k̂ k̂2

2

4

3

5

Z

t

0

CIII qbt
0ð Þ

Sx t � t0; k;mð Þ

Sy t � t0; k;mð Þ

8

<

:

9

=

;

qbdt0;

ð21Þ

where CII and CIII are convolution kernels that correspond
to modes II and III of the standard deformation decom-
position in fracture mechanics. Equation (21) assumes that
there are no displacement discontinuities before t = 0. The
convolution kernels are

CII Tð Þ ¼ J1 Tð Þ=T þ 4T W
a

b
T

� �

�W Tð Þ
� �

� 4
b

a
Jo

a

b
T

� �

þ 3Jo Tð Þ;

CIII Tð Þ ¼ J1 Tð Þ=T ; W Tð Þ ¼
Z

1

T

J1 xð Þ
x

dx ¼ 1�
Z

T

0

J1 xð Þ
x

dx:

ð22Þ

In equations (22), J0(T) and J1(T) denote Bessel functions.
[25] The formulation that involves expressions (21) is

referred to as ‘‘displacement’’ formulation, because the
convolutions in (21) are done on the histories of Fourier
coefficients of displacement discontinuities. To separate the

static (long-term) and transient dynamic responses, the
integrals in (21) can be integrated by parts to obtain

Fx t; k;mð Þ

Fy t; k;mð Þ

8

<

:

9

=

;

¼ � m

2q

k̂2 m̂k̂

m̂k̂ m̂2

2

4

3

5

�

2 1� b2

a2

� � Sx t; k;mð Þ

Sy t; k;mð Þ

8

<

:

9

=

;

�
Z

t

0

KII qbt
0ð Þ

_Sx t � t0; k;mð Þ

_Sy t � t0; k;mð Þ

8

<

:

9

=

;

dt0
�

� m

2q

m̂2 �m̂k̂

�m̂k̂ k̂2

2

4

3

5

� Sx t; k;mð Þ

Sy t; k;mð Þ

8

<

:

9

=

;

�
Z

t

0

KIII qbt
0ð Þ

_Sx t � t0; k;mð Þ
_Sy t � t0; k;mð Þ

�  

dt0
�

;

KII Tð Þ ¼
Z

1

T

CII xð Þdx ¼ 2 1� b2

a2

� �

�
Z

T

0

CII xð Þdx;

KIII Tð Þ ¼
Z

1

T

CIII xð Þdx ¼ 1�
Z

T

0

CIII xð Þdx:

ð23Þ

In this work, we use the formulation (18), (19), (22), (23),
which is called the ‘‘velocity’’ formulation [Perrin et al.,
1995].
[26] The spectral BI formulation has several advantages

over the purely space-time formulation. In the latter, stress
transfer functionals fn(x, y, t) are written as integrals on both
space and time, because the tractions at a particular location
on the interface depend on the slip information within the
relevant space-time cone determined by the speed of the
propagation of elastic waves. Hence, in the discretized
space-time formulation, the value of the stress transfer
functional for each cell would be determined by the histo-
ries of displacement discontinuities for all relevant cells. In
the spectral formulation, the Fourier coefficients of the
functionals corresponding to the wave vector q depend only
on the Fourier coefficients of the displacement discontinuity
corresponding to the same vector q, as can be seen in (21) or
(23). Hence the space-related integration is eliminated at the
cost of introducing Fourier transforms. However, Fourier
transforms take less computational time than space integra-
tion, even when the necessity to simulate larger domains is
taken into consideration, as discussed by Lapusta et al.
[2000] for a two-dimensional case. Another advantage is
having the transient elastodynamic response separated into
Fourier modes. The convolution kernels in (23) are oscil-
lating with decaying amplitude and hence at large enough
times the convolutions can be truncated. In addition, the
arguments of the kernels contain the magnitude of the wave
vector, which is larger for higher modes. Hence the convo-
lution for the higher modes can be truncated sooner than for
the lower modes, and such mode-dependent truncation can
save a lot of computational time, as discussed by Lapusta et
al. [2000] for a 2-D case. Moreover, such mode-dependent
truncation may serve as means to suppress numerical high-
frequency noise, although this has not yet been studied
systematically. Note that separation of the response into the
static part (involving the current values of displacement
discontinuities) and the dynamic part (involving convolu-
tion integrals on velocity discontinuities) as accomplished
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by (23) ensures that regardless of how the convolutions are
truncated, the final static stress response is fully accounted
for. Even though justifiable truncation produces results very
close to those obtained with no truncation, we do not use
truncation in this work, to ensure that the comparison with
DFM is not complicated by the (minor) effects of the
truncation.
[27] The solution is obtained by making the tractions (18)

on the interface agree with the jump conditions (3)–(4) that
involve the frictional strength (5)–(6). The shear traction
vector T and the compressive normal stress sn that enter
(3)–(6) are given in terms of tractions tn(x, y, t) by

T ¼ tx; ty
� �

; t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2x þ t2y

q

; sn ¼ tz: ð24Þ

The details of the solution procedure are given in
Appendix B.

5. Test Problem

[28] Our numerical test entails solving the spontaneous
rupture problem for a planar fault embedded in a uniform
infinite elastic isotropic space. The formulation and param-
eters of the test case correspond to Version 3 of the Southern
California Earthquake Center (SCEC) benchmark problem
developed for the second SCEC Spontaneous Rupture
Code-Validation Workshop of 2004 [Harris et al., 2004].

The problem geometry is shown in Figure 2. This test
problem, because it is restricted to a uniform unbounded
elastic medium, can be solved by the BI method, as well as
by the DFM method (with a sufficiently large grid to avoid
spurious boundary reflections). We take the fault plane to be
the xy plane. The shear prestress is aligned with the x axis,
and the origin of the coordinate system is located in the
middle of the fault, as shown in Figure 2. The fault and
prestress geometries are such that the x and y axes are axes
of symmetry (or antisymmetry) for the fault slip and traction
components. As a result, the xz plane undergoes purely in-
plane motion, and the yz plane purely antiplane motion.
[29] Rupture is allowed within a fault area 30 km in the x

direction and 15 km in the y direction. A homogeneous
medium is assumed, with a P wave velocity of 6 km/s, S
wave velocity of 3464 m/s, and density of 2670 kg/m3. The
distributions of the initial stresses and frictional parameters
on the fault are specified in Table 1. The nucleation occurs
in 3 km � 3 km square area that is centered on the fault, as
shown in Figure 2. The rupture initiates because the initial
shear stress in the nucleation patch is set to be slightly
(0.44%) higher than the initial static yield stress in that
patch. Then the rupture propagates spontaneously through
the fault area, following the linear slip-weakening fracture
criterion (5)–(6). The rupture cannot propagate beyond the
30 km � 15 km region due to the high static frictional
strength set outside the region, and the region boundaries
send arrest waves that ultimately stop the rupture. The
duration of the simulation until the full arrest of the slip is
about 12 s.
[30] We computed seven DFM solutions and eight BI

solutions to the test problem, with grid intervals and time
steps shown in Table 2. All DFM solutions use a uniform,
cubic mesh. Grid intervals for the DFM solutions range
from 0.05 km to 0.3 km. The smallest grid interval was Dx =
0.05 km (with time step 0.005 s), and the corresponding
solution is denoted DFM0.05. The other DFM solutions are
given similar designations, for example, the case Dx =
0.1 km (with time step 0.008) is denoted DFM0.1. BI
solutions use grid sizes Dx ranging from 0.1 km (with time
step 0.00962 s) to 0.75 km, with a naming convention
analogous to that used for the DFM solutions. Although our
principal objective is to compare the DFM and BI solutions,
comparison of the various DFM (or BI) solutions with each
other is also informative, in that it helps establish the degree
to which grid size invariance has been achieved in the
numerical solutions. The DFM and BI calculations were
done independently, initially as a part of a blind test of

Figure 2. Fault model [from Harris et al., 2004] for
testing dynamic rupture simulations. The square in the
center is the nucleation area. The triangles are the receivers
at which we compare time histories of slip, slip rate, and
shear stress. Relative to an origin at the center of the fault,
the receiver PI has y coordinate 0 and x coordinate 7.5 km,
and the receiver PA has x coordinate 0 and y coordinate
6.0 km. The stress parameters are specified in Table 1.

Table 1. Stress and Frictional Parameters for Test Problem

Parameters

Within Fault Area of 30 km � 15 km Outside Fault
AreaNucleation Outside Nucleation

Initial shear stress t0, MPa 81.6 70.0 70.0
Initial normal stress �sn, MPa 120.0 120.0 120.0
Static friction coefficient ms 0.677 0.677 infinite
Dynamic friction coefficient md 0.525 0.525 0.525
Static yielding stress ts = �mssn, MPa 81.24 81.24 infinite
Dynamic yielding stress td = �mdsn, MPa 63.0 63.0 63.0
Dynamic stress drop Dt = t0 � td, MPa 18.6 7.0 7.0
Strength excess ts � t0, MPa �0.36 11.24 infinite
Critical slip distance d0, m 0.40 0.40 0.40
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spontaneous rupture algorithms coordinated by SCEC
[Harris et al., 2004].

