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Two extensions of the force reconstruction method, the sum of weighted accelerations tech

nique (SWAT), are presented in this article. SWAT requires the use of the structure's elastic 

mode shapes for reconstruction of the applied force. Although based on the same the

ory, the two new techniques do not rely on mode shapes to reconstruct the applied force 

and may be applied to structures whose mode shapes are not available. One technique 

uses the measured force and acceleration responses with the rigid body mode shapes to 

calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using 

a calibrated force input). The second technique uses the free-decay time response of the 

structure with the rigid body mode shapes to calculate the scalar weighting vector and is 

called SWAT-TEEM (SWAT using time eliminated elastic modes). All three methods are 

used to reconstruct forces for a simple structure. 

INTRODUCTION 

For many structural tests, the structural response in the 

form of strain or acceleration is not a sufficient de

scription of the dynamic event because the applied dy

namic force is desired. Either accelerometers or strain 

gages can be used to measure the response of a struc

ture to some transient excitation such as an impact. 

Force reconstruction is a process in which dynamic re

sponse signals are used to infer the externally applied 

force that produced those responses. 

The sum of weighted accelerations technique 

(SWAT) (Bateman et aI., 1992; Gregory et aI., 1986; 

Priddy et aI., 1988, 1989; Smallwood and Gregory, 

1987) was developed at Sandia National Laboratories 

to reconstruct impact forces experienced by structures 

during full scale dynamic tests and has been extended 
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elsewhere (Kreitinger et aI., 1988; Wang et aI., 1987). 

The SWAT technique was successfully applied at San

dia to data from field tests of a simulated bomb struc

ture with an energy absorbing nose (Bateman et aI., 

1992) and a nuclear fuel cask colliding with an un

yielding barrier (Bateman et aI., 1991). Other tech

niques for force reconstruction (also called force iden

tification) have been developed over a number of years 

that primarily use the frequency response function 

(FRF) matrix that relates the response measurements 

directly to the input forces. However, the FRF matrix 

has to be inverted to solve for the forces and this inver

sion causes many difficulties that limit the applicabi

lity of these techniques (Starkey and Merrill, 1989; 

Stevens, 1987). Although acceleration measurements 

are typically used for force reconstruction, Hillary and 

Ewins considered the use of strain gages (1984). 
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The SWAT approach to force reconstruction is to 

compute the force from a time domain summation of 

acceleration signals that have been multiplied by a set 

of scalar weights in the form of a weighting vector. 

Summation of data in the time domain has none of the 

numerical problems that make the FRF techniques so 

difficult. The only requirement in this technique is that 

the set of scalar weights must be calculated. To calcu

late the SWAT weights, the mode shape matrix of the 

structure with free boundary conditions must be ob

tained and inverted. The two extensions of SWAT pre

sented in this article do not require the mode shape ma

trix to calculate the weights but need simpler force and 

acceleration response measurements from the struc

ture. 

With SWAT, the spatial distribution of the applied 

forces is not obtained, but the force is implicitly in

tegrated over the structure. Consequently, only the re

sultant sum of all externally applied forces or the sum 

of all moments about the center of mass is calculated. 

For many applications this is adequate because the ap

plication point for the force is known. Even if the ap

plication point is unknown but the application area is 

small, the application point can be found by relating 

the resultant force to the resultant moment. In con

trast, FRF techniques require exact knowledge of the 

location and application area of the force to produce 

acceptable results. 

Two extensions of SWAT are presented in the next 

section. One technique uses the measured force and 

acceleration time responses in the laboratory with the 

rigid body mode shapes to calculate the weighting 

vector. The weights are calibrated with the labora

tory input force, so the technique is called SWAT-CAL 

(SWAT using a calibrated force input). The second 

technique uses the rigid body mode shapes with the 

free-decay time response of the structure (after the re

moval of the response to the applied force) to calcu

late the weighting vector and is called SWAT-TEEM 

(SWAT using time eliminated elastic modes) (Mayes, 

1994). In both extensions, the weights are extracted in 

the time domain and avoid the errors associated with 

the mode shape matrix. All three techniques are used 

to calculate the weighting vector for a lumped mass 

beam structure, and the results are compared. 

