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Abstract 
Terrestrial lidar (TLS) is an emerging technology for deriving 
forest attributes, including conventional inventory and canopy 
characterizations. However, little is known about the infl u-
ence of scanner specifi cations on derived forest parameters. 
We compared two TLS systems at two sites in British Colum-
bia. Common scanning benchmarks and identical algorithms 
were used to obtain estimates of tree diameter, position, and 
canopy characteristics. Visualization of range images and 
point clouds showed clear differences, even though both 
scanners were relatively high-resolution instruments. These 
translated into quantifi able differences in impulse penetra-
tion, characterization of stems and crowns far from the scan 
location, and gap fraction. Differences between scanners 
in estimates of effective plant area index were greater than 
differences between sites. Both scanners provided a detailed 
digital model of forest structure, and gross structural charac-
terizations (including crown dimensions and position) were 
relatively robust; but comparison of canopy density metrics 
may require consideration of scanner attributes.

Introduction
In the past decade, terrestrial lidar systems (TLS) have shown 
promise as tools for estimating standard forest inventory 
variables (e.g., Aschoff et al., 2004; Henning and Radtke, 
2006b; Maas et al., 2008; Thies and Spiecker, 2004; Watt and 
Donoghue, 2005), and forest canopy structure and attributes 
(e.g., Clawges et al., 2007; Henning and Radtke, 2006a; Hosoi 
and Omasa, 2009; Huang and Pretzsch, 2010; Moorthy et al., 
2008; Vierling et al. 2008; Zheng and Moskal, 2009). For 
standard forest inventories, research efforts have focused 

on automatic detection of individual trees (e.g., Brolly and 
Kiraly, 2009; Maas et al., 2008; Simonse et al., 2003) and the 
subsequent estimation of parameters such as tree diameters 
and height (e.g., Aschoff and Spiecker, 2004; Henning and 
Radtke, 2006b; Hopkinson et al., 2004; Maas et al., 2008; 
Strahler et al., 2008) and taper or other stem quality attributes 
(Henning and Radtke, 2006b; Lefsky and McHale 2008; Thies 
et al., 2004). With regard to crown structure, research efforts 
have focused on measures such as gap fraction, plant area 
index, and leaf area index (LAI) at the  plot level (Henning 
and Radtke, 2006a; Hosoi and Omasa, 2009; Strahler et al., 
2008; Zheng and Moskal, 2009), or individual tree level (e.g., 
Clawges et al., 2007; Huang and Pretzsch, 2010; Moorthy 
et al., 2008), or branch and leaf level (e.g., Eitel et al., 2010; 
Hosoi et al., 2011). Dassot et al. (2011) provide a recent review 
of past research and potential applications.

The effect of scanner setup pattern (single scan mode 
versus multiple scan mode) (Maas et al., 2008; Van der Zande 
et al., 2008) and scanner position in the canopy (Hosoi and 
Omasa, 2007; Van der Zande et al., 2006) on the retrieved 
inventory and canopy structure parameters has received 
some attention in the literature. By contrast, the effect of the 
scanner systems themselves on derived forest attributes has 
received only minor attention. The only published compari-
son of scanner systems for forestry applications used dif-
ferent scanners on different plots, illustrating differences in 
performance but not allowing direct comparison (Maas et 
al., 2008). Today, a wide variety of commercial TLS systems 
exist, and the systems applied in forest-related applications 
range from 2D systems with low resolution (e.g., Rossel et al., 
2009; Van der Zande et al., 2006) to 3D systems with much 
higher resolution (e.g., Eitel et al., 2010; Henning and Radtke, 
2006a,b; Hosoi et al., 2011). From detailed studies of canopy 
structure with hemispherical photography, it is apparent that 
factors such as resolution may be important for the derived 
canopy parameters (Englund et al., 2000; Hale and Edwards, 
2002; Jonckheere et al., 2004). Differences in pulse penetra-
tion have been demonstrated between TLS and airborne lidar 
(Chasmer et al., 2006; Hilker et al., 2010 and 2012). For 
TLS applications, it has been suggested that scanner system 
specifi cations might be important for derived forest attributes 
(Clawges et al., 2007; Zheng and Moskal, 2009), but the pos-
sible effects have not been formally investigated through fi eld 
trials. Understanding the impact of scanner specifi cations on 
derived attributes is especially important for future deploy-
ment in successive surveys designed to estimate changes 
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height above the scan point benchmarks differed between 
scanners.