6. Cohesive Zone and Constraints on
Discretization

[31] An important dimensionless measure of the resolu-
tion of numerical methods is the ratio Nc of the size (also
called width or length) L of the cohesive (or slip weaken-
ing) zone to the grid spacing Dx, i.e., the number of fault
plane node points (measured in the direction of rupture
propagation) defining the cohesive zone:

Nc ¼ L=Dx: ð25Þ

The cohesive zone is the portion of the fault plane behind
the crack tip where the shear stress decreases from its static
value to its dynamic value and slip path length ‘ satisfies 0 <
‘ < d0 [e.g., Ida, 1972]. In the cohesive zone, shear stress
and slip rate vary significantly, and proper numerical
resolution of those changes is crucial for capturing the
maximum slip rates and the rupture propagation speeds.
[32] Here we review some concepts of linear fracture

mechanics and simple estimates for the cohesive zone size
in two-dimensional cases of mode II and mode III, follow-
ing and combining results by Palmer and Rice [1973]
Andrews [1976, 2004], Rice [1980], and Freund [1989].
Note that while the rupture considered here is three-dimen-
sional, it proceeds in mode II or in-plane mode along the x
axis and in mode III or antiplane mode along the y axis of
the fault plane. Following standard treatment in fracture
mechanics, we consider a planar semi-infinite crack with
constant shear traction td = �snmd everywhere on the crack
surfaces except for the cohesive zone 0 < x < L behind the
crack tip (given by x = 0), where the shear traction t(x)
varies from the peak shear stress ts = �snms to td. While
our crack is not semi-infinite, this is a good approximation
for the region near the crack tip. Let us assume that the
cohesive zone width is small enough relative to the overall
rupture size that we can employ the small-scale yielding
limit of fracture mechanics [Rice, 1968]. In that limit, the
stress field that surrounds the cohesive zone is assumed to
be dominated by the singular part of the crack field,
characterized by the stress intensity factor K, which is either

KII for mode II or KIII for mode III. Finally, we consider the
crack propagation to be steady, with the constant crack (or
rupture) speed �. The results obtained with the assumptions
of steady rupture should still be reasonably accurate for the
unsteady case, provided that the crack speed does not
change significantly over propagation distances comparable
to the cohesive zone length or several times that [Freund,
1989]. In the following, we use subscripts II or III to
indicate that the quantity is related to mode II or III; the
same quantities with no subscript participate in expressions
valid for both mode II and III.
[33] The balance of the energy release rate G and fracture

energy G at the crack tip can be written as [e.g., Freund,
1989]

G 
 A �ð ÞK2= 2m*ð Þ ¼ G; ð26Þ

where m*III = m, m*II = m/(1 � n), m is the shear modulus, n is
the Poisson’s ratio, G is the fracture energy, and functions
A(�) are known dimensionless functions of crack tip speed
� [i.e., Freund, 1989]. The fracture energy G is given by the
cohesive zone law; in our case,

G ¼ do ts � tdð Þ=2: ð27Þ

Since the cohesive zone presence eliminates the singularity
at the crack tip, K and t(x) must be related by [e.g., Rice,
1980; Freund, 1989]

K ¼
ffiffiffi

2

p

r

Z

L

0

t xð Þ � td
ffiffiffi

x
p dx: ð28Þ

[34] A useful estimate of the cohesive zone size can be
derived from (26)–(28) if we assume that the traction
distribution within the cohesive zone is a function only of
x/L, i.e.,

t xð Þ ¼ ts � ts � tdð Þf x=Lð Þ; f 0ð Þ ¼ 0; f 1ð Þ ¼ 1: ð29aÞ

Then from (28), the cohesive zone width L can be
expressed as

L ¼ C1

K2

ts � tdð Þ2
; C1 ¼

ffiffiffi

2

p

r

Z

1

0

1� f Vð Þ
ffiffi

V
p dV: ð29bÞ

To estimate the constant C1, we assume that the traction
distribution within the cohesive zone is linear, i.e., t(x) =
ts � (ts � td)x/L, in which case C1 = 9p/32. Note that
our cohesive relation comes from friction laws (5)–(6),
and the shear tractions are given as a linear function of
slip-path length ‘, not space variable x. However,
simulations show that this is a good assumption, as
shear tractions within the cohesive zone are approxi-
mately linear with x. Determining K2 from (26)–(27) and
substituting into (29b), we obtain

L ¼ LoA
�1 �ð Þ; Lo ¼ C1

m�do
ts � tdð Þ ; ð30aÞ

Table 2. Test Problem Calculations

Calculation
Name

Solution
Method

Spatial Step
Dx, km

Time Step
Dt, s

Median
Resolution

�N c

Minimum
Resolution

Nc
min

BI0.1 BI 0.1 0.00962 4.4 3.3
BI0.15 BI 0.15 0.01443 2.9 2.2
BI0.2 BI 0.2 0.01924 2.2 1.6
BI0.25 BI 0.25 0.02406 1.7 1.3
BI0.3 BI 0.3 0.02887 1.5 1.1
BI0.5 BI 0.5 0.04811 0.9 0.65
BI0.6 BI 0.6 0.05774 0.7 0.54
BI0.75 BI 0.75 0.07217 0.6 0.43
DFM0.05 DFM 0.05 0.005 8.7 6.5
DFM0.075 DFM 0.075 0.00625 5.8 4.3
DFM0.1 DFM 0.1 0.008 4.4 3.3
DFM0.15 DFM 0.15 0.0125 2.9 2.2
DFM0.2 DFM 0.2 0.016 2.2 1.6
DFM0.25 DFM 0.25 0.015 1.7 1.3
DFM0.3 DFM 0.3 0.020 1.5 1.1
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where

mIII* ¼ m; mII* ¼ m= 1� nð Þ; A�1
III ¼ 1� �2=b2

� �1=2
;

A�1
II ¼ 1� nð Þb2D

�2 1� �2=b2
� �1=2

;

D ¼ 4 1� �2=b2
� �1=2

1� �2=b2
� �1=2� 2� �2=b2

� �2
;

C1 ¼ 9p=32 for linear t xð Þ: ð30bÞ

In (30a), since A�1 (0+) = 1, Lo denotes the cohesive
zone size that the crack has when its speed is � = 0+ (the
crack is barely moving). A�1(�) are decreasing functions
of the rupture speed v, and A�1(�) ! 0 as � ! cR
(Rayleigh wave speed) for mode II or � ! b (shear wave
speed) for mode III. Hence we see that as the crack
velocity increases, the cohesive zone undergoes Lorentz
contraction in the direction of rupture propagation, its
width collapsing as A�1 (�) given in (30b).
[35] Lo provides a convenient upper bound for the

cohesive zone size (it is an upper bound in the sense that
any nonzero rupture speed would shrink this zone even
further as predicted by (30a)). The expression for Lo with
C1 = 9p/32 was originally derived by Palmer and Rice
[1973] and then discussed by Rice [1980]. In numerical
simulations, one should definitely resolve Lo with more
than one spatial element, as we discuss further at the end of
this section.
[36] To come up with an estimate for the cohesive zone

size L that accounts also for the effect of rupture speeds and
their change with the propagation distance, we need to make
some reasonable assumptions about the development of the
stress intensity factor K as the rupture propagates. We can
then use (26) to estimate the rupture speeds �, and
corresponding contraction factor A�1(�), that would result
from such K. Under a wide range of conditions [e.g.,
Freund, 1989; Broberg, 1999], K can be factored as

K ¼ k �ð ÞKref ; ð31Þ

where k(�) are known dimensionless functions of the
rupture speed and Kref is the equilibrium stress intensity
factor that depends on the given applied loading and
characteristic crack dimension but is independent of the
rupture speed. Note that (31) is derived for a semi-infinite
crack propagating in an infinite medium and does not
account for effects of boundaries or finite crack size. For
example, in the case of a finite crack, the stress field of
the opposite crack tip influences K, so its precise value
depends upon the past history of rupture. We neglect this
memory and other potential effects, and consider the case
in which Kref is only determined by stress released on the
fault, given by the stress drop Dt = to � td, and the
length of the rupture 2L. The dimensional considerations
dictate the form

Kref ¼ C2L
1=2Dt; ð32Þ

where C2 is a constant of order 1. For the case of a static
mode II or mode III crack of length 2L embedded in an
infinite elastic medium, C2 =

ffiffiffi

p
p

.

[37] Now we can substitute the assumed stress intensity
factor (31)–(32) into the crack tip energy balance (26)–(27)
and then solve the resulting equation for the crack speed �
and hence the Lorentz contraction factor A�1(�). This is
possible to do analytically only for the mode III case. The
result is

A�1
III �ð Þ ¼ 1� �2=b2

� �1=2¼ 2L0=L

1þ L0=Lð Þ2
; ð33Þ

where 2Lo is the size of the crack when � = 0+ or 2Lo is the
critical crack length, given by

L0 ¼
md0 ts � tdð Þ
C2
2 to � tdð Þ2

¼ md0 S þ 1ð Þ
C2
2Dt

: ð34Þ

In (34), S = (ts � to)/Dt is the dimensionless strength
parameter [Das and Aki, 1977], Dt = to � td, and, for a
static mode II or mode III crack, C2

2 = p. For the parameters
of the test problem, 2Lo � 3 km which motivates the 3-km
choice for nucleation region size in the test problem. Note
that the nucleation region is overstressed which ensures that
slip there starts right away.
[38] We can combine these results in two ways. First,

substituting the Lorentz factor (33) into the cohesive zone
expression (30), we obtain

L ¼ Lo

2L0=L

1þ L0=Lð Þ2
; ð35Þ

which shows how the zero-speed cohesive zone size Lo

decreases as the rupture lengthens (or propagates). Ad-
ditionally, by writing out explicitly Lo and L0 in the
numerator of (35), we get

L ¼ C1

C2
2

md0

Dt

� �2
1

1þ L20=L
2

� �

L�1: ð36Þ

In (36), the only dependence upon the relative strength
factor S is contained in the critical crack half-length L0. For
crack sizes L large compared to the critical crack size L0, we
get

L ¼ C1

C2
2

md0

Dt

� �2

L�1; L � Lo; ð37Þ

where on the basis of the values of C1 and C2 introduced
above, C1/C2

2 = 9/16. Note that under the assumptions made,
the cohesive zone size L is independent of (ts � td) and
hence, for a given Dt, of the relative strength factor S.
Physically, the absence of strong dependence on (ts � td)
arises from the following trade-off: reducing (ts � td)
increases the zero-speed cohesive zone length Lo (equation
(30)), but it also increases the rupture velocity occurring at a
given rupture distance L, producing a compensating
Lorentz contraction (equations (33) and (34)). Note also
that the cohesive zone size is inversely proportional to the
crack half-length L. For L � Lo, the crack half-length L
would be approximately equal to the propagation
distance. The functional form (37) is identical to
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Andrews’ [1976, 2004, 2005] estimate obtained by
somewhat different considerations.
[39] Hence we have at least two ways to estimate the

cohesive zone size and calibrate numerical resolution: the
zero-speed cohesive zone size Lo given by (30) and
the approximate solution (37) for L at large propagation
distances. The two estimates are complementary. The Lo

estimate shows that regardless of the background stress or
rupture propagation distances, the numerical resolution is
already constrained by the choice of the frictional parame-
ters and elastic bulk properties. For the parameters used in
our test problem and C1 = 9p/32, we find