SWATTHEORY 

The result of the SWAT theory is that a force applied 

to a structure may be reconstructed from the measured 

acceleration responses with the equation, 

(I) 

where J (t) is a reconstructed force, ai (t) are the mea

sured response accelerations due to an applied force, 

and Wi are scalar weights that form the weighting vec

tor, W. Equation (1) can be extended to solve for the 

applied moment (Bateman et al., 1992; Priddy et al., 

1989). 

The derivation of the theory of SWAT begins with 

the equations of motion for a multiple degree of free

dom, freely supported structure that may be written as 

Mii(t) + Cit(t) + Ku(t) = J(t), (2) 

with the standard matrix notation. In (1), J(t) repre

sents all external forces, including applied forces and 

forces resulting from the boundary conditions, and 

M, C, and K represent the symmetric matrices for 

mass, damping, and stiffness, respectively. The dis

placement, u, may be written in terms of a summation 

of the free modes as 

u(t) = L ¢iqi (t) = <l>q(t), (3) 

where <I> is the matrix of free-body mode shapes and 

q (t) is the vector of uncoupled generalized modal co

ordinates. <I> includes rigid body modes as well as elas

tic modes. Substitution of (3) into (2) and premultipli

cation of the equation by a single mode ¢'{, which rep

resents a rigid body mode of the free structure, results 

in 

¢'{ M<fJij(t) + ¢'{ C<fJq(t) + ¢'{ K<fJq(t) 

= ¢'{ J(t). 
(4) 

For the rigid body modes (translation or rotation), 

there are no elastic deformations, and consequently, 

no spring or no damping forces. Thus, 

using the symmetry of K and C. Substituting (5) into 

(4) and using the orthogonality of the modes with re

spect to the mass matrix produces our desired result, 

(6) 

where qr is the modal coordinate for a rigid body mode 

and mr = ¢'{ M ¢r the modal mass. This equation 

shows that if the modal coordinate of a rigid body 

mode (translation or rotation) can be measured, then 

(6) can be solved for the sum of the external forces. 

For example, if the modal coordinate of the translation 

rigid body mode in anyone direction is known, then 

Eq. (6) becomes Newton's second law for an elastic 



structure as mrqr = L fi because ¢; = [1 1 1·· .J, 
mr is the total mass, and L fi is the sum of all the 

force components in the translation direction. Also, (6) 

relates the sum of all the moments about the center of 

mass to the pitch rigid body modes if ¢; is scaled such 

that mr is the mass moment of inertia. 

Equation (6) establishes the relation between the 

rigid body modal coordinates and the external forces. 

This equation may appear obvious as an expression of 

rigid body dynamics, but the ramification for force re

construction is critically important: knowledge of the 

mass and the rigid body modal coordinates is com

pletely sufficient to know the sum of all the externally 

applied forces. 

The result in (6) may be used with (4) as 

¢'{ Met>q(t) = ¢'{ f(t). (7) 

A weighting vector may be defined as 

(8) 

If (8) is substituted back into (7) and the equation is 

rewritten in terms of the displacement, then 

(9) 

which reveals that the sum of all externally applied 

forces may be found by a time domain summation of 

the measured acceleration responses on a freely sup

ported structure. Equation (9) is the basic SWAT equa

tion. At this point, a practical limitation is imposed on 

all quantities. The assumption in Eq. (1) is that all de

grees of freedom are included, or alternatively, that the 

bandwidth of all quantities is infinite. In practice, only 

a finite bandwidth can be achieved. From this point, 

all quantities are redefined as having a limited band

width and et> are "reduced" free modes of the system 

with components only at the measured degrees of free

dom. Equation (8) is postmultiplied by the mode shape 

matrix to obtain 

wT et> = ¢; Met>. (10) 

