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SUMMARY  

Reinforced concrete coupled walls are a common lateral load resisting system used in multi-storey 

buildings. The effect of the coupling beams can improve seismic performance, but at the same time adds 

complexity to the design procedure. A case study coupled wall building is designed using Force-Based 

Design (FBD) and Direct Displacement-Based Design (DDBD) and in the case of the latter a step by 

step design example is provided. Distributed plasticity fibre-section beam element numerical models of 

the coupled walls are developed in which coupling beams are represented by diagonal truss elements and 

experimental results are used to confirm that this approach can provide a good representation of 

hysteretic behaviour. The accuracy of the two different design methods is then assessed by comparing 

the design predictions to the results of non-linear time-history analyses. It is shown that the DDBD 

approach gives an accurate prediction of inter-storey drift response. The FBD approach, in accordance 

with NZS1170.5 and NZS3101, is shown to include an impractical procedure for the assignment of 

coupling beam strengths and code equations for the calculation of coupling beam characteristics appear 

to include errors. Finally, the work highlights differences between the P-delta considerations that are 

made in FBD and DDBD, and shows that the code results are very sensitive to the way in which P-delta 

effects are accounted for.
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1 INTRODUCTION 

In the seismic design of structures, Force-Based Design 

procedures are most commonly adopted by design codes. In 

New Zealand this is reflected in the two standards used for the 

seismic design of reinforced concrete (RC) structures; 

NZS1170.5–Structural Design Actions Part 5: Earthquake 

Actions [2004] and NZS3101–Concrete Structures Standard 

[2006]. It is now known that most code FBD approaches are 

based on a number of flawed concepts as explained by 

Priestley [1993, 2003] and these flaws can potentially lead to 

non-conservative designs. As a result, Displacement-Based 

Design (DBD) procedures have been developed to correct 

these issues. The development of DBD procedures is further 

motivated by the increasing focus on Performance-Based 

Earthquake Engineering, in which more robust performance 

levels are established in comparison to the traditional 

prescriptive approaches and design solutions are tailored to 

meet client needs. The performance levels are typically based 

on damage to the structural and non-structural elements, which 

in turn are directly related to displacements and deformations 

(or to floor accelerations in the case of acceleration sensitive 

non-structural elements and contents). 

This paper considers the Direct Displacement-Based Design 

method of Priestley et al. [2007] and the Force-Based Design 

approach, in accordance with the New Zealand standards, and 

their application to the design of RC coupled walls. RC 

coupled walls can be used to resist part, or all, of the lateral 

loads induced in a building from wind or seismic actions. 

 

 

Figure 1: Mechanisms resisting the overturning moment in 

RC coupled walls from Paulay [2002]. 

In some respects they are superior in performance to 

equivalent cantilever wall systems as they resist overturning 

moments through two different mechanisms (i) the flexural 

resistance of the individual walls and (ii) the axial force 

couple generated in the walls by the coupling beams. This is 

demonstrated in Figure 1, where M1 and M2 are the moments 

resisted by the two individual walls and T and l are the axial 

force and lever arm respectively, which resist the remainder of 

the overturning moment. The other major point of interest 

regarding the seismic response of coupled walls is that for 

typical geometric configurations the ductility demand on the 
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coupling beams is large. Paulay [1969] showed that 

conventionally reinforced coupling beams were not capable of 

sustaining such large ductility demands and as such the 

concept of diagonally reinforced coupling beams was 

developed [Paulay & Binney, 1974]. Only diagonally 

reinforced coupling beams are examined in this work, but the 

design considerations made here should also apply to other 

coupling beam configurations that exhibit, under inelastic 

reversed cyclic loading, behaviour that can be approximated 

by a bilinear envelope with positive post-yield stiffness. 

To allow for a comparison between the two design methods, a 

simple case study structure (described in Section 2) is 

designed using both DBD and FBD (as described in Sections 3 

and 4). The likely response of the designed structures is then 

examined using non-linear time-history analyses, with the 

main focus placed on how accurately each design method can 

estimate the displacement and deformation demands (Sections 

5 and 6). It should be noted that the intent of design codes may 

not necessarily be to provide an accurate prediction of 

structural response, but instead to provide a means of ensuring 

structures satisfy the minimum performance objectives of the 

codes, i.e., they may have additional conservatism built in. It 

is the authors’ opinion that an optimal seismic design 
approach should seek to accurately predict structural response 

such that the design method leads to similar levels of risk for 

different designs. Following this comparison the significance 

of P-delta effects on the response of coupled wall structures 

and how they are accounted for in NZS1170.5 [2004] is 

examined (Section 7). Conclusions are made and a list of 

symbols is provided at the end of the paper. 

2 CASE STUDY STRUCTURE 

The simple case study structure to be designed is shown in 

Figure 2. It is seven storeys tall, with each storey having a 

height of 3.4m. The floor area is 625m2 and the distributed 

seismic mass of each level is taken to be 10kPa, giving a 

seismic mass at each floor level of 637t. In the direction being 

considered, two coupled walls each resist half of the lateral 

loads. In the perpendicular direction it is assumed there is 

another lateral load resisting system, independent of the 

coupled walls. The majority of the gravity loads are carried by 

gravity-only columns, which do not contribute to lateral load 

resistance. The remaining gravity loads are carried by the 

coupled walls, with each individual wall supporting a weight 

of 300kN per floor level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Plan view of case study structure. 

 

It is assumed that through a combination of architectural 

restraints and preliminary sizing of members, the following 

dimensions for the walls and coupling beams are to be used in 

design; coupling beam thickness, tCB =200mm, coupling beam 

depth, hCB=800mm, coupling beam span, LCB =2000mm, wall 

thickness, tw=250mm and wall length, Lw =4000mm. The plan 

view and elevation of the case study structure are shown in 

Figure 2 and Figure 3 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Elevation of a coupled wall in case study 

structure. 

 

The material properties to be used in the design are provided 

in Table 1. 

Table 1. Material properties for design. 

Concrete f'c (MPa) 35 

Reinforcing 

fy (MPa) 500 

fu/fy 1.3 

εs,u 
 10% 

  

The structure is assumed to be on a site with soil class D and a 

hazard factor of Z=0.4 (NZS1170.5, 2004). The importance 

level is two (Ru=1.0), corresponding to ‘normal structures,’ 
and there are no near fault effects (N(T,D)=1.0). The elastic 

site hazard acceleration spectrum C(T) is then found from 

Equation 1. 

     DTZRNTCTC h ,  (1) 

 

where Ch(T) is the appropriate spectral shape factor for soil 

class D found from NZS1170.5 [2004]. This gives the design 

spectra for pseudo-acceleration and displacement shown in 

Figure 4 and Figure 5 respectively. The displacement 

spectrum is derived from the acceleration spectrum using the 

simple relationship SD=PSA/2, where SD and PSA are 

spectral displacement and pseudo spectral acceleration 

respectively and ω is the circular frequency (=2π/T). Also 

shown in the two figures are the response spectra for ten 

different real accelerograms to be used in the non-linear time-

history analyses (later in Section 5) along with the mean 

response spectra. 
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Figure 4: Design pseudo-acceleration spectrum and 

response spectra for accelerograms used in 

NTHA. 

 

Figure 5: Design displacement spectrum and response 

spectra for accelerograms used in NTHA. 