In the case of the Riegl LMS-Z360i, the angular distance 
between two distance measurements was set to 0.12 degree, 
which corresponds to a point spacing of approximately 2 cm 
if the target is 10 m from the scanner. The Riegl LMS-Z360i 
scanner has a horizontal scan capability of 360 degrees and a 
vertical fi eld of view of 85 degrees. To provide coverage of the 
total canopy, the scanner was tilted, and a second scan was 
made from each scan position to obtain the upper tree sec-
tions. Before scanning, retro-refl ective targets were positioned 
around the scanning area. Each target was scanned with the 
highest resolution of the scanner from each scan position. As 
a postprocessing step, the co-registration of the scan points 
was made by automatically matching the centroids of the 
retro-refl ective targets. The central scan was always oriented 
to magnetic north by using a compass. To obtain a vertically 
oriented local coordinate system, a bubble level was used 
to ensure that the scanner was positioned upright. At Site 1, 
the Riegl was used only in last return mode (i.e., the farthest 
return distance associated with an individual pulse was con-
verted to an x, y, z coordinate); at Site 2, the Riegl was used 
in both fi rst (i.e., nearest) and last return mode to compare 
performance.

In the case of the Leica ScanStation, the angular distance 
between the two distance measurements was set to 0.20 degree, 
which corresponds to a point spacing of approximately 3.5 cm 
if the target is 10 m from the scanner. The Leica has a horizon-
tal scan capability of 360 degrees and a vertical fi eld of view 
of 135 degrees (from 45 degrees below the horizontal, up to 
the zenith), and hence only one scan was needed at each scan 
point. Co-registration of scan points was achieved by conduct-
ing a closed traverse, using a circular target at the foresight 
and backsight position for each scan point, and using the 
built-in dual-axis tilt compensator of the scanner to ensure 
vertical accuracy.

Analysis

Postprocessing
To ensure differences in key results refl ected scanner differ-
ences rather than postprocessing differences, we employed 
identical postprocessing procedures for both scanners, with 
each step performed by members of a single research team 
using data from both scanners, with the exception of co-
registration of points within a site, which was done automati-
cally within the Leica software. First, all data were exported 
to ASCII fi les. Next, all data for each scanner at each site were 
combined into single fi les that included the (x, y, z) coordi-
nates of all contacts, the identity and location of the scanner 

in crown and stem characteristics, as scanner technology is 
changing quite rapidly whereas forest growth is a relatively 
slow process. 

The objective of our study was to investigate the effect 
of two TLS systems on selected forest inventory and canopy 
structure variables. We met our objective by (a) scanning two 
different forest stand types with two different TLS systems, (b) 
comparing the stem mapping and tree diameter distribution 
derived from the two systems, and (c) comparing the canopy 
attributes, derived gap fractions, and LAI from the two stands. 

Methods

Study Sites

Field data for the study were collected in two forest stands 
(Table 1) around Smithers in northwestern British Columbia, 
Canada (54°35’N, 126°55’W). The study area has a continen-
tal climate with cold temperatures and snowy winters and is 
part of the Sub-Boreal Spruce, moist cold subzone (SBSMC2; 
Banner et al., 1993; Meidinger and Pojar, 1991). Lodgepole 
pine (Pinus contorta var. latifolia Engelm.) dominated stands 
are most abundant on the poorer and drier soils while interior 
spruce (a complex of white spruce Picea glauca (Moench) 
Voss and Engelmann spruce (P. engelmannii Parry ex 
Engelm.)), and subalpine fi r (Abies lasiocarpa (Hook.) Nutt.) 
normally dominate mature forests on moisture-receiving sites. 
Sites intermediate in soil moisture and nutrient availability 
often support mixed forests of all three conifer species. 

