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Abstract

Many spatial interpolation methods perform well for gentle terrains when producing spatially continuous surfaces based on
ground point data. However, few interpolation methods perform satisfactorily for complex terrains. Our objective in the
present study was to analyze the suitability of several popular interpolation methods for complex terrains and propose an
optimal method. A data set of 153 soil water profiles (1 m) from the semiarid hilly gully Loess Plateau of China was used,
generated under a wide range of land use types, vegetation types and topographic positions. Four spatial interpolation
methods, including ordinary kriging, inverse distance weighting, linear regression and regression kriging were used for
modeling, randomly partitioning the data set into 2/3 for model fit and 1/3 for independent testing. The performance of
each method was assessed quantitatively in terms of mean-absolute-percentage-error, root-mean-square-error, and
goodness-of-prediction statistic. The results showed that the prediction accuracy differed significantly between each
method in complex terrain. The ordinary kriging and inverse distance weighted methods performed poorly due to the poor
spatial autocorrelation of soil moisture at small catchment scale with complex terrain, where the environmental impact
factors were discontinuous in space. The linear regression model was much more suitable to the complex terrain than the
former two distance-based methods, but the predicted soil moisture changed too sharply near the boundary of the land use
types and junction of the sunny (southern) and shady (northern) slopes, which was inconsistent with reality because soil
moisture should change gradually in short distance due to its mobility in soil. The most optimal interpolation method in this
study for the complex terrain was the hybrid regression kriging, which produced a detailed, reasonable prediction map with
better accuracy and prediction effectiveness.
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Introduction

Soil moisture (SM) is of fundamental importance in meteorol-

ogy, agriculture, and hydrology, among other scientific disciplines

[1,2,3,4]. In hydrology, SM partitions rainfall into runoff and

infiltration, thus impacting the surface and groundwater recharge,

flood forecasting, and flow routing modeling [5,6]. Scientists

usually need accurate, spatially continuous data across a region in

order to make justified interpretations, but such data are usually

not readily available and are often difficult and expensive to

acquire. Remote sensing techniques have great potential for

measuring spatially continuous SM data, but typically involve

observing the average SM close to the ground surface and over

large geographical areas with low resolution [7]. Many approaches

combining remotely sensed data and auxiliary model to estimate

deeper soil moisture have been developed, such as infiltration

models [8] and knowledge based techniques that use prior

information of hydrology [9] and so on. However, these

approaches cannot meet the requirement of small catchment scale

researches, which need finer spatial resolution of deep soil

moisture data to study the exchange of water between different

layers within the soil column or between the land surface and the

atmosphere [10]. In situ measurements of soil moisture are still an

important portion in recent researches [5,11,12]. The popular in

situ techniques of measuring soil moisture content include

gravimetric method, neutron probes, electromagnetic techniques,

cosmic-ray neutrons and so on [13]. However, theses in situ

techniques typically involve measuring SM in points. Spatially

continuous SM data in deep soil with finer resolution are needed

in many cases. Thus, estimating the values at unsampled sites

using data from point observations is necessary, and spatial

interpolation methods provide an essential tool to meet this need.

In previous research, the geostatistical method (ordinary kriging

(OK), cokriging) [14,15,16], geometric method (inverse distance

weighting (IDW), local polynomial), and statistical methods such as

the linear regression model (LR) [17,18,19] have been the most

commonly used interpolation technologies [1,20]. In addition,

hybrid interpolation techniques, which combine two conceptually

different approaches, have received increasing attention in recent

years [21,22]. One of these techniques is known as regression

kriging (RK) [23,24], and first uses regression on auxiliary

information and then uses simple kriging (SK) with a known

mean (0) to interpolate the residuals from the regression model

[25]. Zhu [23] compared the performance of OK and RK for soil

properties in different landscapes and indicated that when a strong

relationship existed between the target soil properties and auxiliary
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variables and the terrain was relatively complex, RK was more

accurate for interpolating soil properties. Li and Heap [26]

investigated the performance and impact factors of popular

interpolation methods in environmental sciences by accessing 53

comparative studies. The results indicated that the OK and IDW

methods were the most frequently used. The performance of

a spatial interpolation method depends not only on the features of

the method itself, but also on factors such as data variation and

sampling design. Most of the methods performed at an acceptable

level for predicting soil properties in a gentle terrain [27,28], but

few performed well in a complex terrain.