3 DISPLACEMENT-BASED DESIGN  

3.1 Overview of Direct Displacement-Based Design 

The fundamental approach of Direct Displacement-Based 

Design from Priestley et al. [2007] can be explained with 

reference to Figure 6. In the first part (a), the multi-degree-of-

freedom (MDOF) structure is converted to an equivalent 

single-degree-of-freedom (SDOF) system, with an effective 

mass, me, and an effective height, He. In the next part (b), the 

SDOF system is further characterised by determining the yield 

displacement, Δy, and design displacement, Δd, and these in 

turn give the displacement ductility demand, μ. The effective 

stiffness Ke, is also shown in Figure 6 (b), but this is not 

determined until the final step. In the third part (c), the 

ductility factor is used to determine an equivalent viscous 

damping (EVD) ratio. This is a function of ductility and will 

vary depending on the structural system and its corresponding 

hysteretic behaviour. In the final part (d), the design 

displacement spectrum is reduced by a factor dependent on the 

level of EVD. Using the reduced displacement spectrum, the 

design displacement is used to determine the effective period, 

Te. This is then used to calculate the effective stiffness and 

subsequently the design base shear of the SDOF system. 

For most buildings, the majority of the design effort will go 

into converting the MDOF structure into an SDOF 

representation along with the necessary parameters to fully 

characterise the system. The required strength of structural 

elements can then be determined through various means, 

however, typically this can be done through simple 

equilibrium considerations in conjunction with capacity design 

principles. The exact manner in which this is done will vary 

depending on the structural system and this work will focus on 

the procedure for coupled walls. Interested readers should 

refer to Priestley et al. [2007] and Sullivan et al. [2012] for 

guidelines specific to other structural systems. 

An important point regarding the general approach to DDBD 

is the consideration of accidental mass eccentricity, or lack 

thereof. NZS1170.5 requires the designer to consider an 

accidental eccentricity of 10% of the plan dimension 

orthogonal to the direction of loading.  Priestley et al. [2007] 

do not recommend the consideration of accidental mass 

eccentricities and therefore it is not included in DDBD. To 

allow for a fair comparison, the accidental mass eccentricity is 

neglected in both the DDBD and FBD of the case study 

structure. This could reflect the situation where the lateral load 

system in the perpendicular direction provides a high level of 

torsional resistance. In this case the effect of the accidental 

mass eccentricity on the coupled walls would be negligible. 

3.2 Application of DDBD to coupled walls 

The fundamental procedure described in Section 3.1 can be 

broken down in to a step-by-step procedure specific to coupled 

walls. This has been done by Priestley et al. [2007] and is 

reproduced here for the case study structure. In some steps the 

procedure has been slightly modified to meet the requirements 

of the displacement-based design model code DBD12 

[Sullivan et al, 2012] and match the work of Fox [2013]. The 

step-by-step procedure is as follows: 

 

Step 1- Selection of geometry and coupling ratio 

The length of the walls, coupling beam depth and coupling 

beam span must be defined at the start of the procedure. Like 

all designs, this will need to be based on experience or require 

some iteration until the preferred geometry is found. For 

coupled walls it is likely that the geometry may also need to 

meet rather strict architectural/functionality requirements as 

they are often incorporated into service cores in buildings. 

The designer should then choose a coupling ratio, β, that 

defines the proportion of overturning moment to be resisted by 

the coupling mechanism. This can be expressed by Equation 2. 

Selection of the coupling ratio at the start of the design process 

recognises the point made by Paulay [2002] that the 

distribution of strength throughout a structure should be the 

designer’s choice. In this design example a coupling ratio of 

0.35 is selected, and limiting the value helps ensure that the 

axial forces in the walls remain within acceptable limits (taken 

as 0.2f’cAg in compression and 0.2fyAs in tension). It should be 

noted that the ability to control the axial force in the walls in 

this manner does not occur in FBD and instead the axial forces 

in the walls are only influenced by changes in geometry. 
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
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Figure 6: Fundamentals of Direct Displacement-Based Design from Priestley et al. [2007]. 

 

Step 2- Determine height of contraflexure 

The second step involves computation of the expected height 

of contraflexure in the walls, which, as will become clear in 

step 5, is useful for the calculation of the yield and design 

displacement profiles. When a coupled wall system responds 

in the fundamental mode of vibration, the coupling beams 

cause the upper portions of the walls to experience bending 

moments with a reverse sign to those at the base of the wall. 

The height of contraflexure can be found by taking the 

smallest positive root of Equation 3, or alternatively it can be 

determined directly from Figure 7. It should be noted, 

however, that these equations only apply to coupled walls with 

a uniform coupling beam strength distribution over the height 

of the building, as is adopted for this design. If non-uniform 

beam strengths were desired, the overturning resistance 

offered by the coupling beams above each level should be 

computed and subtracted from the total overturning demand to 

establish a wall bending moment profile, from which the 

contraflexure height could be established (for details, see the 

equivalent procedure for frame-wall structures in Sullivan et 
al. 2005, 2006). Furthermore, Equation 3 and Figure 7 assume 

that all coupling beams have yielded prior to development of 

the limit state being considered. This may not be the case for 

the serviceability limit state and further investigation is 

required to evaluate the design method at low intensities. For 

the ultimate limit state this assumption leads to reasonable 

estimates of the height of contraflexure. 

The choice of making each coupling beam the same strength is 

again in line with the Paulay [2002] suggestion that the 

strength distribution is the designer’s choice. Uniform 

coupling beams make for easier construction and it was shown 

by Fox [2013] that at the ultimate limit state a uniform 

strength distribution gives superior performance when 

compared to a strength distribution derived from elastic 

analysis typical of FBD. For the case study structure, the 

selected strength proportions lead to a height of contraflexure 

of 16.2m (HCF/Hn=0.68). 
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Figure 7: Contraflexure height for coupled wall with 

uniform coupling beam strength distribution. 

 

Step 3- Determine the design plastic rotation at the base of the 
walls 

Three potentially critical design limits must be considered in 

the DDBD of RC coupled walls; (i) a code inter-storey drift 

limit (2.5% in accordance with NZS1170.5), (ii) coupling 

beam material strain limits, and (iii) wall material strain limits. 

These three different limits will be controlled by computing an 

allowable base plastic rotation of the RC walls. This will 

prove convenient for later calculation of the design 

displacement profile in step 5. 

To determine the allowable plastic rotation, it is first necessary 

to obtain rotation and curvature limits for the coupling beams 

and walls respectively, based on the material strain limits. For 

the coupling beams the force-displacement relationship can be 

defined by Equations 4 to 7. As coupling beams are typically 

subjected to large deformation demands relative to the walls, it 

is assumed that all coupling beams will have yielded at the 

ultimate limit state. Note that Equations 3 and 4 are adapted 

from Paulay [2002] and Equations 5 and 6 are taken from Fox 

[2013].  
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Figure 8: Geometry and mechanics of a diagonally reinforced coupling beam. 

 

The basis of each equation used to define the coupling beam 

force-displacement relationship is explained with reference to 

Figure 8. Equation 4 gives the shear force in the coupling 

beam at yield and assumes that the diagonal reinforcing in one 

direction is at yield in tension while in the opposite diagonal 

there is an equal compression force (required to satisfy 

equilibrium). The diagonal forces are then related to the beam 

shear force through consideration of the inclination angle of 

the diagonal reinforcing, α. Equation 5 gives the coupling 

beam chord rotation at yield, where chord rotation is defined 

as the angle between the tangent to the member axis at the end 

of the member and the chord connecting the two member 

ends. It assumes that the reinforcement yields over its full 

length, taken as the diagonal length between supports 

(LCB/cosα) plus an allowance for strain penetration (2LSP). 

Multiplying this length by the yield strain gives the elongation 

of the diagonal reinforcement at yield. The compression 

diagonal is assumed to deform 30% of the tension diagonal 

deformation and hence the factor of 1.3 is obtained. The 

vertical deformation is obtained through division by 2sinα and 
then the chord rotation is obtained through subsequent 

division by LCB. Equation 6 gives the coupling beam shear at 

the design limit state. It is of a similar form to Equation 4, 

however, instead of using the reinforcing yield stress, fy, it 

uses the stress corresponding to the limit state strain, fs,ls, thus 

accounting for strain hardening. Equation 6 differs further 

from Equation 4 by accounting for the deformed geometry of 

the coupling beam, which can have a significant effect at the 

ultimate limit state. Equation 7 gives the coupling beam chord 

rotation at the design limit state and is formulated by assuming 

that the shortening of the compression chord is negligible. 