We selected two mature forest stands as a study sites 
(Table 1) representing a contrast in terms of soil nutrient avail-
ability and associated species composition and density. Site 1 
is a nutrient-poor site dominated by pine and with a relatively 
open canopy, and Site 2 is a nutrient-rich site dominated 
by subalpine fi r and spruce with a denser, more vertically-
complex canopy. At both sites, trees were stem-mapped and 
measured for their diameter at breast height (DBH) in the 
immediate vicinity of the central scan point.

Laser Scanning

We used a Riegl LMS-Z360i and a Leica ScanStation to carry 
out scans at multiple positions on both study sites. The two 
scanners differ in key characteristics (Table 2), which poten-
tially can affect the estimation of key canopy metrics. For 
each study site, one scan position was located in the plot 
center, and the remaining scan positions were located around 
it. The edge scan positions were located so that 10 to 20 trees 
were completely scanned from all sides and the crown shape 
and height of the trees immediately adjacent to the plot center 
could be seen from multiple scan points. Both scanners were 
deployed over identical scan points. However, due to differ-
ences in tripods and other aspects of scanner ergonomics, the 

TABLE 1. STUDY SITE CHARACTERISTICS

Site Site 1 Site 2

Site type Nutrient poor Nutrient rich

Basal area (m2/ha) 42 59

Stems/ha 1517 1644

Species composition (pine, 
spruce, fi r)

51%, 27%, 22% 9%, 28%, 63%

Age range (breast height) 
(years)

9–71 92–182

Median age (years) 57 150

Top height 25 m 35 m

No. of scans 5 4

TABLE 2. COMPARISON OF KEY SCANNER SPECIFICATIONS

Scanner Riegl LMS-Z360i Leica ScanStation

Scanner type Time of fl ight Time of fl ight

Return Last return/First return* First return

Laser class 1 3R

Color (wavelength) 1550 nm 532 nm

Resolution (in this 
study)

0.12 degrees 0.20 degrees

Beam divergence 2 mrad** 0.2 mrad

Beam footprint at 10 m 20 mm 6 mm

*Site 2 was scanned twice with the Riegl LMS-Z360i in order to 
obtain datasets with last and fi rst return.
**The scanner incorporates an integrated beam focusing system. In 
our study this was set at infi nity.
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Once a void is detected, indicating a possible stem loca-
tion, the algorithm includes two further steps. First, the points 
above the ground near the apex of the void are clustered based 
on their distance. Clusters with enough points are used as 
potential stem positions. Starting with these potential stem 
positions, a second step is performed to extract a diameter, 
if possible. For the stem diameter estimation, not only one 
scan from one position is used, but also all available scans 
merged to one point cloud. A subset of points around each 
potential stem position is selected. These points are grouped 
to layered grids. Only points that are in grid cells which have 
corresponding occupied cells in at least four different layers 
are selected, indicating a vertically-oriented object. With this 
layering, horizontal structures are removed, as they occupy 
only one or two layers locally. For example, such objects 
could include a whorl of horizontally-oriented branches sur-
rounding a vertically-oriented stem. Next, a distance-based 
clustering is applied with an ellipsoidal distance function. 
This is done because stems have higher vertical spread than 
horizontal spread; the ellipsoidal distance function leads 
preferentially to the vertical rather than horizontal expansion 
of the cluster. Finally, for each cluster, a circle is fi tted and the 
best fi tting circle is used as a stem diameter.