LIIIo ¼ 620 m; LIIo ¼ 827 m; ð38Þ

where LIIo and LIIIo refer to the values for mode II and
mode III, respectively. Since we need several spatial nodes
within Lo to accommodate the Lorentz contraction, these
estimates already indicate that good spatial resolution of our
problem would involve grid sizes of order 100 m or smaller.
The L estimate attempts to incorporate the background
stress level (through the stress drop Dt) and the reduction of
the cohesive zone due to the increasing crack speed � for
large propagation distances L. Using expression (37) with
the maximum antiplane propagation distance L = 7.5 km
and C1/C2

2 = 9/16, we obtain

Lest
IIImin ¼ 251 m: ð39aÞ

For mode II, we cannot derive an analytical formula like
(37), but we can perform the procedure numerically. For a
given L, we compute K from (31)–(32) and substitute it into
the crack tip balance (26). This results in an equation with
respect to the crack speed � which can be solved
numerically. Then we use that � to find L from (30a).
Taking L = 15 km, the largest propagation distance in the in-
plane direction, we get

Lest
IImin ¼ 190 m: ð39bÞ

[40] Both the Lo estimate from (30) and the L estimate
(37) should give good initial guidance as to what kind of
spatial resolution will be needed in dynamic rupture prop-
agation problems. However, one should not expect a perfect
quantitative agreement, as the estimates are derived with a
number of simplifying assumptions. For example, we use
the small-scale yielding assumption, the validity of which in
any real situation would be only approximate. In addition,
the most uncertain part of the L estimate is the set of
assumptions made about the stress intensity factor. Finally,
crack problems usually have features not considered in this
analysis. For example, our test problem is three-dimensional,
and the crack is initiated rather abruptly, by overstressing a
region in the middle of the fault, which would certainly affect
its development.
[41] Still, both estimates (38) and (39) compare very well,

in the qualitative sense, with the actual results of our
computation. Figure 3 shows the cohesive zone develop-
ment in both antiplane and in-plane directions. For measur-
ing L, we define the leading edge of the cohesive zone as
the spatial grid point at which the shear traction reaches ts,
and include in the cohesive zone the interval over which the
shear traction decreases to td. The comparison between the
estimates and the observed values makes sense only well
outside the nucleation zone, which is artificially over-
stressed (to > ts). We see that right outside the nucleation
zone, the cohesive zone abruptly narrows and then starts to
expand. These features are clearly due to the overstressed
nucleation. The smallest size of the cohesive zone right after
nucleation is 300 m and it is in the antiplane direction (all
values reported in this section are based on the BI0.1
solution). Some time later the maximum sizes LIIImax in
the antiplane direction and LIImax in the in-plane direction
are reached:

LIIImax ¼ 460 m; LIImax ¼ 560 m: ð40Þ

After these nucleation-dominated effects, the cohesive zone
progressively decreases, consistently with the theoretical
developments above, reaching its subsequent smallest
values at the ends of the fault:

LIIImin ¼ 350 m; LIImin ¼ 325 m: ð41Þ

Hence we see that the Lo estimate (38) gives a very close
upper bound to all cohesive zone sizes observed in our
simulation. Moreover, the BI simulation with the spatial
resolution Dx = 1 km, which is just slightly larger than both
LIIIo = 620 m and LIIo = 827 m, results in very oscillatory
behavior that makes the rupture arrest right after leaving the
nucleation patch (that is why we do not include this run in
our comparison and Table 2) while the BI simulation with
Dx = 0.75 km, which resolves Lo with about one cell size,
still results in the rupture spreading throughout the fault,
even though the results are not very accurate compared with
our best resolved and convergent solutions. Hence resolving
Lo is absolutely critical, and of course more than one cell is
required for good results as discussed in the next section.
Notice also that LIIIo /LIIo = 3/4 = 1/(1 � n) (where n = 0.25
is the Poisson’s ratio), which predicts that for the same
propagation distances, the cohesive zone sizes in the

Figure 3. Cohesive zone during rupture, along both in-
plane and antiplane directions for BI0.1 (dashed curve),
DFM0.1 (dash-dotted curve), and DFM0.05 (solid curve)
solutions.
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antiplane direction should be smaller than the cohesive zone
sizes in the in-plane direction, exactly what we observe.
However, the in-plane direction has a longer extent and
ultimately results in a smaller cohesive zone at the end of
the fault, as values (41) show. This is predicted by the
estimates of Lmin given in (39). The estimates of Lmin are
smaller than the actual values by a factor of about 1.5
(which is a constant of order 1), which we consider a very
good qualitative agreement.
[42] We conclude that one can use estimates (30) and (37)

very effectively to approximately determine cohesive zone
sizes that would occur in a spontaneous rupture simulation.
As we describe further in the following sections, proper
resolution of the cohesive zone sizes is crucial for obtaining
convergent numerical results.
[43] To quantify our resolution, we need to report the

number of spatial elements or grid points we have within the
cohesive zone, given by the parameter Nc = L/Dx defined in
(25). However, the cohesive zone size changes as the crack
propagates, and hence Nc is not a single number but rather a
variable quantity. In the next section, where we calculate
some global metrics of the numerical solutions to charac-
terize their differences, it will be convenient to have a
corresponding index characterizing globally the level of

cohesive zone resolution attained in a given numerical
solution. Hence we define a resolution index �N c based on
the median value of Nc obtained in the BI0.1 solution in the
in-plane direction (because the in-plane direction is longer
and hence likely to be representative of more points on the
fault). We will also report Nc

min, the minimum of Nc in the
in-plane direction, as that value represents the worst local
resolution achieved. Taking the spatial values in km con-
sistently with the definition of grid sizes in Table 2, we get

N c ¼ LII=Dx; Nmin
c ¼ LIImin=Dx; ð42Þ

where LII = 0.44 km and LIImin = 0.33 km are, respectively,
the median and minimum cohesive zone sizes we observe in
our simulations in the in-plane direction. Values of N c and
Nc
min are reported in Table 2.

7. Comparison of Numerical Results

[44] We compare results in two stages. First, we quantify
the differences in the DFM and BI solutions, respectively, as
the grid interval Dx is varied. Then we focus on quantitative
and qualitative comparisons of three relatively high-resolu-
tion solutions, DFM0.05, DFM0.1, and BI0.1.

7.1. Grid Dependence of Solutions

[45] For the spontaneous rupture problem, the rupture
arrival time (referred to as ‘‘rupture time’’ in the following)
is a rather sensitive indicator of numerical precision. This
sensitivity reflects the nonlinearity of the problem: Since
rupture can only occur after the shear stress reaches a
threshold value, relatively small inaccuracies in the calcu-
lated stress field can be expected to very significantly affect
the timing of rupture breakout from the nucleation zone as
well as the subsequent rupture velocity. If the rupture times
are captured well, so is the rupture tip speed (or crack
speed), and the rupture speed is one of the factors that
influence seismic signals most. Plus, higher rupture speeds
are linked to higher maximum slip rates, and hence accurate
rupture times mean that the slip rates are also captured
reasonably well. Therefore we have used rupture time
differences as a primary means to quantify differences
between solutions, with rupture time of a point on the
interface defined here as the time at which the slip rate at
that point first exceeds 1.0 mm/s.
[46] The rupture time comparisons are summarized in

Figure 4. Note that the abscissa is denoted in two different
ways on Figure 4. On the bottom, the grid size is given. On
the top, we show the corresponding median cohesive zone
resolution parameter Nc given by (42).
[47] Using DFM0.05 as a reference, solid circles in

Figure 4 show rupture time difference as a function of grid
interval for the DFM calculations. The quantity plotted is
the root mean square (RMS) difference of rupture times
relative to DFM0.05, with the average taken over all fault
plane nodes outside the nucleation patch; the result is then
expressed as a percentage of the mean rupture time in
DFM0.05. The RMS differences for DFM calculations
appear to follow a power law in the grid size, with estimated
exponent 2.96 (90% confidence interval 2.77 to 3.15). The
dashed lines in Figure 4 show the numerical time step sizes
as a function of Dx. The rupture time difference between