Although this appears contradictory to Equation 5, it is 

reasonable given that beyond yield the compression strains 

remain relatively constant. At the ultimate limit state the 

contribution of compression strains to the overall coupling 

beam deformation are negligible relative to the much larger 

tension strains. 

CBsyyCB AfV ,, .sin2   (4) 
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

sin2

2cos/,

,
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For this example, the reinforcing material strain limit for the 

coupling beams is taken as 4%, which when applied in 

Equation 7 gives a limit state rotation of θCB,ls=0.0741 rad. 

Note that in this research the strain penetration of the coupling 

beam reinforcing into the walls has been neglected for both 

the design and non-linear time-history verification stages. This 

was done in order to simplify the modelling approach 

(described in Section 5) and as it has been neglected for both 

design and analysis, it does not affect the results in terms of 

assessing the design method. The effect of strain penetration is 

to increase both the yield and limit state rotations and thus 

reduce the stiffness of the coupling beams. As such, in 

practice it would be recommended that the effect of strain-

penetration be accounted for. At this stage it should also be 

noted that for DDBD low estimates of the expected material 

strengths should be used in design rather than lower bound 

characteristic values as used in NZS3101 [2006]. In 

accordance with Priestley et al. [1996] for lower bound 

characteristic strengths of f’c and fy, low estimates of expected 

material strengths can be taken as f’ce=1.3f’c and fye=1.1fy for 

concrete and reinforcing respectively. 

For the wall material strain limits, the corresponding limit 

state curvature for the base plastic hinge rotation is found from 

Equation 8, which is taken from Priestley et al. [2007]. A 

reinforcing steel material strain limit of 6% is used (it can be 

easily shown that concrete material strain limits will not 

govern in this case), which gives a limit state curvature of 

0.0150m-1. The yield curvature must also be determined. 

Using Equation 9 [Priestley et al., 2007] with expected 

material strengths, this is found to be 0.00138m-1. It should be 

noted that the yield and limit state curvatures are rather 

insensitive to variations in reinforcing ratio and axial load 

ratio. This has been demonstrated by Priestley et al. [2007] in 

the ranges of 0-2% and 0-15% for reinforcing ratio and axial 

load ratio respectively. 
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The design plastic rotation, θpCW, can be found using Equation 

10. The first line of Equation 10 considers the code specified 

drift limit, while the second and third lines consider the 

coupling beam and wall material strain limits respectively. For 

the case study structure it is found that the coupling beam 

material strain limits govern the design plastic rotation, which 

is found to be 0.0136 radians. The corresponding inter-storey 

drift is 2.48%; just under the code drift limit. 
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Step 4- Identify a higher mode reduction factor 

The effects of higher modes on the deformations of the 

structure are accounted for using the factors presented in 

Figure 9. The two different lines are set for buildings with 

plastic hinges up their height (frames) and plastic hinges at the 

base only (walls). As coupled walls have plastic hinges up 

their height, but also exhibit wall like behaviour, it was 

assumed that the most appropriate way to apply the higher 

mode factor was by taking an average weighted on the 

coupling ratio. In this case for the seven storey building with 

=0.35 the higher mode factor is 

  995.00.135.01985.035.0  . This is not particularly 

significant, as would be expected for a structure of this height, 

for which higher modes do not make a particularly large 

contribution. However, for taller structures the effects of 

higher modes can be significant and should be  accounted for. 
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Figure 9: Higher mode factors from DBD12 [Sullivan et 

al., 2012]. 

 

 

 

 

Step 5- Calculate the yield and design displacement profiles 

For the design of coupled walls in DDBD the yield 

displacement profile is defined as that at which the walls reach 

their nominal yield curvature and it should be noted that at this 

point it is assumed that all coupling beams have already 

yielded. To calculate the displacement profile at yield, the 

approach for frame-wall structures by Sullivan et al. [2005, 

2006] is adopted and it is assumed that the curvature of the 

walls can be approximated with the bilinear diagram as shown 

in Figure 10. The linear curvature profile implicitly makes 

allowance for some shear deformation and tension shift effects 

(see Priestley et al., 2007) and was shown to work well for RC 

frame-wall structures by Sullivan et al. [2004]. Above the 

height of contraflexure it is assumed, for simplicity, that the 

wall curvatures are zero. This latter assumption can be shown 

to have little effect on the displacement profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Linear approximation to wall curvature diagram 

for calculating yield displacement profile. 

Based on the simplified curvature diagram of Figure 10, 

Equations 11 and 12 can be used to calculate the yield 

displacement at each floor up the height of the structure.  

for hi ≤ HCF: 
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for hi > HCF: 












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Having determined the yield displacement at each floor level, 

the corresponding design displacement can be found by 

adding on the additional displacement due to the allowable 

plastic rotation at the base of the walls (Equation 10) and then 

reducing this allowable first mode displacement profile by the 

higher mode reduction factor, as per Equation 13. 

    ipCWiylsi h .  (13) 

 

Step 6- Calculate properties of SDOF representation 

At this stage it is possible to determine the effective height, 

He, yield displacement, Δy, design displacement, Δd, and 

effective mass, me, of the equivalent SDOF representation. 
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This is done through Equations 14 to 17 from Priestley et al. 
[2007]. 
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For the case study structure one obtains He=17.4m, 

y=0.134m, d=0.371m and me=1690t. Note that the effective 

mass has been computed considering only half of the total 

building mass. 

 

Step 7- Calculate wall and coupling beam ductility demands 

For seismic design we aim to characterise a ductile structure 

with a single displacement ductility factor. In the case of 

coupled walls, because the ductility demands on the coupling 

beams and walls can vary significantly, it is preferable to 

calculate separate ductility factors for each. For the walls, the 

ductility demand is simply the design displacement of the 

SDOF representation divided by the yield displacement as per 

Equation 18. 

y

d
w




  (18) 

 

For the coupling beams the ductility demand on each beam 

will vary up the height of the structure. An appropriate 

simplification for design is to calculate the average coupling 

beam ductility demand, which can be found using Equation 

19. One will recall that a check of the maximum allowable 

coupling beam ductility demand has already been done 

through Equation 10. 

 
yCBn

CBwn
CB

H

LL

,

/1


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where θCB,y comes from Equation 5. 

For the case study structure, application of Equations 18 and 

19 give w=2.76 and CB=10.2. 

 

Step 8- Calculation of system EVD and displacement 
reduction factor 

To determine the system EVD ratio, it is first necessary to 

determine the EVD ratios for the walls and coupling beams 

separately. For the walls Equation 20 is used, based on a 

Takeda thin hysteresis rule, and for the coupling beams 

Equation 21 is adopted , assuming a Takeda fat hysteresis rule 

(refer Grant et al., 2005, for definition of ‘Takeda thin’ and 
‘Takeda fat’). 








 





w

w
w

1
444.005.0  (20) 








 





CB

CB
CB

1
565.005.0  (21) 

To obtain the system EVD, the separate EVD ratios for walls 

and coupling beams are combined by weighting the two 

different EVD ratios based on their mechanism’s contribution 

to resisting the overturning moment.  

  CBwsys   1  (22) 

The equivalent viscous damping ratios for the case study 

example are ξw=0.140, ξCB=0.212 and ξsys=0.165. The 

displacement reduction factor is found using Equation 23, 

which for an EVD ratio of 0.165 gives a reduction factor of 

0.614. The reduction factor is used to compute the spectrum 

for the desired EVD ratio from the 5% damped displacement 

spectrum as shown in Figure 11. 