Canopy Attributes
For each scanner position, we calculated canopy gap frac-
tion as the simple proportion of probes that failed to return 
a contact within each of 16 equally spaced inclination angle 
classes. The resulting canopy gap fractions were then used 
as input into the leaf area inversion model described by 
Norman and Campbell (1989) using the same 16 leaf inclina-
tion angle classes for estimation. Although more sophisticated 
approaches are available with TLS data, as with hemispherical 
photography (e.g., estimating canopy gap fraction in multiple 
azimuthal regions (cf. Lang and Yuequin, 1986); estimation of 
leaf area in voxelized subspaces (Henning and Radtke, 2006a; 
Hosoi and Omasa, 2009)), we focused on this relatively simple 
procedure as one that would highlight any differences due 
to scanner attributes without miring the analysis in algorith-
mic complexity. The procedure yielded estimates of effective 
plant area index (PAIeff; cf. Chen et al., 1997) and mean tip 
angle (MTA) for each scanner location, for each scanner. These 
estimates were tested for statistically signifi cant differences 
using mixed-effects ANOVA, with scanner (Leica, Riegl last 
return, or Riegl fi rst return) and scanner by site interaction as 
fi xed effects, and with site and position within site as random 
effects. These models were compared to null models that 
only included the random effects. Models were fi t by using 
restricted maximum likelihood, even though ANOVA statistics 
estimated using this method are approximate; had any tests 
been ambiguous, they would have been repeated using boot-
strapped likelihood ratio statistics. Statistical analysis was 
conducted using the NLME library (Pinheiro et al., 2009) in the 
R statistical package (R Development Core Team, 2009).

Results

Visualization

Range images for the two scanners at the plot centers of both 
sites are shown in Plate 1. Some general attributes of the scans 
can be discerned from these images, and are consistent across 
the range images from all scan points (not shown). First, 
as might be anticipated, the fi ner beam of the Leica scan-
ner results in a greater level of apparent detail, even though 
the angular resolution of the scan is lower. For example, the 
Leica is better able to resolve both dead and foliated lower 
branches of nearby trees than the Riegl in either mode. Such 
features appear thicker and “padded” in the Riegl scans, in 

position associated with the contacts, and coordinate infor-
mation for each probe that did not return a contact. The fi les 
were translated into a common coordinate system for both 
scanners, and served as the basis for all further analyses.

Visualization
We used visual comparison of a series of images derived from 
scanner data as an initial basis for comparison to facilitate 
better understanding of the quantitative differences that might 
be uncovered later. Visualization is inherently subjective, but 
the ability of the human visual system to perceive patterns in 
optical data remains unsurpassed by quantitative and com-
putational techniques, despite decades of research (Neumann 
et al., 2007; Todd, 2004). Visualization of scanner data thus 
represents an avenue toward understanding what quantitative 
algorithms might be able to do with such data, and discern-
ing what patterns in the data might be important for current 
algorithms.

As a fi rst step in scanner comparison, we created range 
images from the data from each scanner at each scanning posi-
tion. Contacts occurring at a range of >25 m from each scan 
point were not included in the range image. Range images 
were constructed by rasterizing the data with 1,600 pixel reso-
lution in the 360 degree horizontal range, using the closest 
contact in each pixel. Visual inspection of matching images 
provided an immediate and intuitive basis for understanding 
the differences in quantitative metrics calculated from the 
data.

As a further aid to visual interpretation, we extracted 
matching slices through the point clouds of the combined 
scan data for each scanner at each site. These included the fol-
lowing: a vertical slice 2 m wide that passed through the plot 
center, which was useful for understanding horizontal and 
vertical penetration and subsequent reconstruction of three-
dimensional stand structure; a horizontal slice 0.1 m thick, 
centered at breast height (1.3 m) above ground surface at the 
plot center, which was useful for understanding differences 
in reconstructed forest inventory attributes; and a horizontal 
slice 2 m thick, centered at mid-canopy height (10 m) above 
ground surface at the plot center, which was useful for under-
standing likely differences in reconstructions of crown size, 
shape, and position.