Figure 4. Differences in time of rupture, relative to
reference solution, shown as a function of grid interval
Dx. Differences are RMS averages over the fault plane.
Solid circles are DFM solutions, relative to DFM0.05 (the
smallest grid interval DFM case). Open circles are BI
solutions, relative to BI0.1 (the smallest grid interval BI
case). The dashed lines show the (approximate) dependence
of time step Dt on Dx. The top axis characterizes the
calculations by their characteristic �N c values, where �N c is
median cohesive zone width in the in-plane direction
divided by Dx. Note the power law convergence of both
methods as the grid size is reduced. The 90% confidence
intervals on the power law exponents suggested by the
regression lines are DFM [2.77–3.15] and BI [2.44–3.04],
indicating approximately equal convergence rates for the
two methods.
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DFM0.1 and DFM0.05 closely approaches (within 20%) the
one time step threshold, and the time difference between
DFM0.075 and DFM0.05 falls below that. Thus we con-
clude that the DFM solution has achieved rupture time
stability, to within about one time step, for Dx � 0.1 km,
corresponding to N c � 4.4 (Nc

min � 3.3).
[48] Open circles in Figure 4 show the rupture time

differences for BI, using BI0.1 as a reference. As for
DFM, the rupture time differences exhibit power law
behavior in the grid size. The slope, 2.74 (90% confidence
interval 2.44 to 3.04), is not significantly different from that
for the DFM case. The BI solution achieves rupture time
stability to within about a time step with Dx � 0.15 km,
corresponding to N c � 2.9 (Nc

min � 2.2), which is an N c

value about 2/3 the DFM requirement (i.e., BI achieves the
same convergence with 50% larger Dx than DFM).
[49] Figure 5 summarizes the behaviors of two additional

measures of grid size dependence: final slip and maximum
slip velocity. Each diamond (solid for DFM, open for BI)
represents an RMS average (taken over the points along the
x and y axes) of the difference in final slip between the
solution for a given Dx value and a reference solution.
The circles are the corresponding RMS averages for peak
slip velocity. As before, DFM0.05 serves as the reference
for all the DFM calculations, and BI0.1 serves as the
reference for all the BI calculations. As was the case for

the rupture times, the slip and slip velocity differences have
roughly power law behavior, with exponents between 1 and
2. The displacement differences have steeper slopes than the
peak velocity slopes, but 90% confidence intervals for the
slopes overlap. The peak slip velocity difference falls to
�7% or less for Dx � 0.1 km (N c � 4.4) for DFM, and for
Dx � 0.3 km (N c � 1.5) for BI. Similarly, the final slip
difference falls to �1% or below for Dx � 0.1 km (N c �
4.4) for DFM, and for Dx � 0.3 km (N c � 1.5) for BI. The
BI peak slip velocities and final slips converge to within a
given tolerance level with N c about 1/3 the DFM require-
ment for the same tolerance level.
[50] Note that BI slip comparisons in Figure 5 (open

diamonds) contain two outliers, the computations with Dx =
0.2 km and Dx = 0.6 km. These runs have larger discrep-
ancies in final slip because the simulated domain in these
runs is slightly asymmetric with respect to the central
nucleation zone. Consider the case with Dx = 0.2 km. The
nucleation region (which is 3 km � 3 km) has 15 cells in the
x direction, an odd number, while the fault domain (which is
30 km � 15 km) has 150 cells in the x direction, an even
number. Hence, in the x direction, there have to be different
numbers of cells to the left and to the right of the nucleation
zone (Figure 2); we choose 62 cells to the left and 63 cells
to the right. This makes the nucleation zone slightly
asymmetric with respect to the fault boundaries and the
geometry slightly different from the runs that simulate the
original symmetric problem. The slight asymmetry does not
affect the rupture times and peak velocities, as these are
reached before the rupture samples the boundaries of the
fault zone, but the final slips depend on the arrest waves
from the boundaries and are affected.
[51] In our calculations, the time step is proportional to

the grid size, as reflected by the dashed lines of Figure 4,
and hence the resolution can be characterized by the grid
spacing Dx only, or by Nc as its nondimensional measure.
However, the BI calculation for a given Dx can be some-
what improved by taking smaller time steps. We do not
attempt to quantify this here, but note that as a result, for a
different proportionality factor between the grid size and the
time step, or for a case where lower spatial resolutions use
smaller time steps, the convergence rates could be some-
what different, and hence adequate performance could be
reached for slightly larger Dx (or smaller Nc).
[52] We conclude that both DFM and BI solutions have

achieved numerical convergence with respect to grid size
reduction. Notably, the BI and DFM methods appear to
have the same convergence rates, as indicated by the near
equality of the corresponding DFM and BI slopes in Figures
4 and 5. Note, however, that for each measure (rupture time,
peak slip velocity, final slip), BI solutions, for a given Dx,
have smaller differences with the BI best resolved solution,
BI0.1, than the corresponding DFM solutions have with
their best resolved solution, DFM0.05. For rupture time, BI
achieves the given tolerance level for Nc about a factor of
1.5 lower than DFM; for peak slip velocity and final slip, BI
achieves the given tolerance level for Nc about a factor of 3
lower than DFM.

7.2. Comparison of High-Resolution Solutions

[53] Three relatively high-resolution solutions of the test
problem are compared in Figures 6 to 9. For this purpose,

Figure 5. Differences in final slip (diamonds) and peak
slip velocity (circles), relative to reference solution, shown
as a function of grid interval Dx. Differences are RMS
averages over the x and y axes of the fault plane. Solid
symbols are DFM solutions, relative to DFM0.05 (the
smallest grid interval DFM case). Open symbols are BI
solutions, relative to BI0.1 (the smallest grid interval BI
case). Note the power law convergence of both methods as
the grid size is reduced. The 90% confidence intervals on
the power law exponents suggested by the regression lines
are: DFM displacement [1.31–1.84]; BI displacement
[1.07–1.99]; DFM velocity [1.02–1.33]; BI velocity
[1.04–1.33]. Outliers at Dx = 0.2 km and 0.6 km were
not used in estimating the BI displacement slope (see
discussion in text).
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we use the highest-resolution solution for each method
(DFM0.05 and BI0.1, respectively), and also include
DFM0.1 to provide a direct comparison between the two
methods when the same grid interval is employed. Recall
that DFM0.1 and BI0.1 represent the cohesive zone with N c

of 4.4 node points (and Nc
min = 3.3), and that DFM0.05

represents the cohesive zone with N c of 8.7 node points
(and Nc

min = 6.5).
[54] Figure 6 shows contours of rupture time for these

three solutions. The computed evolution of the rupture
front is virtually identical for all three solutions. The level
of agreement appears to be good at all distances, from the
nucleation patch to the outer edge of the rupture surface,
and even details such as the sharp corners of the 0.5 s
contour, as the rupture breaks out of the nucleation patch,
are virtually indistinguishable in the three solutions. The
maximum difference in rupture time between DFM0.1
and BI0.1 is 0.055 s, and the RMS value (averaging over
the fault plane) of the difference is 0.028 s. On the basis
of the average rupture time on the fault of 3.57 s, this
RMS difference is about 0.8%. The maximum and RMS
differences between DFM0.05 and BI0.1 are 0.045 s
(1.3%) and 0.027 s (0.8%), respectively. The maximum
and RMS differences between DFM0.05 and DFM0.1 are
0.046 s (1.3%) and 0.011 s (0.3%), respectively (see
Table 3).
[55] Table 3 gives the maximum and RMS values of

the differences in peak velocity and final slip between

DFM and BI solutions. The RMS differences between
BI0.1 and DFM0.05 are less than 3% in peak slip
velocity, and less than 0.5% in final slip.
[56] Figure 7 shows the time histories at the two fault

plane points marked in Figure 2, one each on the in-plane
(point PI) and antiplane (point PA) axes, respectively. The
time histories presented are the direct result of our simu-
lations, with no additional filtering of any kind. In each
case, the shear stress time histories are nearly identical
among the three solutions. Arrival times of rupture and
several identifiable stopping phases are nearly indistinguish-
able in the three solutions, as are the times of arrest of
sliding. Even occurrence, timing, and duration of the small
reactivation of slip, at �8 s at PI and at �10.3 s at PA, are
nearly identical in the three solutions. Note particularly that
at the in-plane site, both the initial stress increase associated
with the P wave (arriving at �1.5 s), and the subsequent
shear decrease associated with the Swave (arriving at�2.2 s)
are replicated to high precision. Likewise, at the antiplane site,
the small stress decrease associatedwith the near-fieldPwave
is modeled nearly identically by the three solutions. The
displacement curves also agree very closely in all cases.
[57] The only notable discrepancy is for slip velocity at

PA. Even at this location, DFM0.05 and BI0.1 agree quite
well. However, DFM0.1 oscillates about DFM0.05 and
BI0.1, with fluctuation amplitude of about 15% of the peak
velocity at the onset of motion, decaying rapidly to ampli-
tude less than 1% of peak velocity. BI0.1 and DFM0.05 are
nearly free of oscillations. The region near PA is represen-
tative of the worst case for DFM0.1 with respect to these
rupture front velocity fluctuations, which is consistent with
the fact that in that region, the cohesive zone has contracted
to near its minimum (due to postnucleation effects), with the
local Nc only �3.5 for DFM0.1, and �7 for DFM0.05 (see
Figure 3). At the PI site, where the cohesive zone width
corresponds to Nc �5 for DFM0.1 (and to �10 for
DFM0.05) any velocity oscillations in DFM0.1 are at least
an order of magnitude smaller: the two DFM solutions are
smooth and virtually identical. All of these observations are
consistent with a criterion of Nc � �5 for obtaining slip
velocity estimates accurate to a few percent in DFM
solutions, provided this criterion is satisfied locally, how-
ever, and not just in an average sense. For BI solutions, the
slip velocities for BI0.1 are nearly oscillation free, which
confirms the rupture time result that Nc � �3 is sufficient
resolution for BI.
[58] Slip rate and shear stress time history profiles along

the x axis (in-plane direction) (Figure 8) and the y axis

Figure 6. Contour plot of the rupture front for the
dynamic rupture test problem. Solid curves are for
DFM0.05 (grid size Dx = 0.05 km); dotted curves are for
DFM0.1 (grid size Dx = 0.1 km); dashed curves are
for BI0.1 (grid size Dx = 0.1 km).

Table 3. Misfit Measures for the Three Pairs of High-Resolution Solutions

DFM0.05 Versus DFM0.1 DFM0.1 Versus BI0.1 DFM0.05 Versus BI0.1

Rupture Arrival Time
Maximum difference,% 1.29 1.53 1.26
RMS,% 0.31 0.78 0.76

Final Slip (Along the x and y Axes)
Maximum difference,% 3.0 1.42 2.07
RMS,% 0.86 0.64 0.44

Peak Slip Velocity (Along the x and y Axes)
Maximum difference,% 18.1 38.7 21.9
RMS,% 6.6 8.9 3.0
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(antiplane direction) (Figure 9) confirm that the three
solutions are virtually identical in their simulation of each
of the principal processes of the rupture: initiation, evolu-
tion and stopping of the slip, and the evolution of the stress
after the slipping ceases. All three solutions are plotted at
the same scale in Figures 8 and 9. As shown in Figures 8 and
9, the pulses associated with the P and S waves returning
from the borders of the fault are observed in the time
histories of slip rate and stress. In Figures 8 and 9 we
annotate these fault-edge-generated pulses. The P waves
from the left and right borders of the fault traveling along
the in-plane direction are denoted by ‘‘P’’ in Figure 8. The
pulses associated with the edge-generated S wave are
indicated by ‘‘Si’’ and ‘‘Sa,’’ with Si corresponding to the
pulses coming back from the left and right borders of the
fault, traveling predominantly along the in-plane direction,
and Sa corresponding to the pulses coming back from the
top and bottom borders, traveling predominantly along the
antiplane direction. In addition to these stopping phases, a
late reactivation of slip, after its initial arrest, can also be
seen in Figures 8 and 9 (and Figure 7 as noted previously).