5.0

02.0

07.0











sys

R


 (23) 

 

Equations 20 to 23 have all been obtained from Priestley et al. 
[2007]. Note that for reasons given by Pennucci et al. [2011], 

Equation 23 should be used with the EVD values given by 

Equations 20 and 21 even if the local hazard is characterised 

by ground motions that are expected to scale differently with 

damping. 

 

Step 9- Calculate base shear 

Entering the reduced (highly damped) displacement spectrum 

with the design displacement, the effective period is found, as 

per Figure 11. For the case study structure the design 

displacement of 0.371m gives an effective period of Te=2.84s. 

 

Figure 11: Reduced displacement spectrum used to obtain 

effective period. 

 

 

 

Δd 

Te 
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Once the effective period is obtained it can be used to find the 

effective stiffness (Equation 24) and in turn the base shear can 

be calculated (Equation 25). For the case study structure the 

design base shear is found to be 3068kN. 

2

24

e

e
e

T

m
K


  (24) 

 

deb KV   (25) 

 

A P-delta check is then carried out by determining the value of 

meg/KeHe, which in this case is found to be 0.115 and is above 

the limit of 0.05 given in DBD12 [Sullivan et al., 2012], 

therefore, P-delta effects must be accounted for. To account 

for P-delta effects the base shear is increased by adding on the 

shear force found from Equation 26. 

e

n

i ii
P H

P
CV
 




 1  (26) 

 

For the case study structure the coefficient C is taken as 0.5 as 

recommended by Priestley et al. [2007] for concrete 

structures. This gives a P-delta shear force of 176kN and a 

total base shear of 3245kN. The estimated increase in base 

shear due to P-delta effects corresponds to 5.4%. 

 

Step 10- Determine required strength of coupling beams and 
walls 

The required strength of the coupling beams and walls is now 

determined based on the strength distribution chosen at the 

start of the design. The coupling beam shear forces and wall 

moments can be found from Equations 27 and 28 respectively.  

 CBw

eb
CB LLn

HV
V


   (27) 

 

 
2

1 eb
wall

HV
M   (28) 

 

For the case study structure the required shear strength of the 

coupling beams is 472kN and the required flexural strength of 

each wall is 18.4MNm. The area of diagonal reinforcing 

required for the coupling beams is found from Equation 6 and 

the quantity of flexural reinforcing in the walls can be found 

from moment-curvature analysis. Note that the flexural 

resistance of each wall will vary depending on the axial load 

on the wall, with the latter changing due to the shear forces 

transferred by the coupling beams. However, as long as the 

axial load on the walls is not near the balance point, it is 

sufficiently accurate to consider the average axial loads on the 

walls (i.e. gravity load only) when determining the moment 

capacity to be provided, as explained by Priestley et al. 
[2007]. 

At this point the design procedure would continue with 

capacity design. However, as the focus in this case is on the 

performance of the structure in terms of 

deformations/displacements the capacity design portion is not 

reported here. Interested readers may refer to Fox et al. [2014] 

for discussion of capacity design aspects specific to coupled 

walls. The key outputs from the design are provided in Table 

2. 

 

Table 2. Key design outputs from DDBD. 

T1 (s) 1.47 

Max. drift (%) 2.47 

Vb (kN) 3245 

w (%) 1.51 

Nc/f’cAg 0.119 

Nt/fyAs 0.155 

As,CB (mm2) 1350 

 

4 FORCE-BASED DESIGN 

Design of the same case study structure is carried out using 

FBD in accordance with NZS1170.5:2004 and 

NZS3101:2006. As the procedure is generally well known 

amongst structural engineers involved in seismic design, it 

will not be described in detail, but rather some of the 

important points specific to this case study will be discussed. 

The first key point in FBD is the choice of ductility factor, 

which is then used to determine the force reduction factor, k. 

From NZS3101 an upper limit of sys=6 is allowed for 

coupled walls. However, this is dependent on both the aspect 

ratio of the walls and the coupling ratio,  (given the notation 

A in NZS3101). The relationship between ductility factor and 

coupling ratio is such that for a higher coupling ratio the 

allowable ductility factor increases. The drawback of this 

approach is that in FBD the coupling ratio is not known a 
priori and so to avoid an iterative approach a ductility factor 

of five was conservatively selected here, which is allowed for 

any coupling ratio (including a coupling ratio of zero, which is 

effectively a pair of cantilever walls). The ductility factor is 

also limited by how squat the walls are, such that for walls 

that have an aspect ratio less than three, a lower ductility 

factor must be used. Interestingly there is no restriction on 

ductility factor for a high aspect ratio. As explained by 

Priestley et al. [2007], as a wall becomes more slender the 

maximum allowable ductility demand begins to reduce to 

unity.  

For the ductility factor of five the corresponding structural 

performance factor is SP=0.7. The structural performance 

factor is then used to further reduce the base shear for which 

the structure must be designed. This gives the design response 

spectrum defined by Equation 29. 

   
k

STC
TC

p
d   (29) 

 

According to the Canterbury Earthquakes Royal Commission 

Report: Volume 1 [2012] the structural performance factor 

“was introduced to allow for a number of factors that are not 
easily quantified and are not directly accounted for in the 
design process.” In the context of applying a design method 

such that it can achieve a certain performance level in terms of 

displacements and deformations, the inclusion of the structural 

performance factor does not seem appropriate. However, in 

keeping with the FBD code approach the factor of 0.7 is used.  

The second point of interest is the stiffness of the elements to 

be used in modelling the structure. In the case of the walls it is 

fairly straight forward. From Part 2 of NZS3101 the 

appropriate ratio of effective moment of inertia to gross 

moment of inertia (Ie/Ig) is determined based on the axial load 

ratio and reinforcing yield stress. In this case a value of 

Ie/Ig=0.30 is obtained. For the coupling beams the ratio 

NZS3101 recommends is Ie/Ig=0.6. However, NZS3101 also 
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notes that “diagonally reinforced coupling beams deform 
predominantly in shear” and for this reason the shear stiffness 

needs to be accurately determined. This is done by calculating 

the shear area AShear in accordance with NZS3101 equations 

Eq.C6-9 to Eq.C6-11(b), which are reproduced here for 

convenience. 

sin2 ydd fAV   (C6-9) 

 

s

yby
y E

fdfL










15cos
  (C6-10) 

 





sin2

2.1 y
v   (C6-11(a)) 

 

y

y
shear GL

V
A


  (C6-11(b)) 

 

This approach causes some difficulties; however, before 

further discussion it is necessary to highlight a number of 

existing errors in this section of the standard. While they are 

only minor errors, which in all likelihood would be identified 

by competent engineers, they are worth identifying here for 

completeness. They are listed as follows: 

1)  y in Eq. C6-10 is incorrectly quoted as being the shear 

deformation of the coupling beam at yield. Considering 

the original definition provided by Paulay [2002a] it 

would instead appear to be the axial elongation of the 

diagonal reinforcing in tension at yield (including an 

allowance for strain penetration). 

2)  Eq. C6-11(b) is written incorrectly, as previously pointed 

out by Fenwick & Cook [2010]. The length of the 

coupling beam L, should be part of the numerator as 

shown in Equation 30, not part of the denominator as is 

currently written in NZS3101. 

3)  In Eq. C6-11(b), y is used to calculate the shear area. 

Instead of y it should in fact be shear deformation at yield 

v from Eq. C6-11(a). This is obvious given that Eq. C6-

11(b) (correctly written as Equation 30) is the equation for 

the shear stiffness of a member rearranged to solve for 

Ashear. 

v

y
shear G

LV
A


  (30) 

 

Inspection of Equation 30 immediately highlights the problem 

in determining the shear area, that is, the yield shear force Vy, 

which is a function of the area of reinforcing provided, is not 

known at the start of the design, i.e. the stiffness cannot be 

estimated before the strength is known. It has been assumed in 

this work that the appropriate procedure to determine the shear 

area is as follows: 

1)  Assume a reasonable first estimate of the shear area. 