Scanner Penetration
For each scanner, we quantifi ed penetration through the 
canopy horizontally and vertically. We used the cumulative 
fraction of contacts within a given distance from each scanner 
position (including only those contacts originating from that 
position, and excluding probes that did not yield a return) as 
a measure of penetration. Penetration was quantifi ed in terms 
of horizontal and vertical distances because we hypothesized 
that the anisotropic structure of the forest canopy might lead 
to differences in scanner performance in each dimension.

Stem Mapping
To ensure an objective comparison between the scanners and 
the modes of measurement, we implemented an identical 
algorithm to extract stem positions and stem diameters. The 
algorithm is based on the tendency for stems to completely 
block ground-level returns that are behind them from the 
vantage point of a single scan position. By contrast, low-lying 
twigs and foliage only partially occlude the ground behind 
them. Moreover, as branches are normally not connected to 
the ground, this will lead to measured ground points farther 
away from the scanner than the branch. Thus, a narrow void 
within a single scan within which no ground-level returns 
occur is likely to contain a tree stem at the apex of the void 
pointing toward the scan position.
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(a)

(b)

(c)

(d)

(e)

Plate 1. Range images (in spherical coordinates) from the plot center 
for both scanners: (a) Site 1, Leica, (b) Site 1, Riegl - last return, 
(c) Site 2, Leica, (d) Site 2, Riegl - fi rst return, and (e) Site 2, Riegl 
- last return. Red pixels are closest to the scanner with cooler colors 
indicating greater distance.

comparison with the Leica. Visually, the range maps from the 
Riegl used in last-return mode are more similar to those of the 
Leica than are those from fi rst-return scans, but these differ-
ences are qualitative and hence diffi cult to quantify and are 
open to subjective interpretation. It is also apparent that the 
Riegl fi rst-return and last-return scans can differ substantially 

in their rendering of semi-transparent nearby objects, such 
as foliated branches and small trees, as well as fi ne-textured 
objects such as dead branches. Such objects are much more 
opaque and heavily padded in fi rst-return scans, but can also 
be almost transparent in last-return scans. The range images 
also show the difference in intensity of scan patterns near 
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similarities. In general, the same trees are recognizable with 
the same shapes and in the same positions. This implies that 
competent, fl exible algorithms should be able to discriminate 
and measure gross structural attributes (e.g., number, size, 
and spatial distribution of tree crowns) in similar ways using 
either scanner.

Figures 2 and 3 show horizontal slices through the point 
clouds, centered at breast height above the plot center. Here, 
the differences are more striking. The fi ne-beamed Leica 
scans clearly show individual tree trunks, with many stems 
represented as hollow circles surrounded by a  narrow ring of 
returns. This is also the case for trees that have branches and 
foliage surrounding the stem (see, e.g., Figure 3). 

the zenith: the Leica provides a very high intensity pattern (a 
consistent separation in spherical coordinates � and �, imply-
ing adjacent probes are actually closer together as elevation 
increases toward the zenith), whereas the Riegl maintains a 
more uniform separation (which graphs as a more dispersed 
pattern in spherical coordinates).

The qualitative characteristics seen in the range images 
carry forward into attributes of the point clouds. Figure 1 
shows vertical slices through the point clouds. In these 
images, the fi ner-beamed Leica scanner is able to resolve fi ner 
detail than the Riegl, but the Riegl is better suited for describ-
ing the tops of all trees, especially those in Site 2, when it was 
used in last-return mode. However, the images share many 

(a) (c)

(b) (d)

(e)

Figure 1. Vertical slices through the point cloud, 2 m thick, passing through the plot 
center: (a) Site 1, Leica, (b) Site 1, Riegl - last return, (c) Site 2, Leica, (d) Site 2, 
Riegl - last return, and (e) Site 2, Riegl - fi rst return. In the Leica scans a target tripod 
approximately 1.8 m tall can just barely be seen at the plot center (at ground level near 
the center of the image).
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(a)

(b) (d)

(e)

(c)

Figure 2. Horizontal slices through the point cloud, 0.1 m thick, centered 1.3 m 
above ground surface at the plot center; axes show coordinates in meters, with 
tripod locations as shaded triangles: (a) Site 1, Leica, (b) Site 1, Riegl - last 
return, (c) Site 2, Leica, (d) Site 2, Riegl - last return, and (e) Site 2, Riegl - 
fi rst return.