This feature is associated with the Si pulse, and its behavior
is explained as follows. The P wave coming back from the
boundary reduces the shear stress on the fault, causing slip
to stop, leaving the shear stress somewhat below the
dynamic friction value (dynamic overshoot). The subse-
quent Si fault edge pulse has to overcome that stress deficit
in order to reinitiate slip. As it approaches the center of the
fault, this pulse becomes weak. This wave experiences
constructive interference at the center of the fault in which
there is an encounter between the Si waves coming from the
left and right side of the fault. As can be seen in the figures
of shear stress, the Si pulse crosses the center and continues
traveling to the other side of the fault, but always below the
dynamic friction level, and therefore unable to produce
further slipping. Note that our solution procedure assumes,
for simplicity, that once the dynamic frictional strength td is
reached at a point on the fault, the strength will not increase
to larger values on the timescale of the computation, even if
the point reaches zero slip velocity. That is, it is assumed
that there is no healing for times of order seconds. However,
rock interfaces in the lab do exhibit healing at rest or small

Figure 7. Time histories at the two fault plane points marked in Figure 2. PI is on the in-plane (x) axis,
and PA is on the antiplane (y) axis. Shear stress, slip, and slip velocity are shown for solutions DFM0.05,
DFM0.1, and BI0.1. The time histories of BI0.1 and DFM0.05 are virtually identical, with DFM0.1 also
very close.
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sliding velocities, and a more complete constitutive descrip-
tion would include that effect.
[59] To summarize, high-resolution DFM and BI solu-

tions to the test problem are very close quantitatively, and
the resulting features of spontaneous rupture propagation
and arrest make sense qualitatively. BI0.1 and DFM0.05
agree in virtually every detail of timing and amplitude.
DFM0.1 performs nearly as well. Results for DFM0.1 and
DFM0.05, taken together, are consistent with the criterion
Nc � �5 for obtaining, in DFM solutions, slip rates free of
artifacts and grid size independent to within a few percent,
provided the criterion is satisfied uniformly over the fault.
For BI solutions, the corresponding criterion is Nc � �3.

8. Discussion

[60] We interpret the agreement between the highest-
resolution BI and DFM solutions presented above as
important evidence that both solutions are accurate approx-
imations to the continuum solution of the spontaneous
rupture problem that we posed. This interpretation is further
supported by the level of grid interval independence
achieved in the DFM and BI solutions.

8.1. Resolution Criterion

[61] On the basis of the size of the cohesive zone
observed in these solutions, we propose that Nc � 5 or

about five cells within the cohesive zone is sufficient to
ensure an accurate (in the sense of the tolerances implied by
Table 3) solution by the DFM method. The BI method is
capable of similar accuracy with only about three cells
within the cohesive zone (Nc � 3). Note that Nc represents
a local, varying quantity, and the cohesive zone resolution
by about five cells for DFM and three cells for BI should be
achieved everywhere locally, i.e., that should be the reso-
lution of the minimum cohesive zone size encountered.
[62] The criterion for uniform adherence to Nc � 5 for

DFM and Nc � 3 for BI can probably be relaxed somewhat
in many practical applications. The DFM0.1 velocity fluc-
tuations have no effect on rupture propagation or arrest; and
they decay quickly, so they do not represent an instability.
Therefore they do not interact nonlinearly with the solution.
For most purposes, therefore it would be adequate to
remove them by low-pass filtering to attenuate Fourier
components with wavelength shorter than the cohesive zone
width. The same applies to BI0.15 (the time histories for
which are not included in Figure 7 for clarity of plots). In
that band-limited sense, DFM0.1 or BI0.15, although they
do not quite satisfy the above criterion everywhere (since
Nc
min = 3.3 for DFM0.1 and Nc

min = 2.2 for BI0.15), still
provide accurate and artifact-free solutions. On the other
hand, velocity fluctuations at the level present in DFM0.1 or
BI0.15 might not be acceptable when using friction models
with a sensitive dependence of stress on slip velocity. In the

Figure 8. Time history of (top) slip rate and (bottom) shear stress for points along the axis of in-plane
motion (x axis). The (left) BI0.1, (middle) DFM0.1, and (right) DFM0.05 solutions are shown. The labels
P and Si correspond to the P and S waves, respectively, generated at the left and right edges of the fault
(i.e., propagating predominantly along the axis of in-plane motion). The label Sa identifies the S waves
generated at the top and bottom of the fault (propagating predominantly along the antiplane axis).
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case of rate- and state-dependent friction models [e.g.,
Dieterich, 1979; Ruina, 1983], for example, it might prove
necessary to adhere strictly to our proposed resolution
criterion.
[63] While it is reasonable to apply the obtained criterion

for Nc to the class of problems considered here, in which the
cohesive zone width is the smallest physical length scale
present, the results will not extend to spontaneous rupture
problems in which other, smaller characteristic length scales
emerge. An example of the latter is the problem of rupture at
a bimaterial interface. In that example, the coupling of shear
and normal stress changes on the fault plane, combined with
memory effects in the dependence of friction on normal
stress, introduces an additional length scale [Cochard and
Rice, 2000; Ranjith and Rice, 2001]. We conjecture that in
such cases, our criterion of Nc � 5 for DFM and Nc � 3 for
BI would still apply, provided, however, that Nc is redefined
in terms of the new minimum physical scale of the problem.

8.2. Scale Collapse

[64] The cohesive zone shrinks upon the approach of
rupture speed to a terminal value (the shear wave speed in
the antiplane direction, the Rayleigh wave speed in the in-
plane direction) as follows from (30). The cohesive zone
contraction could potentially make it difficult to maintain Nc

sufficiently large to ensure accuracy. In the antiplane
direction, the simplest case, the cohesive zone width will
collapse as (1 � �2/b2)1/2, where � is the rupture velocity.
In our test problem, � reaches �0.7b along the antiplane

axis direction. The Lorentz factor would be reduced by an
additional factor of about 2, for example, if rupture accel-
erated to �0.93b and by about a factor of 4 for � � 0.98b,
reducing Nc in each simulation by these same factors. Thus
dealing with rupture very near terminal speed is likely to be
a significant challenge for rupture simulation.
[65] The approximate analysis (26)–(37) of the Lorentz

contraction (in the context of the simple slip-weakening
parameterization of friction) shows, for the antiplane direc-
tion, that the cohesive zone width scales with (md0/Dt)

2 L�1

and, for a given Dt, it is nearly independent of the relative
strength parameter S, as long as the propagation distance L
is large compared with the critical dimension for crack
instability. This is identical to the scaling that Andrews
[1976, 2004] derived from a somewhat different (but
essentially equivalent) line of reasoning. The stress drop
Dt used in our test calculation, 7 MPa, is about twice the
average stress drop for shallow crustal earthquakes, making
the test case modestly conservative in this respect (that is,
had we used a more typical stress drop value of 3 MPa, the
cohesive zone sizes and hence Nc would have been larger).
The influence of the propagation-distance factor L on the
cohesive zone size is limited by the fault width and the scale
of the largest asperities. Our cohesive zone consideration
(26)–(39) is restricted to 2-D cases but, in 3-D, the smaller
dimension (width) of the fault will ultimately put a bound
on the stress intensity factor through which L enters the
cohesive zone analysis. Our test problem has a fault width
of 15 km, which is representative of the fault width for

Figure 9. Time history of (top) slip rate and (bottom) shear stress for points along the axis of antiplane
motion (y axis). The (left) BI0.1, (middle) DFM0.1, and (right) DFM0.05 solutions are shown. The labels
P, Si, and Sa have the same meanings as in Figure 8.
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shallow crustal earthquakes. This fault width value is equal
to the maximum along-strike propagation distance of 15 km
in the test problem, and the influence of the propagation
distance factor is therefore probably already at or near its
limiting value [Day, 1982a]. That is, even a much longer
fault would not lead to much further scale contraction, so
the test problem is probably also conservative with respect
to the propagation distance factor. The characteristic dis-
placement d0, however, is very uncertain, and values much
lower than our test problem value of 0.4 m are plausible.
A d0 value of 0.1 m, for example, would have reduced Nc

in each of our test problem simulations by a factor 16,
putting our DFM criterion of Nc �5 and BI criterion of Nc

�3 practically out of reach for a numerically tractable
calculation.
[66] Other factors, however, may limit the scale collapse

associated with the approach to terminal velocity, and thus
work in favor of numerical resolution (i.e., increased Nc).
Contraction of the cohesive zone is accompanied by very
high strains near the fault. In an elastic model, stresses near
the fault will grow inversely with the cohesive zone dimen-
sion [Rice, 1980], and in amore realistic model, at some stage
of the cohesive zone collapse, additional energy losses will
occur in the form of inelastic work off the fault surface. These
losses, if modeled, would limit the collapse of the cohesive
zone. In the DFM simulations, the artificial viscosity pro-
vides a dissipation mechanism that takes the place of such
unmodeled energy losses and thereby limits the collapse of
the cohesive zone length scale [Day and Ely, 2002]. This
procedure is analogous to the viscous regularization of shock
waves calculations [e.g., Gustafsson et al., 1995]. Andrews
[2004] demonstrates some alternative methods that limit
scale collapse, in the context of perfect elasticity, by mod-
ifications to the friction law. Rupture simulations that incor-
porate off-fault inelastic losses [Dalgueret al., 2003a, 2003b;
Andrews, 2005] provide theoretical justification for these
procedures. In the simulations of Dalguer et al., for example,
off-fault tension cracks open during shear rupture. This off-
fault dissipation mechanism results in a reduction of the
rupture velocity. Similarly, Andrews’ inelastic simulations
show that when realistic off-fault inelastic energy losses are
considered, fracture energy is not a constant, but rather
increases with propagation distance (as does an equivalent
slip-weakening displacement derived from an auxiliary
elastic calculation), mitigating the collapse of scale lengths
at the rupture front. When nonlinear material behavior off
the fault plane dominates the energy dissipation, an
appropriate length scale from which to define Nc will
likely be the characteristic length over which the inelastic
dissipation rate is appreciable.