2)  Carry out an elastic analysis and determine the shear force 

in each coupling beam. 

3)  Use the coupling beam shear forces from the analysis in 

Equation 30 to obtain a better estimate of the shear area of 

each coupling beam. 

4)  Repeat until convergence is obtained.  

Obviously this is frustrating from a designer’s point of view as 

the design process becomes iterative. Furthermore, it is likely 

to result in a highly uneven distribution of reinforcing between 

the coupling beams. The uneven distribution of reinforcing 

can be explained by first considering the displaced shape of a 

coupled wall deforming elastically. At the base of the structure 

the slope of the walls is zero. The slope then increases up to its 

maximum at the height of contraflexure (refer 10). Above the 

height of contraflexure the slope of the walls starts to reduce 

again. The deformation demand on each coupling beam is 

approximately proportional to the corresponding wall slope 

and therefore the elastic analysis gives coupling beam 

deformation demands that are largest at the height of 

contraflexure and then decrease towards roof level and 

towards the foundation. Consider now the case where a 

designer assumes for a first iteration that all coupling beams 

have the same shear area (and therefore stiffness). When the 

elastic analysis is carried out, coupling beams towards the 

height of contraflexure will deform the most and therefore 

attract the highest shear forces. Consequently, for the next 

iteration the stiffness of the coupling beams near the height of 

contraflexure must be increased (in accordance with Equation 

30) relative to those near roof level or the base of the 

structure. With each subsequent iteration this imbalance in 

strength and stiffness will be exacerbated. A further 

complication may occur in some structures that have very stiff 

walls. In these instances the displacement demand on some 

coupling beams (most likely the first floor coupling beam) 

may not exceed the yield displacement. Therefore, with each 

iteration the coupling beam shear force reduces towards zero. 

This highly uneven distribution of reinforcing is illogical 

when the inelastic displaced shape of the coupled wall is 

considered. Once a mechanism forms (all coupling beams and 

the walls yield) the walls begin to rotate as rigid bodies. This 

evens out the coupling beam drift demands up the height of 

the structure, for which an even distribution of reinforcing 

makes more sense. Having said this, it should be 

acknowledged that some benefit from the NZS3101 approach 

may be gained at the serviceability limit state as the onset of 

yielding is delayed. Furthermore, the uneven distribution of 

reinforcing can be alleviated to some extent by making use of 

the allowance for redistribution between the coupling beams. 

Incorporating the aforementioned approach to calculating the 

stiffness of the coupling beams, the modal response spectrum 

method was used to determine the base shear for the case 

study structure, which came out at Vb=1410kN, significantly 

less than what was determined using DDBD. 

In accordance with NZS1170.5, P-delta effects were assessed 

and the maximum stability coefficient was found to be 0.252. 

As this is greater than 0.1, P-delta effects cannot be neglected. 

Method B (see NZS1170.5 clause 6.5.4.2) was used to account 

for P-delta effects. The method can be summarised in the 

following steps: 

1) Take a standalone column equal to the height of the 

structure, which is pinned at each floor level and then 

displaced laterally to match the displacements found 

from the equivalent static or modal response spectrum 

analysis (and scaled appropriately to account for 

inelastic response). 

2) Apply the gravity load for each floor to the column and 

determine the lateral forces required at each level to 

maintain equilibrium (in the displaced shape). 

3) Apply the set of lateral forces found in step 2 to the 

model of the structure and determine the additional 

design actions and displacements. 

4) Determine the factor P-, which is dependent on 

ductility, soil type and the first mode period of vibration. 
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For the case study structure this is found to be 2. Note 

that the sub-script P-which is not include in 

NZS3101, has been added to avoid confusion with the 

used to denote coupling ratio. 

5) Multiply the additional design actions found in step 3 by 

P- and add them to the actions found in the equivalent 

static or modal response spectrum analysis. 

6) Multiply the additional displacements found in step 3 by 

P- and add them to the displacements found in the 

equivalent static or modal response spectrum analysis. 

This increased the base shear to 1683kN and increased the 

maximum storey drift by a factor of 1.25. The key design 

outputs from the force-based design are provided in Table 3. 

Note that to reduce the number of different coupling beams, 

some redistribution has been allowed for. Furthermore, as the 

required quantity of reinforcing in the first floor coupling 

beam was so low, a minimum quantity of reinforcing of 0.50% 

has been provided. 

Table 3. Key design outputs from FBD. 

T1 (s) 1.48 

Max. drift (%) 2.64 

Vb (kN) 1683 

w (%) 0.684 

Nc/f’cAg 0.129 

Nt/fyAs 0.095 

As,CB7 (mm2) 1007 (1065)* 

As,CB6 (mm2) 1556 (1556)  

As,CB5 (mm2) 2137 (2031) 

As,CB4 (mm2) 2137 (2297) 

As,CB3 (mm2) 2137 (2084) 

As,CB2 (mm2) 1007 (950) 

As,CB1 (mm2) 804 (4) 

 * Bracketed values are of the exact quantities of 

  of reinforcing required from the analysis 

   rather than the actual amount provided. 

The maximum storey drift is slightly above the code 

prescribed maximum of 2.5%, and in practice one should 

increase the stiffness of the system in order to satisfy the drift 

limit. However, the design process was halted here because 

the allowance for P-delta effects was expected to be 

conservative (as will be shown in Section 7) and refining the 

FBD solution would not affect the aim of this paper, which is 

to investigate the ability of FBD and DBD procedures to 

control deformation demands. 

To highlight the differences between DBD and FBD for 

coupled wall buildings, the performance of the case study 

building will be examined using non-linear time-history 

analyses as explained in the next section. However, before 

proceeding further with the case study comparison, it is worth 

identifying the important differences between the FBD method 

just described and the DDBD procedure presented in Section 3 

for coupled RC walls:  

1) In FBD the structural proportions are assumed to be 

irrelevant to the displacement ductility capacity (gauged 

through the ductility reduction factor) but will 

significantly affect capacity and inelastic displacement 

demands in DDBD. 

2) Design base shear will be proportional to a change in 

seismic intensity for FBD but will be proportional to the 

square of a change in intensity in DDBD (as explained in 

Priestley et al., 2007). 

3) The choice of material properties will not affect the 

predicted displacement demands according to FBD but 

will affect those in DDBD (affecting the yield 

deformations, as shown Equations 11 and 12, and the 

ultimate deformation capacity as shown in Equation 10 

and 13, leading to a change in ductility and equivalent 

viscous damping with a subsequent change in predicted 

inelastic displacement). 

4) If structural dimensions are held constant and uniform 

coupling beam sizes are assumed, then an increase in 

coupling ratio will lead to lower DDBD base shear until 

the coupling ratio becomes so large that significant net 

tension forces in the walls becomes an issue (or the wall 

curvature limits become critical). In FBD the structural 

dimensions will dictate the coupling ratio and so the 

designer does not have the same freedom to optimise the 

design as in DDBD. 

Considering the points made above, it becomes clear that the 

single case study structure examined in this work will not be 

able to quantify the full extent to which FBD and DDBD 

differ. However, the sections that follow will present some 

interesting differences in performance that should help 

engineers gain more insight into the critical design factors for 

coupled RC wall systems.     

5 MODELLING AND ANALYSIS 

To assess the two design methods each design solution was 

modelled and analysed using non-linear time-history analyses 

in SeismoStruct V6 [Seismosoft, 2012]. The coupled walls 

were modelled using distributed plasticity fibre-section 

elements. This approach was considered superior to a lumped 

plasticity approach for the following reasons: 

1) Non-linearity is defined at the material level. Therefore it 

is only necessary to define the section geometry and 

material stress-strain relationships. In this study the 

Menegotto-Pinto [1973] model was used for the 

reinforcing and the Mander et al. [1988] model for the 

concrete (both confined and unconfined). 