When the right-hand side of (10) is multiplied out, 

it becomes simply a row vector of zeros except for 

the column corresponding to the rigid body mode for 

which a set of weights are being determined. This col

umn is a one multiplied by the modal mass mr. The 

usual SWAT formulation is given using the transpose 

of (10) or 

(11) 
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which has mr in the first row for the case in which 

the weights for the first rigid body mode are being de

termined. The weights from (11) will determine the 

sum of all externally applied forces for the direction 

defined by the rigid body mode in (9). Equation (11) 

shows that the number of accelerometer locations, and 

consequently the number of weights, must be equal to 

or greater than the sum of the rigid body and elastic 

modes represented in et>. Also, if the number of ac

celerometer locations (weights) exceeds the number 

of modes, an underdetermined equation results and a 

pseudoinverse technique must be used in this situation. 

The derivation of the new alternative techniques, 

which do not require knowledge of the elastic modes 

or the mode shapes, continues by an examination of 

Eq. (9) from which the basic equation for SWAT-CAL 

results. Equation (9) simply states that the weighting 

vector may be determined in the laboratory by apply

ing known forces to the structure and measuring the 

response accelerations. The weighting vector is com

puted from a least squares solution of (9) with the mea

sured applied force and response acceleration time his

tories. This technique was originally proposed by Gre

gory et al. (1986) and Smallwood and Gregory (1987). 

However, in impact applications, the small amount of 

rigid body information is not sufficient because the 

rigid body information is only contained in the time 

histories during the very short application of the force. 

The problem is solved by partitioning et> in Eq. (11) 

into rigid body and elastic parts as 

o 
(12) 

o 

o 

where et>r is the matrix of rigid body mode shapes and 

et>e is the matrix of elastic mode shapes. Consequently, 

the rigid body partition of (12) is added to (9) to obtain 

the robust formulation of SWAT-CAL: 

Each row in the partitioned matrix on the left-hand 

side of Eq. (13) represents either a rigid body mode 

shape or a sample of the acceleration measurements, 

and the acceleration portions, ii(t), include the entire 
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measured time histories at the designated locations. 

Equation (13) is solved for the weighting vector, W, 

in a least squares sense. 

Alternatively, if there is no measurement of the ap

plied force available, the acceleration time histories 

may be examined after the force is removed and while 

the structure is in free decay with a combination of 

Eqs. (9) and (11) as 

iiT (t)W = fT (t)¢r. (14) 

But because f(t) = 0, the right-hand side of (14) is 

zero. The result is an underconstrained set of equations 

with no rigid body acceleration information. To avoid 

the trivial solution (W = [0]) of (14), the rigid body 

portion of (12) is added to constraint (14) so that 

[ ~!.] W = 
liT 

o 
(15) 

o 

o 

Equation (15) is solved in the least squares sense for 

the weights. This is the SWAT-TEEM (SWAT using 

time eliminated elastic modes) formulation (Mayes, 

1994). In some cases, a constrained least squares so

lution may be required. 

During the early development of SWAT, the weight

ing vector was conceived as a representation of the 

mass matrix (Smallwood and Gregory, 1987). How

ever, Eq. (11) shows that the weighting vector is the 

product of one rigid body mode with the mass ma

trix. The resultant vector is orthogonal to all the other 

mode shape vectors because of the mass orthogonal

ity relationship. This is a common component of each 

formulation and allows the determination of the cor

rect weighting vector by using the mode shapes in the 

original SWAT formulation, the measured force and 

response acceleration time histories in SWAT-CAL, 

or the free decay response of the structure after the 

force has been removed in SWAT-TEEM. The next 

section demonstrates this concept by computing the 

weight vector and the resulting reconstructed forces 

for a lumped mass beam structure. 