8.3. Computational Resources Required and
Associated Parameter Limitations

[67] The 3-D spontaneous rupture calculations are quite
challenging in terms of required memory and processor
power. Let us consider only the memory (RAM) require-
ments here, as this is often the limiting factor. The memory
required is 17.5 GB for BI0.1, 2.3 GB for DFM0.1, and
17.8 GB for DFM0.05. Note that the memory requirement
for BI0.1 can be significantly reduced, to 2–3 GB, by using
justifiable truncation of the dynamic response (e.g., as
discussed by Lapusta et al. [2000] for a 2-D case), which

was not used here to assure the most accurate BI solution.
The amount of memory needed scales with the inverse cube
of the grid spacing Dx for both methods. Note that high-
resolution runs for both methods were done on multiple
processors using message passing (MPI).
[68] Hence we immediately see the challenge in terms of

computer resources one faces in studies of spontaneous
ruptures. For example, suppose we would like to keep the
same fracture energy in our problem, but study the effect of
considering x times smaller critical slip d0 (and changing the
frictional properties accordingly). Then, for the same stress
drop, the cohesive zone sizes we would need to resolve
would decrease x2 times according to (37). This means that
we would need to decrease Dx by a factor of x2, for a total
increase in memory by a factor of x6. That means that just
halving d0 would require 64 times as much memory, or
about 150 GB for DFM and BI with truncation, and 1.1 TB
for BI without truncation, which is already the scale of the
largest supercomputers. Taking 10 times smaller d0 would
require 1,000,000 times more memory and would clearly be
impossible with present-day computers.

8.4. Significance of DFM/BI Agreement

[69] Establishing the accuracy of numerical solution
methods for the spontaneous rupture problem is challenging
principally because of the nonlinearity of the problem. That
nonlinearity is attributable mainly to the fact that rupture
evolution and arrest are not specified a priori. In other
words, we have a mixed boundary value problem in which
the respective (time-dependent) domains of displacement
and traction boundary conditions are themselves dependent
upon the displacement and stress fields. Nonlinearity allows
phenomena to arise that are absent in idealized tests on
linear problems but pose significant challenges for a nu-
merical method; the problem of scale contraction discussed
above being an important example.
[70] No analytical solutions are known for 3-D sponta-

neous rupture problems, apart from a few special cases that
reduce to linear problems (e.g., the nucleation phase solu-
tion of Campillo and Ionescu [1997]) and are thus inappro-
priate for our purpose. We are therefore forced to make
inferences about accuracy from comparison of numerical
solutions. The BI method, however, could be legitimately
viewed as providing at least a semianalytical characteriza-
tion of the solution to the limited class of problems to which
it is applicable. The BI solution does represent the fault
plane traction and velocity discontinuity discretely, and
requires purely numerical manipulations to satisfy the jump
conditions. However, it represents the continuum response
to a given velocity discontinuity exactly, by means of a
closed form Green’s function. It is therefore not subject to
the main form of error present in volume discretization
methods such as the DFM method, which is numerical
dispersion. For this reason, we would argue that agreement
between DFM and BI solutions is stronger evidence of
numerical accuracy (of both methods) than would be
agreement between two different volume discretization
codes alone.
[71] The convergence rates of the two methods are nearly

indistinguishable, as indicated by their approximately equal
slopes in Figures 4 and 5. It is perhaps surprising that a low-
order finite difference method such as DFM performs as
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well as it does relative to the semianalytical BI method on
this problem. We do not have a complete explanation for
this result but make several observations:
[72] 1. The spontaneous rupture solution is discontinuous

in the displacement and velocity fields. Therefore nominally
higher-order finite difference methods will not actually
achieve higher-order accuracy for this problem unless they
incorporate separate, one-sided high-order difference tem-
plates on each side of the fault plane (this can be done quite
naturally with high-order finite elements or spectral ele-
ments, but has not been attempted in higher-order finite
difference solutions). Thus a second-order finite difference
scheme like DFM is not at any obvious disadvantage
relative to high-order finite difference methods.
[73] 2. The specific method used to treat the jump

condition appears to be more important than the differenc-
ing scheme used at interior nodes. We have found [Dalguer
and Day, 2004] that the traction-at-split-node (TSN) method
used in DFM converges substantially better than the alter-
native stress glut (SG) [Andrews, 1999] and thick fault (TF)
[Madariaga et al., 1998] methods. To achieve results
comparable to those from the TSN method with Dx = h,
for example, the SG method requires a Dx = h/2, and the TF
method requires Dx < h/4. Stated differently, the required
resolution ratio Nc is roughly twice as large for method SG,
and at least 4 times as large for method TF, as it is for the
TSN method tested in this paper.
[74] 3. The DFM implementation of the TSN method

incorporates an added artificial viscosity [Day and Ely,
2002] of Kelvin-Voigt form, characterized by a parameter
h (Appendix A, equation (A8)). The damping is artificial in
the sense that it is part of the numerical procedure for
solving the perfectly elastic problem, and is not intended to
represent a physical damping. This damping term selectively
suppresses short-wavelength oscillations arising from the use
of a low-order difference approximation. The damping pa-
rameter is dimensionless, and, for fixed h. the absorption-
wavelength spectrum scales in proportion to the grid interval
Dx. A damping parameter h equal to 0.1 was used with DFM
in these tests. Values substantially higher than this value
visibly degrade the sharpness with which shear stress is
resolved at the rupture front in the Dx = 0.1 km case, with
adverse effects on rupture timing. For example, using an h
value of 0.3 instead of the preferred value of 0.1 results in a
slight (less than 1.5%) reduction of the average rupture
velocity in the DFM0.1 test. The effect of using a higher
damping value is negligible in the higher-resolution
DFM0.05 test, however, reflecting the fact that the ab-
sorption band shifts to shorter (by a factor of 2) wave-
lengths in that case, and these components are already
significantly attenuated by the cohesive zone. At the other
extreme, using zero damping results in a DFM0.1 solution
so oscillatory that early arrest and rerupture can occur
spuriously at some fault points.
[75] The BI/DFM comparisons presented here comple-

ment experimental tests of the DFM finite difference sol-
utions by Day and Ely [2002]. In those tests, numerical
simulations reproduced the shape, timing, and duration of
acceleration pulses recorded adjacent to the fault surface in
the scale model earthquake experiments of Brune and
Anooshehpoor [1998]. In combination, these very different
types of tests provide strong evidence of convergence of

both the BI and DFM solutions to the continuum solution.
Of course, in both cases the emphasis has been on validation
of the numerical methods themselves; neither type of test
addresses the relevance of the underlying theoretical for-
mulation to the rupture process of natural earthquakes.
[76] We note that both methods examined here are rather

limited in the class of problems that they can address. The
BI method, at least in the implementation presented here, is
limited to uniform infinite space problems, and the DFM
method, although it can address problems with a free
surface and complex material properties, is limited with
respect to admissible fault geometry (i.e., piecewise planar
segments, all parallel to a single coordinate plane). The
numerical results presented here have been shown to be
independent of both grid size and solution method, to within
well-quantified tolerances, and may therefore provide a
useful starting point for testing newer, more capable nu-
merical methods for spontaneous rupture.

9. Conclusions

[77] A traction-at-split-node finite difference method
(DFM) and a boundary integral method (BI) give virtually
indistinguishable solutions to a spontaneous rupture test
problem (SCEC benchmark problem, version 3 [Harris et
al., 2004]) when both methods adequately resolve the
cohesive zone (i.e., with at least five node points for
DFM and at least three cells for BI). Qualitatively, both
solutions are virtually identical in their simulation of initi-
ation, evolution and stopping of the slip, and the evolution
of the stress after the slipping ceases. Quantitatively, we
have assessed agreement between the methods in terms of
the RMS differences in rupture time, final slip, and peak slip
rate, and related these to median (N c) and minimum (Nc

min)
resolution measures. With N c = 4.4 (and Nc

min = 3.3) for
both methods, the RMS time, slip, and slip rate differences
are 0.8%, 0.6%, and 9%, respectively. With the same N c

and Nc
min for BI, but better resolution (N c = 8.7 and Nc

min =
6.5) for DFM, these metrics are 0.8%, 0.4%, and 3%,
respectively.
[78] Furthermore, calculations over approximately an

order of magnitude range in N c demonstrate a well-defined
power law asymptotic behavior of both the DFM and BI
solutions: for each method, variations of predicted rupture
time with respect to grid spacing follow a power law with
exponent �3. We interpret this behavior, combined with the
agreement between BI and DFM solutions, as evidence of
asymptotic convergence to the continuum solution. The
final slip and peak slip rate metrics show similar power
law behavior, with exponents between 1 and 2 for both
methods.
[79] The ability of a low-order DFM finite difference

method to match the boundary integral solution with only
about five nodes resolving the cohesive zone calls into
question the advantages of high-order differencing schemes
for this problem. In fact, nominally high-order methods will
actually have truncation errors of the same order as nom-
inally lower-order methods for this problem, since the
displacement field is itself discontinuous. Artificial viscos-
ity adequately controls the numerical oscillations that are
inherent in the low-order difference scheme. The DFM
solution with N c = 4.4 has a weak but measurable sensitiv-

B12307 DAY ET AL.: THREE-DIMENSIONAL SPONTANEOUS RUPTURE

18 of 23

B12307



ity to large departures of the damping parameter h from our
preferred value of 0.1 (i.e., tripling h slows rupture by an
amount everywhere less than 1.5%). The sensitivity to h
diminishes with increasing resolution length Nc, reflecting
the fact that the artificial damping is scale selective, with the
scale set by the grid interval.
[80] These numerical tests help fill a gap in our under-

standing of the accuracy of numerical solutions to nonlinear
spontaneous rupture problems. In addition, the solutions
presented here, by virtue of being demonstrably grid-
independent and consistent between two very different
numerical methods, may prove useful for testing new
numerical methods for spontaneous rupture.