2) Moment-axial load interaction is accounted for implicitly 

by the fibre-sections. It is therefore not necessary to 

incorporate an explicit moment-axial load interaction rule 

into the model. Note that moment-axial load interaction is 

particularly important in the case of coupled walls, where 

the coupling beams generate significant axial load 

variations in the walls. 

3) Axial elongation due to flexure is captured. For typical RC 

sections under flexural loading the neutral axis position 

shifts towards the compressive edge of the section, rather 

than being at the section centroid. Therefore, the length of 

an element measured at the centroid of the section will 

elongate due to flexure. This behaviour is important to 

capture when modelling coupled walls as it will affect the 

deformation demands on the coupling beams. 

Furthermore, the cumulative effect of residuals strains 

during cyclic loading can be captured if they are 

accounted for in the material models (as they are in this 

work). 

When distributed plasticity elements are used, it is necessary 

to consider the mathematical formulation of the elements. 

Like a number of other software packages, SeismoStruct 

offers both displacement-based and force-based formulations. 

Force-based formulations tend to give very high inelastic 

curvature concentrations at the base of the walls and so 

displacement-based elements were used. The formulation of 
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these beam elements is based on the assumption of a linear 

curvature profile along the length of the element, i.e., the same 

profile which is also assumed over the height of a plastic 

hinge. To obtain similar strain predictions with such beam 

element models as one would obtain from plastic hinge 

models (which have been calibrated against experimental 

data), the element length at the base should be set (by the user) 

equal to the plastic hinge length. For a more detailed 

discussion on this modelling choice, readers are referred to 

Yazgan & Dazio [2010]. The plastic hinge length can be 

calculated using Equation 31 from DBD12 [Sullivan et al., 
2012].  

SPwnP LLkHL  1.0  (31) 

 

where k=0.15(fu/fy-1)≤0.06, and LSP=0.022fyedbl (in units of 

Newtons and millimetres). For the case study structure the 

plastic hinge length was calculated as 1.37m. 

The mesh discretisation up the remaining height of the 

building corresponds to one element per wall per storey. A 

screen shot of one of the models is shown in Figure 12. Note 

the additional flexible frames on each side to model P-delta 

effects. 

 

Figure 12: SeismoStruct screenshot of model used for 

NTHA. 

The coupling beams were modelled as a pair of diagonal 

trusses using fibre-section truss elements. These behave in a 

similar manner to the fibre-section elements used to model the 

walls, but resist axial forces only and not bending moments or 

shear. To verify this modelling approach, an isolated coupling 

beam tested by Paulay & Binney [1974] was modelled and 

pushed through the same displacement regime as the 

experimentally tested beam. The results are compared in 

Figure 13 and it can be seen that the modelling approach 

accurately captures the shear-rotation response of the 

experimental test. Similar results were obtained for a number 

of additional coupling beams (see Fox, 2013), suggesting that 

the modelling approach adopted here is reasonable. 

It is well known that conventional floor slabs interact with 

beams and can increase their strength and this should be 

accounted for during the design process (in particular capacity 

design considerations). However, in this research the effects of 

the floor slab have not been included owing to uncertainties 

associated with accurate modelling of the floor slab. As the 

interaction with the floor slab is neglected in both design and 

analysis, this approach does not affect the research objective 

of providing a comparison between the DDBD and FBD 

design methods. However, coupling beam to floor slab 

interaction appears to be a particularly important area for 

future research. 

The manner in which viscous damping is incorporated into 

NTHA can have a significant effect on the results. 

Traditionally Rayleigh damping is used in NTHA as the 

incorporation of both mass and stiffness proportional 

components allows for a relatively constant level of damping 

across a number of modes. 

 

Figure 13: Comparison of shear–rotation response of 

coupling beams as observed by Paulay & Binney [1974] 

compared with numerical results obtained using fibre-

section truss elements. 

The downside of Rayleigh damping is that as the structure 

goes into the inelastic range, the effective period of the 

structure lengthens and therefore the fraction of critical 

damping increases. This can be alleviated to some extent by 

using the tangent stiffness matrix rather than initial stiffness, 

but the same cannot be done for the mass proportional 

component (without artificially reducing the damping). 

Considering these drawbacks, tangent stiffness proportional 

damping has been used based on the recommendations of 

Grant et al. [2005] and Petrini et al. [2008]. While this option 

is preferred, it still has some significant drawbacks. Firstly, the 

fraction of critical damping cannot be quasi-constant across 

the significant modes, but instead increases linearly with 

period. Secondly, stiffness proportional damping (both tangent 

and initial) can induce spurious axial forces in members as 

highlighted by Correia et al. [2012]. 

Using the tangent stiffness proportional damping approach, 

2% of critical damping was applied at the period 

corresponding to the fundamental mode of vibration. The 

value of 2% is much lower than the conventional 5% used for 

reinforced concrete structures as some of the damping is 

accounted for through the use of a fibre-element model, as 

explained by Petrini et al. [2008]. Furthermore, the damping 

in the fundamental mode must be kept sufficiently low such 

that the higher modes are not excessively damped. Even with 

only 2% damping specified in the fundamental mode this 

results in approximately 8% at the second mode of vibration. 

Although this is higher than typically assumed for design, it 

will not significantly affect the results as the higher mode 

contribution to the total displacement/drift response is very 

low for the structure at hand.  

The fibre-section elements used to model the walls are rigid in 

shear and therefore, additional spring elements were included 

at each floor level to account for shear deformations. RC 

sections responding in the inelastic range for flexure also 

exhibit non-linear response in terms of shear. To capture this 

behaviour requires advanced modelling solutions; however, 

Beyer et al. [2014] have shown that reasonable results can still 

be obtained using linear shear stiffness. The stiffness of the 

shear springs was determined using Equation 32 from Beyer et 
al. [2011]. The equation is semi-empirical and accounts for 

experimental evidence showing that the ratio of shear to 
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flexural deformations in capacity designed walls remains 

relatively constant [Dazio et al., 2009]. They values for 

curvature, ϕ, and mean axial strain, εm, used in Equation 32, 

were taken for when the walls were at half the expected 

maximum curvature ductility. 

ncr

m

f

s

H

1

tan
5.1








 (32) 

 

Knowing the shear force in the wall, Equation 32 can be 

rearranged to give the shear stiffness, ks, of an equivalent 

cantilever subject to an applied point load V. Taking the 

maximum crack inclination, βcr, as 45o then gives Equation 33. 
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The accelerograms used in the NTHAs are taken from Maley 

et al. [2013], which have been selected and scaled so that they 

match the spectrum on average across the full range of periods 

of interest. The pseudo-acceleration and displacement 

response spectra are shown in Figure 4 and Figure 5 

respectively. 

In Section 3 it was mentioned that the DDBD procedure used 

low estimates of expected material strengths while the FBD 

procedure used lower bound characteristic material strengths. 

In the NTHA, expected material strengths were used for both 

the DDBD and FBD models to allow for a fair comparison 

between the two approaches. In addition to the discrepancy in 

material strengths, it should also be noted that the FBD 

approach in accordance with NZS3101 requires the use of 

strength reduction factors when computing the strength of 

structural elements. The net result of the material strength 

discrepancy and the use of strength reduction factors is that the 

maximum base shear developed in the FBD model is 

significant larger than what was calculated during design. This 

is demonstrated in Figure 14, which shows the results of 

pushover analyses for each model when subjected to an 

inverse triangular force pattern. This discrepancy in model 

versus design base shear should be taken into account when 

interpreting results in the following section.  