MODAL TEST RRESULTS FOR LUMPED 

MASS BEAM STRUCTURE 

A typical structure that might be used for a force 

reconstruction application is shown in Fig. 1. How

ever, a simpler structure was used for this study. The 

. . . . 
F(t) 

..... 
FIGURE 1 Typical structure for full-scale impact testing. 
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FIGURE 2 Lumped mass beam structure testing (all di

mensions in inches); total weight = 18.68 lb. 

lumped mass beam structure shown in Fig. 2 has 

been used successfully for other studies (Priddy et aI., 

1988; Smallwood and Gregory, 1987) and was used to 

demonstrate computation of the weight vector W T and 

force reconstruction with the three techniques: SWAT, 

SWAT-CAL, and SWAT-TEEM. 

A modal test was conducted of the lumped mass 

beam structure with the resulting modal frequencies 

and mode shapes shown in Table 1. The softwise 

bending (lateral) direction was used for force appli

cation and acceleration response measurement. Seven 

accelerometers were located on the masses and at the 

center of the beam sections. The pitch mode shows 

the actual instrumentation locations relative to the cen

ter of mass for the beam that is about 16.75 in. from 

the right side. As can be seen from Table 1, the mode 

shapes are not symmetrical. This is to be expected be

cause the mass configuration is asymmetrical with re

spect to the center of mass. Table 1 contains all the 

information to form the <I> matrix for the SWAT tech

nique. SWAT-CAL and SWAT-TEEM do not require a 

modal analysis but only that the number of modes in 

the desired bandwidth for the force reconstruction be 

known. With seven measurement locations, the SWAT 

theory allows seven modes (rigid body and elastic 

modes) to be included in the formulation, because 

there are only seven unknown scalar weights. 
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Table 1. Modal Frequencies and Mode Shapes for Lumped Mass Beam (Softwise Bending) 

Bending 

Measurement Location on Beam Frequency 

Mode Mass 1 Sec. 1 Mass 2 Sec. 2 Mass 3 Sec. 3 Mass 4 (Hz) 

Translation 1. 1. 1. 1. 1. 1. 1. 

Pitch 19.25 13.25 7.25 0.25 -4.75 -10.75 -16.75 

I -0.58 -0.08 0.30 0.45 0.38 0.06 -0.34 31.6 

2 0.34 -0.30 -0.44 0.22 0.62 0.48 -0.20 89.5 

3 1.98 -9.13 -0.35 10.10 0.89 -11.04 0.93 259.6 

4 -2.37 15.83 -2.65 -0.48 5.73 -9.93 0.25 350.3 

5 1.11 -11.33 3.38 -15.63 2.83 2.95 -0.65 531.6 

Table 2. Weighting Vectors for Lumped Mass Beam Calculated with 

Three Different SWAT Techniques 

SWAT SWAT-CAL SWAT-TEEM 

Accelerometer Weighting Weighting Vector Weighting Vector 

Location Vector Sec. 2 Mass 4 Sec. 2 Mass 4 

0.1458 0.1556 0.1585 0.1639 0.1485 

2 0.0521 0.0531 0.0459 0.0340 0.0537 

3 0.2787 0.2653 0.2682 0.2765 0.2728 

4 0.0621 0.0530 0.0577 0.0694 0.0594 

5 0.1508 0.1629 0.1592 0.1272 0.1564 

6 0.0639 0.0538 0.0541 0.0814 0.0598 

7 0.2466 0.2560 0.2565 0.2477 0.2489 

WEIGHTING VECTOR CALCULATIONS 

The next step in this force reconstruction investiga

tion is to calculate the weighting vectors. The weight

ing vectors, WT, were calculated from Eqs. (11), (13), 

and (15) for the three respective techniques, SWAT, 

SWAT-CAL, and SWAT-TEEM. The weighting vec

tors are shown in Table 2. The SWAT weighting vec

tor was calculated using the mode shape information 

in Table 1. The weighting vectors for SWAT-CAL and 

SWAT-TEEM are averaged values that were calculated 

for five impacts in the softwise bending direction at 

each of two locations: section 2 (0.25 in. from the 

center of mass) and mass 4, which is a large mass 

(4 x 4 x 1 in. thick) on the right end of the beam. 