Corresponding tree stems in the coarser-beamed Riegl scans 
remain obvious, although they are not as simply rendered. 
Where the scan interacts with foliage and branches at breast 
height, there can be a characteristic smearing of these 

structures radially away from the scanner. These artifacts 
are known as intermediate points, and result from multiple 
refl ections within a single impulse. If the refl ecting surfaces in 
one laser impulse have smaller distance differences than the 
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(d)

(e)

(b)

Figure 3. Close-up of the horizontal slice at 1.3 m above plot center, showing 
the differences in rendering of individual tree stems within the point cloud, with 
tripod locations as shaded triangles: (a) Site 1, Leica, (b) Site 1, Riegl - last 
return, (c) Site 2, Leica, (d) Site 2, Riegl - last return, and (e) Site 2, Riegl - 
fi rst return.

length of the laser impulse, it will not be possible to separate 
them and an average distance will be measured. This could 
lead to points appearing in the point cloud that fall between 
the positions of the physical objects in the scan. These fea-
tures imply that algorithms for identifying and mapping indi-
vidual tree stems might work differently with data from the 

two scanners, and careful cross-calibration might be needed 
in an inventory context.

Finally, slices through the point clouds at mid-canopy 
position (Figure 4) show reasonable qualitative agreement 
between scanners. The Leica continues to show a greater 
degree of fi ne detail, such as the characteristic star-shaped 
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of branches and other fi ne features as in other visualizations, 
leading to a slight loss of negative space between crowns. 
Otherwise, for gross structural characterization of the canopy, 
the two systems appear to give similar results. 

branching pattern of some lodgepole pine crowns, while the 
Riegl does not show such detail as readily. The positions and 
sizes of crowns recorded by the two scanners are generally 
consistent, although the Riegl shows the same slight padding 

(a)

(b) (d)

(e)

(c)

Figure 4. Horizontal slices through the point cloud, 2 m thick, centered 10 m 
above ground surface at the plot center; axes show coordinates in meters, with 
tripod locations as shaded triangles: (a) Site 1, Leica, (b) Site 1, Riegl - last 
return, (c) Site 2, Leica, (d) Site 2, Riegl - last return, and (e) Site 2, Riegl - 
fi rst return.
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propensity for false positives and false negatives. At Site 1, 
more potential tree positions were found with the Leica scan-
ner, and also more trees could be matched with manually 
extracted stem positions using the Leica. At Site 2, the Leica 
again performed better than the Riegl in fi rst-return mode, but 
the Riegl in last-return mode performed best. Site 2 had more 
dead and living branches occluding the stems, leading to false 
positives. The broader beam of the Riegl scanner may have 
contributed to false positives due to the intermediate points 
between the real stems. However, the false positives also 
included the poles to hold the refl ectors or registration targets.

Using the potential stem positions as a starting point, 
stem diameters for Site 2 were extracted. The results are 
summarized in Figure 6. There was a tendency for both Riegl 
scanner modes to slightly underestimate stem diameters, but 
the Leica showed greater variability. The Riegl in last-return 
mode showed the best performance, as judged by mean 
absolute deviation (MAD). However, none of the scanners or 
modes provided suffi ciently reliable diameter measurements 
using the algorithm employed here to substitute for traditional 
measurements using a tape or calipers.

Scanner Penetration

For horizontal penetration, both the Leica and the Riegl used 
in last-return mode showed consistent differences (Figure 5). 
For example, at Site 1 the median horizontal distance to 
return for the Leica was 2.81 m, whereas for the Riegl it was 
4.33 m. At Site 2, the corresponding distances were 3.55 m 
and 8.92 m, respectively. However, the Riegl used in fi rst-
return mode had similar penetration to the Leica, with a 
median horizontal distance to return of 3.94 m.