 

 Figure 14: Comparison of pushover curves with design base 

shear for the two different numerical models 

designed using DDBD and FBD. 

 

 

6 ANALYSIS RESULTS FOR COMPARISON OF THE 

DESIGN METHODS 

In this section the accuracy of the two design methods is 

gauged by comparison with the results of the NTHAs. 

Specifically, the observed maximum inter-storey drift up the 

height of the structure will be compared with the drift values 

predicted during design. It will be recalled from Section 3 that 

materials strains at the base of the wall and in the coupling 

beams can both be related to the inter-storey drift (Equation 

10) and therefore from a design point of view the only 

parameter that needs to be considered to assess the 

performance of the structure, in terms of it reaching a given 

limit state is the inter-storey drift. From an analysis point of 

view this is not quite the case as the influence of higher modes 

means that the drift at the height of contraflexure cannot be 

directly related to the material strains at the base of the walls. 

Furthermore, the coupling beam material strains are also 

affected by the differential axial elongation of the walls, as 

stated in Section 5, and therefore cannot be directly related to 

inter-storey drift without some minor loss of accuracy. Despite 

these drawbacks, inter-storey drift is still the most useful 

parameter for comparison between design and analysis and 

indicating the success (or failure) of the design method. 

The design drift profile from DDBD is shown in Figure 15 

alongside the maximum storey drifts for each accelerogram 

individually and the mean maximum storey drift. It can be 

seen that the mean NTHA result matches the design drift 

profile fairly closely up the whole height of the building, with 

the mean NTHA drifts being slightly less than the design 

drifts. Figure 16 shows the same results for the case study 

structure designed using FBD.  

 

Figure 15: Comparison of design and NTHA inter-storey 

drifts for DDBD building. 

 

Figure 16: Comparison of design and NTHA inter-storey 

drifts for FBD building. 
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Table 4 shows a comparison of the maximum inter-storey 

drifts for both design methods and analyses, along with the 

associated errors. The maximum mean inter-storey drift from 

the NTHA results matches fairly closely the maximum inter-

storey drift predicted from the FBD, again with the NTHA 

inter-storey drifts being slightly smaller. Although this appears 

to show a good result, one will recall the discrepancy between 

design and model base shears (Figure 14), which influences 

the response. Furthermore, it will be demonstrated later that 

there is an underestimation of the required strength due to 

horizontal accelerations and an overestimation of P-delta 

effects. It should be also noted that compared to DDBD the 

match of the predicted and observed shape of the drift profile 

is not so good. The reason for this is rather simple in that FBD 

does not consider that the drift profile resulting from inelastic 

displacements differs from the drift profile resulting from 

elastic displacements. Therefore the drift profile from design 

is dominated by the fundamental mode elastic drift profile, 

which does not match the real behaviour of the structure in the 

inelastic range. 

Table 4. Maximum inter-storey drifts. 

Design 

method 

Maximum 

design drift 

(%) 

Maximum mean 

NTHA drift 

(%) 

Error 

(%) 

DDBD 2.46 2.28 -0.08 

FBD 2.62 2.46 -0.07 

 

From Table 4 it would appear that both methods perform 

equally well and this would indeed be true for the case study 

building that has been examined. However, the astute reader 

will have observed that the two design methods treat P-delta 

effects in very different ways. In DDBD the increase in design 

base shear, to account for P-delta effects, was only 5.8%. On 

the hand the increase in base shear following the FBD 

approach, in accordance with NZS1170.5, is 19.4%. 

Furthermore, the FBD approach also requires the designer to 

increase the maximum drifts as well as increasing the base 

shear. Therefore, it appears that one of the two methods is not 

accurately capturing the real extent of P-delta effects and 

further investigation is required (see Section 7). 

At this point, some discussion of material strain limits is 

necessary. During the Force-Based Design of the case study 

structure, no consideration was given to material strain limits. 

This is justified as the material strain limits do not affect the 

design method in terms of its ability to accurately predict 

displacements and deformations. As mentioned previously 

there are two areas where material strain limits must be 

considered; (i) at the base of the walls and (ii) in the coupling 

beams. Considering the wall material strains, both DBD12 

[Sullivan et al., 2012] and NZS3101 take a similar approach in 

determining material strains and as such they will not be 

consider. Furthermore, the exact material strain limits will not 

be discussed as they relate to the desired performance level 

and a discussion on these aspects is beyond the scope of this 

paper.  

For coupling beam material strain limits, there is a significant 

discrepancy between the approach taken in this paper for 

DDBD and that of NZS3101. In this paper a reinforcing strain 

limit of 4% was established and this could then be related to 

coupling beam deformation through Equation 7. In this 

approach the coupling beam deformation at the material strain 

limit is strongly dependent on the coupling beam geometry. 

This is similarly reflected in the approaches of Paulay [2002] 

and Priestley et al. [2007]. The NZS3101 approach is to set a 

material strain limit by limiting the shear strain to 0.035 

radians.  

 

Figure 17: Comparison of allowable coupling beam chord 

rotations using different approaches to material 

strain limits. 

This approach of setting a flat limit on shear strain does not 

seem valid in light of how dependent material strains are on 

geometry. Furthermore, it is well known that diagonally 

reinforced coupling beams behave like a truss [Paulay & 

Binney, 1974] and therefore it does not seem appropriate to 

consider separate flexural and shear deformations. Figure 17 

shows a comparison between the chord rotations at the 

material limit state strains for the coupling beam used in the 

case study structure for the two different approaches, but with 

the span varying from 0.8m to 2.4m. 

7 INVESTIGATION INTO P-DELTA EFFECTS 

To determine which method, if either, is treating P-delta 

effects correctly, additional analyses have been run for the two 

structures designed using DDBD and FBD. For the additional 

analyses the gravity loads acting on the P-delta frames (refer 

Figure 12) have been removed. Figure 18 shows the mean 

NTHA drift profiles for both design methods, with and 

without P-delta loads. It can be seen that the effect of the P-

delta loads is rather small and therefore the NZS1170.5 

method appears to be grossly over-conservative with regard to 

P-delta effects. The increase in maximum drifts due to P-delta 

effects are 0.96% and 3.1% for DDBD and FBD designed 

buildings respectively. 

 

Figure 18: Comparison of inter-storey drifts for the 

buildings analysed with and without P-delta 

effects. 
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To investigate further, both designs were repeated without 

consideration of P-delta effects. This could be equated to 

designing a structure that has mass acting in the horizontal 

direction only (except for that which causes the axial force on 

the walls). While this is a somewhat unrealistic structure, it is 

useful for testing the FBD method for cases where P-delta 

effects are not expected to be significant. The key design 

outputs for the structures designed using FBD, without 

consideration of P-delta effects, are provided in Tables 5 and 6 

for DDBD and FBD respectively. 

Table 5. Key design outputs from DDBD for structure 

designed without consideration of P-delta effects. 

T1 (s) 1.51 

Max. drift (%) 2.47 

Vb (kN) 3068 

w (%) 1.38 

Nc/f’cAg 0.115 

Nt/fyAs 0.144 

As,CB (mm2) 1280 

Table 6. Key design outputs from FBD for structure 

designed without consideration of P-delta effects. 

T1 (s) 1.48 

Max. drift (%) 2.12 

Vb (kN) 1410 

w (%) 0.385 

Nc/f’cAg 0.112 

Nt/fyAs NA* 

As,CB7 (mm2) 716 (819) 

As,CB6 (mm2) 1196 (1196)  

As,CB5 (mm2) 1615 (1548) 

As,CB4 (mm2) 1615 (1732) 

As,CB3 (mm2) 1615 (1564) 

As,CB2 (mm2) 716 (716) 

As,CB1 (mm2) 804 (3) 

* Walls never go into net tension and so no 

   value is provided. 

