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Abstract 

Tests for the Extreme Value distribution based on the sample skewness and kurtosis coefficients 
are shown to be related to components of smooth tests of goodness of fit and are compared with tests 
due to Anderson-Darling, Shapiro-Brain and Liao-Shimokawa. Two examples are given. 
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1. Introduction 

The Normal or Gaussian distribution is probably the most used symmetric distribution. 
Two traditional tests of fit for this distribution are based on the moment statistics for 
skewness and kurtosis. The Extreme Value distribution is a commonly applied skewed 
distribution. See, for example, Coles (2004, section 4 of Chapter 3 and the list on page 1). 
Here we look at the performance of skewness and kurtosis tests for the Extreme Value 
distribution as well as three other tests of fit, suggested by Stephens (1977), Shapiro-Brain 
(1987) and Liao-Shimokawa (1999). 

Traditional applications of the Extreme Value distribution involve estimating the 
occurrence of say, the maximum ‘one in 100 years’ flood based on less than 100 years of 
data. For example, author Best used annual maximum daily rainfall figures for about 75 
* 1559-8616/07-1/$5 + $1pp  
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years from locations along the Australian ‘Sydney to Newcastle freeway’ to estimate ‘one 
in 100 years’ maximum 24 hour rainfall. This would have helped road engineers plan 
drainage systems for the freeway during its construction in the 1980s. Similarly the Port 
Pirie annual maximum sea-levels data given below might help Port authorities decide on 
the height of a new sea-wall. 

A more recent application of the Extreme Value distribution is in molecular biology 
where DNA protein sequences are aligned with those in a database. Under reasonable 
assumptions a random score distribution for optimal ungrouped alignments follows the 
Extreme Value distribution. See Karlin and Altschul (1990).  

Besides empirical evidence that the Extreme Value distribution fits various maximum 
or minimum data, there are theoretical justifications for its use and these are outlined, for 
example, in Coles (2004, Chapter 3). 

The usual Extreme Value distribution has two parameters: a location parameter α and a 
dispersion parameter β. If we let X have the Extreme Value distribution then the 
standardized Extreme Value variable T = (X – α)/β has probability density function 

fT(t) = exp{–t –exp(–t)},  – ∞  < t < ∞ .                                              (1.1) 

Two potential applications involving the Extreme Value distribution follow. 

Port Pirie data. The annual maximum sea-levels recorded at Port Pirie (just north of 
Adelaide), South Australia for 1923-1987 are given in Table 1. These are typical of data 
that are modelled by the Extreme Value distribution. 

Glass Fibre data. Sixty-three breaking strengths of glass fibres of length 1.5 cm were 
reported by Smith and Naylor (1987). No units for the breaking strengths were given. The 
data are given in Table 2. Are these data well modelled by the Extreme Value 
distribution? 

In section 4 below we will test the fit of the Extreme Value distribution for these small 
data sets. Section 2 gives some definitions while section 3 gives some critical values and 
power comparisons. 

2. Definitions  

If x1, … , xn are data, and if /jj
x x n= ∑  and if s2 = ( )2

/jj
x x n−∑ , we define the 

sample skewness and kurtosis by 

√b1  =  ( ){ }3
/ /jj

x x s n−∑                                                                (2.1)     

and 

b2  =  ( ){ }4
/ /jj

x x s n−∑                                                                  (2.2) 

respectively. These two moment statistics can be related to smooth tests of fit. Based on a 
random sample X1, … , Xn, if {hr(x; β)} is a set of complete orthonormal functions on the 
hypothesized distribution, Rayner and Best (1989) test goodness of fit using the 
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components Vr = ( )1
ˆˆ; , /n

r jj
h X nα β

=∑ , where typically, but not necessarily, ( α̂ , β̂ ) is 

a maximum likelihood estimator of (α, β). 