The data was digitized with a 4096-Hz sample rate and 

with analog filters whose cutoff frequency is 600 Hz. 

Each measured accelerometer response and force time 

history contained 1024 points. For the SWAT-CAL 

calculation, the entire record of 1024 points was used 

for the weighting vector calculation. For SWAT-TEEM 

the portion of the acceleration time history after the 

applied force was removed, starting at sample point 

64, was used for the weighting vector calculation. 

Different portions of the remaining 961 points were 

used: 128, 256, 512, and 961 points. However, the 

128-point calculation yielded the same results as the 

other acceleration time history lengths, so this was the 

length used for the averaged calculations. One addi

tional change was made to the SWAT-TEEM algo

rithm; the first equation in (15), which models the rigid 

body translation mode, was given a weighting factor of 

10. This emphasis of the translation mode constrains 

the weight summation to be mr which is the desired 

value. As shown in Table 2, the different techniques 

and the different locations for multiple impacts give 

different weights but the weights do not differ by sig

nificant amounts. 

FORCE RECONSTRUCTION RESULTS 

Finally, the weighting vectors were used to recon

struct impact forces applied at different locations on 

the beam. Time history data were collected for the 

force reconstructions from impacts at all four mass and 

three beam section locations. Examples of the recon

structed forces in comparison to the measured impact 

forces applied to mass 1 are shown in Figs. 3-5. All 

weighting vectors yielded good reconstructions of the 

impact forces as demonstrated in the figures, but only 

the three examples are shown here because of limited 
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FIGURE 3 Force reconstructed from impact at mass 1 using the SWAT algorithm. 
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FIGURE 4 Force reconstructed from impact at mass using the SWAT-TEEM algorithm 

(weights averaged from impacts at mass 4). 
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FIGURE 5 Force reconstructed from impact at mass I using the SWAT-CAL algorithm (weights 

averaged from impacts at section 2). 
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FIGURE 7 Lateral force reconstructed from axial impact at mass 1 using the SWAT-CAL algo
rithm (weights averaged from impacts at section 2). 

space. The force reconstructions for all impact loca

tions agreed with the measured forces to within 5%. 

A measured acceleration time history from mass 4 is 

shown in Fig. 6 for comparison with the measured and 

reconstructed forces. This individual acceleration re

sponse exhibits the resonant behavior of the lumped 

mass beam. 

Additional impacts were made to the beam in the 

axial direction to test the robustness of these force 

reconstruction techniques. An example of the lateral 

force reconstruction using SWAT-CAL in response to 

an axial impact is shown in Fig. 7 where it can be seen 

that almost a zero force was reconstructed. This recon

struction shows that the SWAT algorithm is not sensi

tive to out of axis forces. 

CONCLUSIONS 

Three techniques for the reconstruction of dynamic 

forces from measured acceleration responses on a 

structure have been presented and applied to a lumped 

mass beam structure. All three techniques produce 

weighting vectors that reconstruct impact forces equal

ly well for this structure. One technique, SWAT, re

quires that a modal analysis of the structure be con

ducted. The second technique, SWAT-CAL, requires 

that measurement of an applied force and the corre

sponding acceleration responses be made. The third 

technique, SWAT-TEEM, requires the measurement of 

free-decay acceleration responses but no applied force 

measurements, although the applied force is needed 

to check the laboratory force reconstruction results. 

SWAT-TEEM has the potential for being used to calcu

late a weighting vector during the free-decay response 

after a high level field impact test for comparison with 

the weighting vector calculated from low level labo

ratory data. The development of these techniques will 

continue in the future with applications to real struc

tures at Sandia National Laboratories. 
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