Appendix A: Finite Difference Equations

[81] The grid is defined by a set of index triples Q = [ix,
iy, iz] where ix, iy, and iz are integers. The grid node point
corresponding to Q is at rQ, which is given in terms of
Cartesian unit vectors ên, n = x, y, z, and three orthogonal
sets of coordinate planes defined by indexed sets of coor-
dinates, (rn)in, in = 1, . . ., Ln. n = x, y, z:

rQ ¼
X

n

rnð Þin ên: ðA1Þ

Displacement and velocity vectors at the node points are
similarly denoted

uQ 

X

n

un rQ
� �

ên ðA2Þ

and

_uQ 

X

n

_un rQ
� �

ên: ðA3Þ

Cell centers are denoted by indices ~Q = [ix +
1=2, iy +

1=2, iz +
1=2]. The cell dimensions Drn and cell volume V carry index
~Q, and are defined by

Drnð Þ~Q
 rnð Þinþ1� rnð Þin ðA4Þ

and

V~Q 

Y

n

Drnð Þ~Q: ðA5Þ

Material properties r, a, and b (density, P and S wave
speeds, respectively) are likewise indexed to the cell
centers, as are the numerical viscosities and hourglass
suppression constants h, c, and Y introduced below (so that
constants that serve to regularize the numerical scheme,
rather than to represent physical properties, are distin-
guished by overbars).
[82] We define the index increment D by D 
 [dx=2,

dy=2,
dz=2], where each dn can be either 1 or �1, so that D has eight
possible values. We define index addition in the obvious
way, such that for example, Q + D = [ix +

dx=2, iy +
dy=2, iz +

dz=2], and introduce the convention that in any equation
containing D on the right-hand side (but not the left-hand

side), there is an implied summation of the right-hand side
over all eight possible D values.
[83] The discrete strain and stress tensors, EE and S, carry

cell index ~Q, and are given by, respectively,

EE~Q ¼ 1

2

X

n

dn

4 Drnð Þ~Q
ênu~QþD þ u~QþDên

	 


ðA6Þ

and

S~Q ¼ r~Q a2
~Q
� 2b2~Q

	 


tr E~Q

	 


Iþ 2r~Qb
2
~Q
E~Q: ðA7Þ

An artificial viscosity is also introduced, leading to damping
stress tensor S,

S�~Q
¼ �h~QDt r~Q a2

~Q
� 2b2~Q

	 


tr _EE _~Q

	 


Iþ 2r~Qb
2
~Q
_EE _~Q

h i

; ðA8Þ

where h is a cell-indexed dimensionless damping constant.
Null, or hourglass, modes [e.g., Hughes, 1987, p. 239] are
stabilized by addition of stiffness and damping forces that
oppose the motion of the null modes. Cell-indexed
hourglass mode amplitudes Hi, i = 1, . . ., 4, are given by

Hi
~Q
¼
X

n

ênA
i
D

ên

Drnð Þ2~Q
� u~QþD þ �c~QDt _u~QþD

	 


; ðA9Þ

where

A1
D ¼ dxdydz; A2

D ¼ dxdy; A3
D ¼ dydz; A4

D ¼ dxdz: ðA10Þ

The cell hourglass amplitudes are volume-weighted to
compute the null mode resistance force F at the nodes,

FQ ¼ ��YQþDVQþD

X

i

Ai
DH

i
QþD: ðA11Þ

The constants c (dimensionless) and Y (same dimensions as
stress) are hourglass damping and stiffness constants,
respectively. We set c = 0.7, and Y = 1

12
rb2(1 � b2/a2),

the latter motivated by the finite element treatment of
Kosloff and Frazier [1978]; results are not very sensitive to
the precise values, so long as they are large enough to
suppress growth of the null modes.
[84] A nodal mass M and restoring force vector R are

indexed to the node points,

MQ 
 1

8
VQþDrQþD ðA12Þ

and

RQ 
 VQþD

X

n

dn

4 Drnð ÞQþD

ên � SQþD þ �SQþD

� �

þ FQ: ðA13Þ

Equating restoring forces and inertial forces, approximating
by central differences with time step Dt, and integrating
leads to

_uQ t þ Dt=2ð Þ ¼ _uQ t � Dt=2ð Þ þ DtM�1
Q RQ tð Þ ðA14Þ
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and

uQ t þ Dtð Þ ¼ uQ tð Þ þ Dt _uQ t þ Dt=2ð Þ: ðA15Þ

We use u(t) and _u(t � Dt/2) to compute all terms in R(t), so
the scheme is fully explicit.
[85] At a fault plane, we split each node-centered quantity

(i.e., those indexed by Q) into plus- and minus-side parts,
u
±, _u±, F±, M±, and R

±. The latter three pairs of quantities
are defined by splitting the summations on D in each of
(A11), (A12), and (A13) into two parts. This partitioning is
done by introducing D± 
 [dx=2,

dy=2,
�1=2], where dx and dy

can be either 1 or �1, so that each index set (i.e., D+ or D�)
has four possible values. With the convention that summa-
tion over the four possible values of D+ or D� is implied in
any equation that contains either D+ or D�, with dz fixed at
dz = +1 for D+ summations and fixed at dz = �1 for D�

summations, we define the following split node quantities:

F�
Q 
 ��YQþD�VQþD�

X

i

Ai
D�H

i
QþD� ; ðA16Þ

M�
Q 
 1

8
VQþD�rQþD� ; ðA17Þ

R�
Q 
 VQþD�

X

n

dn

4 Drnð ÞQþD�
ên � SQþD� þ �SQþD�

� �

þ F�
Q :

ðA18Þ

We then introduce the traction vector T acting at fault plane
nodes, and nodal area a defined by

aQ ¼ 4Drzð Þ�1
QþDþVQþDþ : ðA19Þ

We denote the initial equilibrium value of T by T0.
Equating restoring forces and inertial forces separately for
the two sides of the split nodes gives the split node
counterparts of (A14) and (A15),

_u�Q t þ Dt=2ð Þ ¼ _u�Q t � Dt=2ð Þ þ Dt M�
Q

	 
�1

� R�
Q tð Þ � aQ TQ tð Þ � T0

Q

h in o

ðA20Þ

and

u�Q t þ Dtð Þ ¼ u�Q tð Þ þ Dt _u�Q t þ Dt=2ð Þ: ðA21Þ

The traction vector T is determined from the jump
conditions and the friction model, as described in the main
text.

Appendix B: Equations of Boundary Integral
Method

B1. Space and Time Discretization

[86] We would like to compute the evolution of slip (or
tangential displacement discontinuities) and stresses on a
rectangular domain of a planar interface embedded in an

infinite homogeneous isotropic elastic solid. In particular,
the slip accumulation may take the form of a shear crack or
rupture propagating along the interface. We introduce the
Cartesian coordinate system (x, y, z) such that the interface
corresponds to z = 0 and x and y are directed along the axis
of symmetry of the rectangular domain under consideration.
The domain has dimensions lx and ly in the x direction and
y direction, respectively.
[87] We discretize the domain into Lx � Ly cells, where Lx

and Ly are even, as required by (19). In general, the cells can
be rectangular, but here we choose the number of cells so
that they are square, and hence

lx=Lx ¼ ly=Ly ¼ Dx:

The size of the cells Dx determines the spatial discretization.
The field variables such as stress, slip, slip rate, etc. are
considered to be constant throughout the cell.
[88] The time step Dt is constant and is taken as a fraction

of time needed for the shear wave to propagate through one
cell in x or y direction, in the form

Dt ¼ gDx=b:

Usually we take g = 1/4 to 1/2. g = 1/3 is used for the
simulations presented here. Note that it is possible to use
variable time step in this formulation and this has been done
in studies of earthquake sequences where both slow
deformation periods between earthquakes and fast dynamic
ruptures during earthquakes are involved [Ben-Zion and
Rice, 1997; Lapusta et al., 2000].
[89] Since the spectral formulation (18)–(23) used here

replicates (or periodically repeats) the domain of interest,
the domain dimensions lx and ly should be sufficiently
larger than the area over which active slipping takes place to
prevent replications affecting each other through elastic
waves. In the test case considered in this work, the rupture
spreads over the area 30 km � 15 km. The presented results
were obtained using lx = 60 km and ly = 45 km. Using
larger values for the run with Dx = 0.3 km did not affect the
results.

B2. Computational Cycle

[90] To update field variables over one time step Dt, we
use the scheme developed and presented by Lapusta et al.
[2000], with suitable modifications. The work of Lapusta et
al. [2000] involved a two-dimensional antiplane problem,
rate and state friction laws, and variable time step. Here we
consider a 3-D problem with slip-weakening friction and
constant time step. We briefly describe the modified updat-
ing scheme in the following.
[91] Suppose that at time t, the discretized values of

tangential discontinuities (slips) sn(t; i, j), slip rates (or
velocities) _sn(t; i, j), n = x, y, and slip path length ‘(t; i, j)
are known for all cells (i, j), i = 1, 2, . . ., Lx, j = 1, 2, . . ., Ly.
In addition, the history of the slip rates is known in terms of
their Fourier coefficients _Sn(t

0; k, m) for (discretized) prior
time t0, 0 < t0 < t, where t = 0 is the beginning of the
deformation process considered, k = �Lx/2, �Lx/2 + 1, . . .,
Lx/2, m = �Ly/2, �Ly/2 + 1, . . ., Ly/2. We also know the
Fourier coefficients of slips Sn (t; k, m) which, as we will
see, we should have obtained during the previous time step.