Table 1. Annual maximum sea-levels, recorded in 
metres at Port Pirie, South Australia 1923-1987 

 
4.03 3.96 4.06 4.11 3.91 
3.83 3.85 3.71 4.24 3.72 
3.65 3.93 3.96 3.96 4.00 
3.88 3.75 4.06 4.21 3.66 
4.01 3.63 4.55 3.74 3.62 
4.08 3.57 3.79 3.85 4.33 
4.18 4.25 3.89 3.88 4.55 
3.80 3.97 4.11 3.66 3.75 
4.36 4.05 3.85 4.11 4.08 
3.96 4.24 3.86 3.71 3.90 
3.98 4.22 3.86 4.18 3.88 
4.69 3.73 4.21 3.90 3.94 
3.85 4.37 4.01 3.78 4.33 

 

Table 2. Breaking strengths of 63 glass fibres 

 
0.55 0.74 0.77 0.81 0.84 
0.93 1.04 1.11 1.13 1.24 
1.25 1.27 1.28 1.29 1.30 
1.36 1.39 1.42 1.48 1.48 
1.49 1.49 1.50 1.50 1.51 
1.52 1.53 1.54 1.55 1.55 
1.58 1.59 1.60 1.61 1.61 
1.61 1.61 1.62 1.62 1.63 
1.64 1.66 1.66 1.66 1.67 
1.68 1.68 1.69 1.70 1.70 
1.73 1.76 1.76 1.77 1.78 
1.81 1.82 1.84 1.84 1.89 
2.00 2.01 2.29   

 

For the normal distribution put ˆˆ( ) /T x α β= − in which ˆ Xα = and ˆ ,Sβ = the sample 
mean and standard deviation respectively, and then T has the standard normal distribution 
with orthonormal polynomials the Hermite-Chebycheff polynomials, the first few of 
which are given by  

h0(t) = 1, h1(t) = t, h2(t) = (t2 – 1)/√2, h3(t) = (t3 – 3t)/√6, and h4(t) = (t4 – 6t2 + 3)/√24. 
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Thus for the normal V1 = ( )11
/n

jj
h t n

=∑  ≡ 0, V2 = ( )21
/n

jj
h t n

=∑  ≡ 0, with 

 V3 = ( )31
/n

jj
h t n

=∑  = ( )3
1

3 / 6n
j jj

t t n
=

−∑  = ( ){ }3

1
/ / 6n

jj
x x s n

=
−∑  = 1 / 6nb  and 

 V4 = ( )41
/n

jj
h t n

=∑  = ( )4 2
1

6 3 / 24n
j jj

t t
=

− +∑ n    

      = ( ){ } ( ){ }4 2

1
/ 6 / 3 / 24n

j jj
x x s x x s n

=
⎡ ⎤− − − +⎢ ⎥⎣ ⎦∑  =   ( )2 3 / 2b n− 4       

For the Extreme Value distribution √b1 and b2 can also be simply related to V3 and V4. 
However the orthonormal polynomials are more complicated. Appendix A gives the 
formulae for calculating V1, V2, V3 and V4 for any univariate distribution. Using these 
formulae and the moments also given in Appendix A we find that for the Extreme Value 
distribution 

   h0(t) = 1, h1(t) = √6(t – γ)/π, h2(t) = (6/ π2){(t – γ)2 – 1.462(t – γ) – π2/6}/√8.392 , 

   h3(t) = (6√6/π3){(t – γ)3 – 4.662(t – γ)2 - 2.069(t – γ) + 5.265}/√20.00 , and 

   h4(t) = (36/π4){(t – γ)4 – 9.693(t – γ)3 + 10.792(t – γ)2 + 31.160(t – γ) – 9.060}/√219.72 , 

where γ is Euler’s constant, approximately 0.57722.           

For the Extreme Value distribution the MOM (method of moments) estimators α  of α 
and β  of β are given by 

{ }2 ( / ) 6 ( ) /jj
X X X nα γ π= − −∑                                               (2.3) 

and 

{ }26 ( ) /  /ij
X X nβ π= −∑ .                                                        (2.4) 

If  MOM estimation  is used in calculating the Vr  for the Extreme Value distribution then 
V1 ≡ 0, V2 ≡ 0, as for the Normal distribution, and the first two non-trivial smooth test 
statistics V3 and V4 are given by 

3 1( 1.139547) / 20 /V b= − n  and V4 = (b2 – 7.55 1b  + 3.21)/√(219.72/n) ,     (2.5) 

where 1.139547 is the coefficient of skewness for the Extreme Value distribution.  

Rayner and Best (1989) observe that for the Normal distribution V3 and V4 have an 
asymptotic N(0, 1) distribution. In Appendix A we show that for the Extreme Value the Vr 
variances are no longer unity. Moreover for the normal distribution V3 and V4 are 
asymptotically independent. Clearly this is not the case for the Extreme Value distribution, 
as V4 depends on both 1b  and b2. In interpreting V4 we observe that if V3 is not 
significant and V4 is, then this significance is due to b2. If V3 and V4 are both significant 
then it is not clear whether the significance of V4 is due to 1b  or b2. 