 

The newly designed structures were analysed in SeismoStruct 

and the results in terms of inter-storey drift are compared with 

the design drifts in Figure 19. In this case it can be seen that 

FBD is significantly non-conservative. The maximum mean 

drift found from the NTHA is 2.72%, which is 22% greater 

than the design drift of 2.12%. By comparison, for the DDBD 

structure, design drifts still match closely to those found from 

NTHA. It can therefore be concluded that the reason the initial 

Force-Based Design met its design expectations so well is 

largely due to an erroneous allowance for P-delta effects. This 

is clearly not an appropriate way to design structures for 

earthquake resistance and although in this case the structure 

performed adequately, this may not be case the for other 

coupled wall buildings design using FBD. 

 

Figure 19: Comparison of design and NTHA mean inter-

storey drifts for buildings designed and analysed 

without P-delta effects. 

8 CONCLUSIONS 

This paper has compared DDBD and FBD in accordance with 

NZS1170.5 and NZS3101 in their application to the design of 

RC coupled walls. This has been done by considering a simple 

case study structure, which was designed using both methods. 

Application of the code-approach permitted critical 

examination of some of the current code equations. Numerical 

models of the designed structures were subjected to non-linear 

time-history analysis to assess the performance of the design 

methods. The adequacy of each design approach was based on 

how accurately the design method could estimate 

displacements and deformations, which can then be related to 

code prescribed inter-storey drift and material strain limits. 

From this work the following conclusions can be drawn: 

1) The method of determining the stiffness of coupling beams, 

in particular the shear area, in accordance with NZS3101 

was shown to be problematic. The approach, which 

considers the inelastic response of a coupling beam, is 

incompatible with the accompanying elastic analysis that 

must be carried out. Furthermore, the approach is iterative, 

making it rather time consuming. 

2) The use of distributed-plasticity fibre-section beam 

elements can simplify the modelling of coupled walls for 

NTHA. The two main advantages relevant to coupled 

walls are that (i) moment-axial force interaction is 

accounted for implicitly and (ii) axial elongation of the 

walls (due to flexure) is captured. In addition, diagonal 

truss elements were shown to reproduce experimental test 

results well.  

3)  DDBD is able to accurately estimate the displacements and 

deformations of a coupled wall structure subjected to 

seismic excitation. This was shown through the design of 

a case study structure and is further supported by Fox 

[2013]. 

4)  FBD applied to the case study structure, resulted in a 

design that accurately estimated the maximum inter-storey 

drift found through NTHA. However, it was subsequently 

shown that when allowances for P-delta effects were 

removed (from both design and analysis) the design 

approach was significantly non-conservative. 

5)  P-delta effects in RC coupled walls were shown to have 

only a minor effect on increasing displacements during 

seismic response. The allowance for P-delta effects 

prescribed by NZS1170.5 appears to be too severe for 

coupled walls and does not match the true response of the 

structure.  
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6)  The material strain limit for diagonally reinforced coupling 

beams prescribed in NZS3101 does not account for the 

geometry of the coupling beam. This was shown to be 

illogical as the material strains in a coupling beam are 

highly dependent on geometry. As a result the current 

material strain limit may be too restrictive for longer span 

coupling beams and this could be particularly relevant in 

the assessment of existing RC coupled wall structures. 

7)  Further research is required to evaluate the performance 

and review design methods for coupled wall systems in 

which not all of the coupling beams yield. This structural 

response is likely at low seismic intensities and for 

coupled walls with large aspect ratio coupling beams.  

In closing, serious consideration must be given to updating the 

code design approach for RC coupled walls. The current FBD 

method is known to be of limited accuracy and based on a 

number of flawed concepts. DDBD appears to be a valid 

alternative and its incorporation into future code revisions 

would represent a good step towards incorporating state-of-

the-art knowledge into current design practice. 

ACKNOWLEDGMENTS 

The authors would like to thank Professor Nigel Priestley for 

his comments regarding the Direct Displacement-Based 

Design of coupled walls. The two reviewers are also thanked 

for the recommendations they provided to improve the paper. 

The first author would like to acknowledge the funding 

provided by the MEEES programme (www.meees.org).  

LIST OF SYMBOLS 

Ad Area of diagonal reinforcing in coupling beam from 

NZS3101 

Ag Gross area of wall section 

As,CB Area of diagonal reinforcing in coupling beam 

AShear Shear area of coupling beams from NZS3101 

C Coefficient accounting for hysteretic behaviour in P-

delta effects 

C(T) Ordinate of the elastic site hazard spectrum from 

NZS1170.5 

Cd(T) Horizontal design action coefficient from 

NZS1170.5 

db Reinforcing bar diameter from NZS3101 

Es Young’s modulus for reinforcing steel 
f'c Specified (28 day) concrete compression strength 

fs,ls Reinforcing stress at limit state strain 

fu Ultimate strength of reinforcing 

fy Yield strength of reinforcing 

G Shear modulus 

HCF Height of contraflexure 

He Effective height of equivalent SDOF system  
Hn Height to uppermost seismic mass 

hCB Coupling beam depth 

hi Height of level i 
Ke Effective stiffness of equivalent SDOF system 

kμ Ductility reduction factor from NZS1170.5 

L Coupling beam span from NZS3101  
LCB Coupling beam span 

LP Plastic hinge length 

LSP Strain penetration length 

Lw Wall length  
MOTM Overturning moment 

Mw Required moment capacity of an individual wall 

 

 

 

me Effective mass of equivalent SDOF system 
N(T,D)  Near fault factor from NZS1170.5 

Nc Maximum compression force in wall 

Nt Maximum tension force in wall 

n Number of storeys 

PSA Pseudo spectral acceleration 

R Factor to reduce design displacement spectrum from 

5% viscous damping to desired damping ratio 

Ru Return period factor from NZS1170.5 

SD Spectral displacement 

SP Structural performance factor from NZS1170.5 
T Period of vibration 

T1 Period of vibration of fundamental mode 

Te Effective period of equivalent SDOF system 

tCB Coupling beam thickness 

tw Wall thickness 

VCB,i Shear force in coupling beam at level i 
VCB,ls Shear force in coupling beam at relevant limit state  
VCB,y Shear force in coupling beam at yield 
Vb Design base shear 

Vd Shear force in coupling beam at yield from 

NZS3101 

Z Hazard factor from NZS1170.5 

z Vertical distance between sets of diagonal 

reinforcing at the coupling beam to wall interface 

 

 Angle between diagonal reinforcing and longitudinal 

axis of coupling beam
 Coupling ratio 

cr Maximum crack inclination in RC wall 

P- Factor for P-delta calculations from NZS3101 

d Design displacement of equivalent SDOF system 

i,ls Displacement of level i at relevant limit state
i,y Displacement of level i at yield 

s/f Ratio of shear to flexural deformations 

y Yield displacement of equivalent SDOF system 

δv Shear deformation of coupling beam at yield from 

NZS3101 

δy Axial elongation of diagonal reinforcing in tension 

at yield from NZS3101   

m Mean axial strain  

s,ls Limit state reinforcing strain 

s,u Reinforcing strain at maximum stress 

y Yield strain of reinforcing 

c Code (or otherwise defined) drift limit 

CB,ls Coupling beam limit state rotation 

CB,y Coupling beam yield rotation 

pCW Design plastic rotation 

 Displacement ductility 

CB Coupling beam displacement ductility demand 

sys System displacement ductility demand 

w Wall displacement ductility demand 

 Damping ratio 

CB Coupling beam equivalent viscous damping ratio 

sys System equivalent viscous damping ratio 

w Wall equivalent viscous damping ratio 

w Wall reinforcing ratio 

 Curvature 

w,ls Wall curvature at relevant yield state 

w,y Wall yield curvature 

 Angular frequency 

 Higher mode factor 
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