Vertical penetration showed a different pattern than 
horizontal penetration (Figure 5). The Leica and the Riegl in 
last-return mode had similar vertical penetration (3.02 m as 
opposed to 3.15 m median vertical distance to return at Site 1, 
and 4.15 m as opposed to 4.03 m at Site 2). However, the Riegl 
in fi rst-return mode showed much less vertical penetration 
(2.34 m at Site 2). 

Stem Mapping

The results of stem position detection in both stands are given 
in Table 3. Both site conditions and scanner attributes appear 
to have impacted the number of detected stems, including the 
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Canopy Attributes

Gap fraction as a function of zenith angle is shown for the two 
scanners in Figure 7. At Site 1, the Leica had a higher mean 
gap fraction for angles near the zenith than the Riegl used in 
last-return mode, but a lower mean gap fraction for angles 
greater than 60 degrees from zenith (i.e., less than approxi-
mately 30 degrees from horizontal). At Site 2, the pattern was 
similar. Here, the Leica had a higher mean gap fraction than 
the Riegl used in either mode for angles less than 50 degrees 
from zenith, but a lower gap fraction for angles more than 
50 degrees from zenith.

The impact of different estimates of gap fraction on effec-
tive plant area index and mean tip angle are shown in Table 4. 
The Leica provided consistently higher estimates of plant area 
index than the Riegl. These differences were highly signifi cant 
(likelihood ratio chi-square 21.73, p <0.0001). Differences in 
mean tip angle, although marginally signifi cant from a statisti-
cal perspective (likelihood ratio chi-square 6.75, p = 0.034), 
are so small (only a fraction of a degree between scanners and 
sites) as to be practically inconsequential. Both the binning of 
zenith angles during analysis, and the approximate nature of 
the statistical hypothesis test, can be considered as arguments 
against any attempt to interpret such trivial differences in 
mean tip angle.

Discussion
Although both of the scanners employed in our study are 
relatively high-resolution scanners, capable of acquiring point 

TABLE 3. RESULTS OF STEM MAPPING

Site 1: 71 manually extracted trees

Scanner Potential Positions Correct Matches Trees Not Found

Leica 80 29 42

Riegl (fi rst return) 68 21 50

Site 2: 45 manually extracted trees

Scanner Potential Positions Correct Matches Trees Not Found

Leica 73 25 20

Riegl (fi rst return) 96 29 16

Riegl (last return) 72 30 15

clouds with millions of points in a single hemispheric scan, 
the differences upon visual inspection of range maps as well 
as scatter plots of slices through point clouds are striking and 
informative. The scanners differ in numerous design attributes, 
including laser wavelength and power, beam divergence, and 
data pre-processing. Because the latter occurs within the scan-
ner unit before export and often is proprietary information, it 
is diffi cult to evaluate its full impact. However, at least some 
of most obvious visual differences are attributable to beam 
diameter, which depends on diameter of the beam exiting the 
instrument and on beam divergence. The comparison shows 
that a small beam diameter leads to better penetration through 
low branches and understory vegetation (Figure 3) potentially 
giving small beam diameter scanners a greater potential for 
deriving stem properties. Signifi cant divergence in beam 
diameter exists between scanners employed in forestry appli-
cations, and the presented results show that beam diameter is 
an important parameter to consider when choosing an instru-
ment and interpreting derived variables. Even though there 
is signifi cant divergence in beam diameter between the two 
compared scanners (Table 2), both scanners have narrower 
beams at operational distances of 10 to 20 m than for exam-
ple the ECHIDNA instrument used by Jupp et al. (2005) and 
Strahler et al. (2008).