Throughout the remainder of this article we will present results in terms of V3 and V4 
instead of 1b  and . 2b
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For the Extreme Value distribution if the maximum likelihood estimators of α and β are 
used it is no longer true that V1 ≡ 0 and V2 ≡ 0. Moreover when maximum likelihood 
estimators are used V3 and V4 no longer have simple links to 1b  and  and can no 
longer be simply interpreted. Note that Rayner et al. (1995) and Henze and Klar (1996) 
caution about using 

2b

1b  and  to ‘diagnose’ the type of alternative. Previous studies on 
the zero inflated Poisson distribution by Thas and Rayner (2005) and on the logistic by 
Thas et al. (2007) indicate that tests based on V

2b

3 and V4 using MOM estimators have small 
sample powers very similar to tests based on V3 and V4 using MLE estimators. Although 
we have not done such a comparison here, we expect a similar result. 

An advantage of using the smooth test components V3 and V4 is that their squares are 
score test statistics for testing for focused alternatives, and hence are weakly optimal. 
Sums of squares of such components are also score test statistics for testing for more 
omnibus alternatives, and are again weakly optimal. These comments seem likely to apply 
when MOM estimators, rather than MLE estimators are used, as V3 and V4 are 
asymptotically normal. Klar (2000, Theorem 2.1) gives a proof. This asymptotic normality 
implies a quadratic form statistic similar to a score test statistic can be given.  

Further, these components may be used to obtain an easily calculated density estimate 
for the data. In the Normal case such an estimate is known as a Gram-Charlier Type A 
series density estimate and is given by φ (t){1 + V3h3(t)/√n + V4h4(t)/√n + …}. An 
analogous estimate is available for the Extreme Value. Although these density estimates 
can be negative, this problem can be rectified as, for example, in Gajek (1986). 

Stephens (1977) has suggested that tests of fit for the Extreme Value distribution should 
be based on statistics themselves based on the empirical distribution function (EDF). As 
with other distributions, the test based on the Anderson-Darling statistic, A2 say, seems to 
perform well for most alternatives, and so we compare it with the tests based on and 

 Suppose that

2
3V

2
4 .V α and β are estimated by maximum likelihood, with the estimators 

being denoted by α̂  and β̂  respectively. Further, suppose that ( ) exp{ exp(jz = − − ( )( jx    
ˆˆ ) / }α β−  where the ( )jx are the ordered data and they and the ( )jz are in ascending order.  

Then    

A2  =   ( ) ( ) ( ) ( )( ){ }1
1

1/ 2 1 ln ln 1
n

j n
j

n n j z z + −
=

− − − + −∑ j                         (2.6) 

Here  { } { }ˆ ˆexp( / ) / exp( / )j j jj j
X X X X ˆβ β= − ∑ ∑ β  and this equation needs to be 

solved iteratively. Then { }ˆ ˆˆ log exp( / ) /jj
X nα β β= − −∑ . 

We also consider two more tests of fit that have recently appeared in the literature. Pal 
et al. (2006, section 9.4) suggest testing for the Extreme Value distribution using the test 
based on the Wn statistic introduced by Shapiro and Brain (1987). To define Wn we follow 
Pal et al. (2006, p.244) and first define 

fj = ln{(n + 1)/(n – j + 1)}, for j = 1, … , (n – 1), with fn = n –
1

1

n

j
j

f
−

=
∑ , and  
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fn+j = fj {1 + ln(fj)} – 1, for  j = 1,… , (n – 1), with f2n = 0.4228n – 
1

1

n

n j
j

f
−

+
=

∑ .          (2.7) 

Then write 

A1  =   ( )

1

1

n

j j
j

f X
−

=
∑     and    A2  =   ( )

1

1

n

n j j
j

f X
−

+
=

∑ ,                                    (2.8) 

in which the X(j) are the ordered data, and finally 

Wn  =   {0.6079A2   -    0.2570A1}2/{n ( 2

1

n

j
j

)X X
=

−∑ },                      (2.9) 

To carry out a test of fit based on Wn at a given significance level we need upper and 
lower critical values corresponding to half that significance level. Critical values are given 
by Pal et al. (2006, p.245); for n = 40 the lower 0.025 value is 0.4054 and the upper 0.025 
value is 0.90358. 