B12307 DAY ET AL.: THREE-DIMENSIONAL SPONTANEOUS RUPTURE

20 of 23

B12307



Then, to find the values of the field variables at time t + Dt,
we proceed in the spirit of a second-order Runge-Kutta
procedure as follows.
[92] 1. Make the first predictions of the values of the

tangential discontinuities, s*n (t + Dt; i, j), their Fourier
coefficients, S*n (t + Dt; k, m), slip path length, ‘* (t + Dt; i,
j), and stress transfer functionals, f*n(t + Dt; i, j), at time t +
Dt assuming that the slip velocities stay constant and equal
to _sn (t; i, j) throughout the time step. Hence we start with

sn* t þ Dt; i; jð Þ ¼ sn t; i; jð Þ þ Dt _sn t; i; jð Þ;
Sn* t þ Dt; k;mð Þ ¼ Sn t; k;mð Þ þ Dt _Sn t; k;mð Þ;

‘* t þ Dt; i; jð Þ ¼ ‘ t; i; jð Þ þ Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_s2x t; i; jð Þ þ _s2y t; i; jð Þ
q

;

where Sn (t; k, m) are known and _Sn (t; k, m) are computed
from _sn (t; i, j) using fast Fourier transform (FFT). Then we
compute the first predictions of the Fourier coefficients of
the stress transfer functionals, F*n (t + Dt; k, m), using (23).
Let us rewrite just one of the two analogous terms on the
right-hand side of (19). We get

Fx* t þ Dt; k;mð Þ
Fy* t þ Dt; k;mð Þ

�  

¼ � m

2q

k̂2 m̂k̂

m̂k̂ m̂2

" #

2 1� b2

a2

� �

Sx* t þ Dt; k;mð Þ
Sy* t þ Dt; k;mð Þ

�  � �

� m

2q

k̂2 m̂k̂

m̂k̂ m̂2

" #

�

�
Z

tþDt

Dt

KII qbt
0ð Þ

_Sx t þ Dt � t0; k;mð Þ
_Sy t þ Dt � t0; k;mð Þ

 

dt0
( !

� m

2q

k̂2 m̂k̂

m̂k̂ m̂2

" #

�
_Sx t; k;mð Þ
_Sy t; k;mð Þ

( )

Z

Dt

0

KII qbt
0ð Þdt0

0

@

1

A

þ similarly rewritten second term of 23ð Þ:

The second line at the right-hand side of the above
expression can be computed, since the slip velocity history
in terms of Fourier coefficients is known. The third line
gives an approximation of the convolution on the time
interval corresponding to the current step. We use the
extended midpoint integration scheme [e.g., Press et al.,
1986] to compute the convolution integrals. The convolu-
tion integrals involve kernels given by (22)–(23). We
precalculate (and store) the kernels using the expressions
from (22)–(23) with finite integrals, the extended trapezoi-
dal rule to evaluate the integrals, and subroutines from
Numerical Recipes [Press et al., 1986] to evaluate Bessel
functions. Finally, we compute the first predictions of stress
transfer functionals, f*n (t + Dt; i, j), using their Fourier
coefficients F*n (t + Dt; k, m) and an inverse FFT.
[93] 2. Find the first prediction of slip rates, _s*n (t + Dt; i,

j), corresponding to the predicted slip ‘* (t + Dt; i, j) and
functionals f*n (t + Dt; i, j), by making the tractions (18)
agree with the frictional strength and jump conditions. To
accomplish that, we consider two cases, depending on
whether the slip rates are zero or nonzero during the current
time step (i.e., the time step that spans the time interval (t, t +
Dt). Let us denote by tc

0 (t + Dt; i, j) the frictional strength
which the cell (i, j) would have at time t + Dt if its slip rates

were zero during the current time step. We can compute tc
0

(t + Dt; i, j) from (5)–(6) as

t0c t þ Dt; i; jð Þ ¼ �sn ms �W ‘ t; i; jð Þ½ � if ‘ t; i; jð Þ � d0

�snmd if ‘ t; i; jð Þ > d0
;

�

where W = (ms � md)/d0 is the slope of the slip-weakening
part of the friction law (6).
[94] In case 1, for the slip rates to be zero at time t + Dt,

the zero rate frictional strength tc
0 (t + Dt; i, j) should be

larger than the shear traction magnitude computed from (18)
assuming zero slip rates, i.e., the following condition should
hold:

t0c t þ Dt; i; jð Þ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Yx*
2 t þ Dt; i; jð Þ þYy*

2 t þ Dt; i; jð Þ
q


 Y* t þ Dt; i; jð Þ;

whereYn* (t + Dt; i, j) = tn
o (t + Dt, i, j) + f*n (t + Dt, i, j) and tn

o

tn
o (t + Dt, i, j) are given. If the condition holds, we set _s*n (t

+ Dt; i, j) = 0, n = x, y.
[95] In case 2, if tc

0 (t + Dt; i, j) � Y* (t + D t; i, j), then
the slip rates can be nonzero and we need to solve the
following equations. The predicted frictional strength t*c (t +
Dt; i, j) should be equal to the magnitude of the shear
traction vector:

tc* t þ Dt; i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tx*
2 t þ Dt; i; jð Þ þ ty*

2 t þ Dt; i; jð Þ
q

:

The frictional strength depends on the predicted value of the
slip path length ‘* (t + Dt; i, j) through the friction law (5)–
(6):

tc* t þ Dt; i; jð Þ ¼
�sn ms �W ‘* t þ Dt; i; jð Þð Þ

if ‘ t þ Dt; i; jð Þ � d0
�snmd if ‘* t þ Dt; i; jð Þ > d0

:

8

<

:

From (18), the predictions of the shear traction components
are given by

tn* t þ Dt; i; jð Þ ¼ Yn* t þ Dt; i; jð Þ � m

2b
_sn* t þ Dt; i; jð Þ:

Finally, the sliding direction should coincide with the
direction of the shear traction vector, or

_sx* t þ Dt; i; jð Þ
_sy* t þ Dt; i; jð Þ ¼

tx* t þ Dt; i; jð Þ
ty* t þ Dt; i; jð Þ :

After algebraic manipulations, the above equations lead to
the following expressions for the predicted rates _s*n (t + Dt; i,
j), n = x, y:

_sn* t þ Dt; i; jð Þ ¼ Yn* t þ Dt; i; jð Þ

� 1� tc* t þ Dt; i; jð Þ=Y* t þ Dt; i; jð Þ
m=2b

:
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If the cell (i, j) has slip path length less than d0 at time t but
larger than d0 at time t + Dt, this calculation can result in
slip rates _s*n (t + Dt; i, j) that correspond to the (resolved)
shear stress in the direction of motion lower than td = �sn
md. This is because the above calculation for the time step Dt
will be governed by the decreasing part of the friction law,
and hence, at time t + Dt, this decreasing part may extend
beyond slip d0 and below the dynamic friction td = �sn md.
Yet the resolved shear stress cannot be less than the frictional
strength during sliding. To remedy that, we compute the

resolved shear stress

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tx*
2 t þ Dt; i; jð Þ þ ty*

2 t þ Dt; i; jð Þ
q

that corresponds to the computed slip rates _s*n (t + Dt; i, j)
and, if the stress is less than td = �sn md, we reassign the
stress to be equal to td = �sn md and then recompute the
corresponding _s*n (t + Dt; i, j).
[96] 3. Make the second predictions of the values of

tangential discontinuities, s**n (t + Dt; i, j), their Fourier
coefficients, S**n (t + Dt; k, m), slip path length, ‘** (t + Dt;
i, j), and stress transfer functionals, f**n (t + Dt; i, j), at time
t + Dt assuming that the slip velocities stay constant and
equal to (_sn (t; i, j) + _s*n (t + Dt; i, j))/2 throughout the time
step. Hence we iterate the second time on our solution,
improving it. The steps are analogous to those in stage 1.
For example, we now write

sn** t þ Dt; i; jð Þ ¼ sn t; i; jð Þ þ Dt _sn t; i; jð Þ þ _sn* t þ Dt; i; jð Þð Þ=2;
Sn** t þ Dt; k;mð Þ ¼ Sn t; k;mð Þ þ Dtð _Sn t; k;mð Þ

þ _Sn* t þ Dt; k;mð ÞÞ=2;
‘** t þ Dt; i; jð Þ ¼ ‘ t; i; jð Þ þ Dt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_sx t; i; jð Þ þ _sx* t þ Dt; i; jð Þð Þ2þ _sy t; i; jð Þ þ _sy* t þ Dt; i; jð Þ
� �2

q

=2;

where S*n (t + Dt; k, m) are computed from _s*n (t + Dt; i, j)
using FFT.
[97] 4. Find the second prediction of slip rates, _s**n (t +

Dt; i, j), corresponding to the predicted slips ‘** (t + Dt; i, j)
and functionals f**n (t + Dt; i, j). The consideration is
analogous to stage 2 (where all quantities with one star
are replaced with quantities with two stars).
[98] 5. Treat the second predictions as the values of the

field variables at time t + Dt. Store tangential discontinuities
(slips) sn(t + Dt; i, j), the Fourier coefficients of slips Sn (t +
Dt; k, m), slip rates _sn (t + Dt; i, j), n = x, y, and slip path
length ‘ (t + Dt; i, j) for use in the next time step. In
addition, supplement the slip rate history by storing the
value ( _Sn (t; k, m) + _S*n (t + Dt; k, m))/2 for the time interval
(t, t + Dt] so that the slip rates are now known, in terms of
their Fourier coefficients, for (discretized) prior time t0, 0 <
t0 < t + Dt.
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