The ability of a scanner to penetrate a forest stand will 
be a critical determinant of multiple aspects of performance. 
Greater penetration should, in principle, allow recovery of 
stand structure from fewer scan positions or from positions 
placed farther apart. All other things being equal, a scanner 

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Measured DBH, cm

(a) (b) (c)

E
s
ti
m

a
te

d
 D

B
H

, 
c
m

MAD 9.5 cm

0

10

20

30

40

50

60

70

80

E
s
ti
m

a
te

d
 D

B
H

, 
c
m

0 20 40 60 80

Measured DBH, cm

MAD 8.9 cm

0

10

20

30

40

50

60

70

80

E
s
ti
m

a
te

d
 D

B
H

, 
c
m

0 20 40 60 80

Measured DBH, cm

MAD 6.7 cm

Figure 6. Comparison of diameter extraction at Site 2 for trees that were detected by all three scanner/
mode combinations: (a) Leica, (b) Riegl - fi rst return, and (c) Riegl - last return.



 PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING M a r c h  2 0 1 3 255

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inclination Angle, degrees

(a) (c)

(b) (d)

(e)

0 20 40 60 80

Inclination Angle, degrees

C
a
n
o
p
y
 G

a
p
 F

ra
c
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
a
n
o
p
y
 G

a
p
 F

ra
c
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
a
n
o
p
y
 G

a
p
 F

ra
c
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
a
n
o
p
y
 G

a
p
 F

ra
c
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
a
n
o
p
y
 G

a
p
 F

ra
c
ti
o
n

0 20 40 60 80

Inclination Angle, degrees

0 20 40 60 80

Inclination Angle, degrees

0 20 40 60 80

Inclination Angle, degrees
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with greater penetration should be able to map and identify 
individual trees at a greater distance from the scan position. 
Greater penetration should also allow better reconstruction 
of the attributes of upper canopies, although if such penetra-
tion occurs because returns are not being provided for lower 
canopy elements, there may be tradeoffs in resolving different 
canopy layers. We speculate that the observed differences in 

patterns between horizontal and vertical penetration (Figure 5) 
are caused by differences in the geometric confi guration of 
canopy elements and their interaction with scanner proper-
ties. For vertical penetration, the horizontal sprays of conifer 
foliage and fi ne branches, which are relatively effi cient for 
capturing sunlight, may also be relatively opaque to the Riegl 
when used in fi rst-return mode, but can be penetrated by the 
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It had been previously hypothesized, but not demon-
strated in a controlled study, that details of the scanner might 
be important for derived forest attributes (Clawges et al., 2007; 
Zheng and Moskal, 2009). Conversely, fi ne-beam TLS systems 
are capable of imaging with increasingly high resolution and 
spatial accuracy (Dassot et al., 2011). Thus, it might be tempt-
ing to believe that while details of the point clouds from differ-
ent scanners might vary, the results in terms of derived charac-
teristics would be quite small, especially in comparison to the 
substantial differences sometimes observed between terrestrial 
and airborne scanning (e.g., Chasmer et al., 2006; Hilker et al., 
2010 and 2012). Moreover, the emerging uses of this technol-
ogy for ecological investigations (see, e.g., Vierling et al., 2008; 
Dassot et al., 2011; van Leeuwen et al., 2011) and declines in 
scanner cost may encourage new users to explore TLS who are 
not dedicated lidar researchers and who might, therefore, not 
fi nd the consequences of differing TLS confi gurations intuitive. 
Our results should serve as a caution against naive comparison 
of results derived from data from different TLS scanners.

In conclusion, we share the optimism of several authors 
(e.g., Henning and Radtke, 2006a; Strahler et al., 2008, Dassot 
et al., 2011; van Leeuwen et al., 2011) that terrestrial laser 
scanning will be an important tool for describing forest 
attributes in the future, but highlight that scanner attributes 
such as beam size, wave length, and maximum range may 
have strong implication for the derived results. In this, we 
echo the conclusions of Chasmer et al. (2006) who emphasize 
the need to understand how specifi c laser scanners (whether 
airborne or terrestrial) interact with vegetated canopies in 
order to improve the reliability and consistency of scanner-
derived forest attributes.
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