Liao and Shimokawa (1999) suggest testing for the Extreme Value distribution using a 
statistic Ln given by 

Ln = ( ) ( ) ( ) ( )( )
1

1 1max , / 1
n

j j j j
j

j jz z z z
n nn =

−⎧ ⎫− − −⎨ ⎬
⎩ ⎭

∑ .                    (2.10) 

This test was suggested in an attempt to combine the desirable properties of the 
Kolmogorov-Smirnov, Cramer-Von Mises and Anderson-Darling tests. Liao and 
Shimokawa (1999, Table II) gives the critical values and for n = 40 the 0.05 value is 
0.992. 

In the following section we use one-sided tests for , , A2
3V 2

4V 2 and Ln. We use a two-
sided test for Wn. 

3. Critical Values and Powers 

In Table 3 we study the approach to the asymptotic critical value of 3.84 for 
 and (219.72/283.86)  as the sample size n increases with test size 

0.05. The multipliers (20/31.68) and (219.72/283.86) are discussed in Appendix A. It 
appears V

2
3(20.00 / 31.68)V 2

4V

3 and V4 approach normality as n tends to infinity but that convergence is slow. 
Hence for finding p-values for tests based on  and  the parametric bootstrap is 
recommended. See Gürtler and Henze (2000) for a discussion of the parametric bootstrap 
in the goodness of fit context. 

2
3V 2

4V

In the following power study random values from the distributions shown were found, 
or derived from, IMSL (1995) routines. For n = 40 and a test size of 5% a simulation study 
based on 100,000 Monte Carlo samples found the 5% critical values of (20/31.68)  and 
(219.72/283.86) , to be 1.00 and 2.88 for a null standard Extreme Value distribution. 
Following Stephens (1977), A

2
3V

2
4V

2(1 + 2/n) has 95% critical value of 0.76. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 (
A

us
tr

al
ia

)]
 a

t 1
8:

15
 1

3 
N

ov
em

be
r 

20
13

 



Comparison of Five Tests of Fit for the Extreme Value Distribution                             95 
 

Table 3. Critical values of (20/31.68)  and (219.72/283.86)  
for test size 0.05, n as shown and 10,000 Monte Carlo 
simulations. 

2
3V 2

4V

 
n (20/31.68)  2

3V (219.72/283.86)  2
4V

20 1.06 2.88 
100 2.00 2.87 
500 3.05 2.86 

1,000 3.39 3.09 
5,000 3.68 3.30 
20,000 3.69 3.59 

100,000 3.72 3.78 
∞  3.84 3.84 

 

Table 4. Powers of five tests of fit for the Extreme Value distribution for n = 40, test size 0.05 and 
10,000 Monte Carlo simulations. 

 
Alternative 1β  (20/31.68)  2

3V A2 Wn  (219.72/283.86)  2
4V Ln

Uniform (0, 1) 0.0 0.69 0.61 0.17 0.61 0.48 
Exponential (1) 2.0 0.16 0.71 0.61 0.20 0.72 
Weibull (2.5) 0.4 0.23 0.15 0.18 0.31 0.10 
Weibull (2) 0.6 0.07 0.07 0.04 0.10 0.05 
Gamma (2) 1.4 0.05 0.18 0.13 0.05 0.18 
Beta (2,1.5) – 0.2 0.90 0.66 0.70 0.91 0.51 
Beta (2,2) 0.0 0.63 0.37 0.38 0.67 0.25 
Beta (2,2.5) 0.2 0.38 0.23 0.19 0.44 0.14 
Extreme Value 1.1 0.05 0.05 0.05 0.05 0.05 
Lognormal (0.5, 1) 6.2 0.52 0.90 0.90 0.65 0.92 
Normal (0,1) 0.0 0.59 0.46 0.61 0.70 0.40 

 

Table 4 shows powers for tests based on , A2
3V 2, Wn,  and L2

4V n for various 
alternatives. These alternatives were chosen to give a range of values for √β1, the 
population skewness coefficient, and so that commonly used alternatives to the Extreme 
Value such as the Weibull, Gamma, Normal and Lognormal were included. We see that 
the test based on 1b 2

3

2
4

2
3V

2
4

2
3

, or, equivalently, V , does well for symmetric alternatives as does 

that based on V , and the A2 test does well for skewed alternatives. It was expected that 
the  test would have poor power for alternatives with skewness coefficient ‘near’ 
1.13955. The Wn test has similar power to that based on A2, except for the uniform and 
normal alternatives, where the Wn test is worse and better respectively. It appears that Ln 
fares a little worse than A2, and V  and does a little better than V  for these alternatives. 
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4. Examples 

Port Pirie data. We find ˆˆ( ,  )α β  = (3.87, 0.195) as does Coles (2004, p.63). Further,  
= 0.71,  = 0.36, W

2
3V

2
4V n = 0.68 and A2 = 0.17 with parametric bootstrap p-values, based on 

10,000 simulations, of 0.41, 0.55, 0.60 and 0.95 respectively. Appendix B explains how to 
find parametric bootstrap p-values. It appears the Port Pirie data are well fitted by the 
Extreme Value distribution and this agrees with the graphical assessment of Coles (2004, 
figure 3.6). For these data the test based on  gives a smaller p-value than that based on 
A

2
3V

2.  
Glass fibre data. In his analysis of these data, Coles (2004, p.64) used the negated data. If 
we do the same we find ˆˆ( ,  )α β  = (– 1.66, 0.27),  = 0.19,  = 0.03, W2

3V 2
4V n = 0.73 and A2 

= 0.92. The parametric bootstrap p-values are 0.60, 0.85, 0.31 and 0.02. This time A2 gives 
a significantly smaller p-value. A quantile-quantile plot as in Coles (2004, Figure 3.7) 
exhibits some non-linearity in agreement with the A2 p-value. We suggest that graphical 
assessment of fit should usually be complemented by use of , , W2

3V 2
4V n and A2. Given 

the significant A2 value perhaps a three parameter model is needed for these data and that 
is the approach of Coles (2004, p.64), although he does not carefully validate his model. 
For these data with 1b  = 0.90 we would not expect the test based on  to have large 
power.  

2
3V

5. Conclusion 

For the Extreme Value distribution the Anderson-Darling test based on A2 provides a 
more powerful test than the tests based on the statistics  and  when there are 
skewed alternatives, while the reverse is true for symmetric alternatives. The test based on 
W

2
3V 2

4V

n has powers similar to those based on the Anderson-Darling test for most alternatives. 
The test based on  does a little better than that based on , while the A2

4V 2
3V 2 test is 

probably the best overall. The statistics  and  can be used to suggest alternative 
models and can give density estimates. 

2
3V 2

4V

We also note that if we wish to test a set of data for agreement with the two parameter 
Weibull distribution then each data point should be transformed to the negative of its 
natural logarithm. Then under the null hypothesis the transformed data will follow an 
Extreme Value distribution. 
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Appendix A:  Definition of V3 and V4 for the Extreme Value Distribution 

Suppose, as usual, that μ is the population mean and μr, r = 2, 3, 4, … are the central 
moments. For the standard (α = 0, β = 1) Extreme Value distribution we can derive the 
following moment values: 
     μ = 0.57722,   μ2 = 1.64493,  3 2.40411,μ =  4 14.61136,μ =  

    5 64.43235,μ =  6 406.87347,μ =  μ7 = 2815.13 and  μ8 = 22630.61.                       (A.1) 

The constant C3 in the denominator of V3 given subsequently can be derived by 
substituting these moment values in  

   C3 = { }2 2
6 3 5 3 3 4 3 3 3 3 3 3 3 2 3 22 ( 2 ) 2( ) ( 2 ) /a a b a b r b a r r 2 3μ μ μ μ μ− + − + − + + + μ

/d

              (A.2)  

where  

   2 2
3 4 3 2 2μ μ μ μ= − − 3 5 3 4 2 2 3 3( / ) /, a dμ μ μ μ μ μ= − −

3 3

,  

    and .    (A.3) 2 2
3 4 2 2 4 3 5 2 3( / / ) /b dμ μ μ μ μ μ μ μ= − − + 3

3 3 4 3 2 2 5(2 / ) /r dμ μ μ μ μ μ= − −

For the normal distribution this constant C3 is 6.0 and for the Extreme Value distribution 
is 20.0. However notice that asymptotically, while var( 1b ) for a normal distribution is 

6/n, var( 1b ) ≠ 20/n for the Extreme Value distribution. In fact, Stuart and Ord (1994, 

Exercise 10.26) give, for any distribution, the large sample variance of 1b  as  

    { }1 3 2 1.5 2
6 2 4 2 3 2 4 2 5 3 2/ 6 / 9 ( / )(9 / 35) 3 /n 4μ μ μ μ μ μ μ μ μ μ μ− − + + + − .                          (A.4) 

Thus for the Extreme Value distribution, in large samples, var( 1b ) = 31.68/n. 
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The expressions for V3 and V4 quoted in section 2 above can be derived from 

V3 = ( )3
1

/
n

j
j

h t n
=

∑   

           = ( ) ( ) ( ){ }3 23/ 2
2 3 3 3

1
/ /

n

j j j
j

t a t b t r Cμ μ μ μ−

=

− − − − − −∑ 3 n                              (A.5) 

and  

V4 = ( )4
1

/
n

j
j

h t n
=

∑   

           = ( ) ( ) ( ) ( ){ }4 3 22
2 4 4 4 4

1
/ /

n

j j j j
j

t a t b t r t d Cμ μ μ μ μ−

=

− + − + − + − +∑ 4 n          (A.6) 

Now for V4, let 

c1 = μ2μ4 – 2
3μ  – 3

2μ ,   c2 = μ3μ4 – 2
2μ μ3 – μ 2μ5  ,  

c3 = μ3μ5 – 2
2μ μ4 – 2

4μ  – μ2
2
3μ ,   and  c4 = 2

2μ μ5 – 2μ2μ3μ4 + 3
3μ .                         (A.7) 

Now put e = – (c1μ6 + c2μ5 + c3μ4 + c4μ3) and define a4, b4, c4 and d4 by 

      2
4 1 1 7 1 2 6 1 3 5 1 4 4a c e c c c c c c cμ μ μ= + + + μ  , 

      2
4 1 1 2 7 2 6 2 3 5 2 4 4b c e c c c c c c cμ μ μ μ ( )2

2 6 3 5 2 4e= + + + – μ μ μ μ μ− − , μ

      2
4 1 1 3 7 2 3 6 3 5 3 4 4r c e c c c c c c cμ μ μ= + + + μ – ( )2

2 3 4 3 6 2 5 4 5e μ μ μ μ μ μ μ μ μ− − + , 

      2
4 1 1 4 7 2 4 6 3 4 5 4 4d c e c c c c c c cμ μ μ μ ( )2 2 2

2 4 3 4 2 3 5 2 6e= + + + – μ μ μ μ μ μ μ μ μ− + − ,          (A.8) 

Finally define C4 by 

( ) ( )4 2
2 4 8 4 7 4 4 6 4 4 4 52 2 2C a a b a b rμ μ μ μ= + + + + + μ

2 2 2b a r d a d b r

 

         ( ) ( )2
4 4 4 4 4 4 4 4 4 3μ μ+ + + + + + ( )2 2

4 4 4 2 42r b d dμ + .               (A.9)       +

These formulae for V3 and V4 apply for any distribution and can be derived using the 
determinant formula in Lancaster (1969, p.49) or the recurrence relation discussed in Thas 
et al. (2007). 

For V4 we find C4 = 219.72 after substituting in . Although we don’t give details 
here it can be shown that if MOM estimators are used, asymptotically var(V

4
2 4Cμ

4) = 1.2919 = 
283.86/219.72. 

For completeness note that  

      h1(t) = (t – μ)/√μ2 and h2(t) = {(t – μ)2 – μ3(t – μ)/μ2 – μ2}/ ( )2 2
4 3 2 2/μ μ μ μ− − . 
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Appendix B:  Parametric Bootstrap p-values 

Gürtler and Henze (2000, p. 223) suggest p-values can be obtained using an analogue of 
the parametric bootstrap. If Wn denotes a test statistic calculate wn := Wn(x1, x2, … , xn) 
where x1, x2, … , xn denotes, as usual, the data. Find estimates α̂  and β̂  (not necessarily 
the maximum likelihood estimates) from the data and conditional on those estimates, 
generate B = 10,000 say pseudo-random samples of size n, each having the Extreme Value 
( α̂ , β̂ ) distribution. For j = 1, … , B compute the value  on each random sample. 

Then the parametric bootstrap p-value is the proportion of  that is at least the 

observed w

*
,n jW

*
,n jW

n, namely ( )*
,1

/B
n j nj

I W w
=

≥∑ B . 

The above requires random Extreme Value (α, β) values. Assuming a random uniform (0, 
1) generator is available, then a random Extreme Value (α, β) value is α – β  ln(– ln r), 
where r is a random uniform (0, 1) value. To obtain p-values for two-tailed tests proceed 
as above and find the p-value, P say. Then if P < 0.5 the two-tailed p-value is 2P. If P > 
0.5 the two-tailed p-value is 2(1 – P). 
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