Our research was conducted in the semi-arid Loess Plateau,

which has a complex hilly gully terrain. The SM in the deep soil

was paid much attention because it significantly affects the growth

of the planted vegetation as well as the success of the Grain for

Green Project (a state campaign in China to restore an ecological

balance to the country’s western parts, by turning the low-yielding

farmland back into forests and pasture) in this region [29,30]. Due

to the limitation of remote sensing technology for directly

obtaining deep SM with fine resolution [7,31], many studies in

the Loess Plateau have been based on ground and point

measurements [32,33,34,35]. However, considering the intensive

labor consumption and destruction to the ground when conduct-

ing sampling, the sample density is usually insufficient at the

catchment or region scale. Based on these practical challenges, we

aimed to determine an optimal interpolation method that fits to

the hilly gully terrain in the semi-arid Loess Plateau.

Two of the most popular interpolation methods, OK and IDW,

were chosen in our research [26,33,36,37], as investigating their

suitability in complex terrain is practically valuable to further

research. Secondly, considering the SM in the Loess Plateau was

strongly impacted by geographic factors such as land use type

[38,39], soil properties [35], gradients, slope aspects [40], and so

on, the LR model was chosen, in which the strong correlation

between SM and geographic factors would be helpful to create an

optimal regression function [26]. A hybrid RK model was also

chosen for its theoretical suitability in our research and good

performance in previous research [23,41,42,43]. The performance

of each method was assessed in terms of mean-absolute-

percentage-error (MAPE), root-mean-square-error (RMSE), and

goodness-of-prediction statistic (G). The theoretical and practical

advantages and disadvantages of each method for a complex

terrain are discussed in detail at the end of this research.

Study Area

The study was carried out in the Yangjuangou catchment

(36u429N, 109u319E), which is located in the center of the Loess

Plateau near Yan An City in Shaanxi Province, China (Fig. 1).

The catchment has a total area of 2.02 km2 and the elevation

ranges from 1,050 to 1,298 m. It is a typical gully and hilly area

with a gully density of 2.74 km km2 2 and the slope gradients

range from 10u to 30u. The area has a semi-arid continental

climate with an average annual rainfall of 535 mm. Rainfall events

occur mainly between June and September with large inter-annual

Figure 1. The location of the study catchment and the distribution of the samples.
doi:10.1371/journal.pone.0054660.g001
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variation. The soil in the study area was derived from loess with

a maximum depth of approximately 200 m. The soil texture was

rather homogeneous, containing mainly loessial sandy loam soil

with the silt particles being 65–75% and bulk density being 1.2–

1.4 g/cm3 according to laboratory measurements. As result of the

Grain for Green project that was launched in 1998, most of the

cultivated lands on steep slopes were abandoned for natural or

planted vegetation. Grasslands and forestlands now dominate the

hillslopes, and shrubs are thriving at the bottom of the north-facing

slopes. The main forest species in the Yangjuangou catchment is

acacia (Robinia pseudoacacia), which was planted in the 1980s and

after 1999. The dominant grass species are Artemisia sacrorum, Stipa

bungeana, and Artemisia scoparia. The main shrub species are Prunus

armeniaca and Hippophae rhamnoide. A mosaic of patchy land cover is

the typical landscape pattern in the Yangjuangou catchment as

a result of human disturbances as well as climatic and

topographical conditions [44].

Experimental Layout and Methods

Experimental Layout
The SM measurement was conducted in June 2010, with a total

of 153 points being measured. The slope distances between

neighboring points ranged from 50 m to 100 m and probably met

the uniform distribution, which was required by Geostatistical

interpolation methods. Besides, all the land use types and typical

Figure 2. The soil moisture prediction map basing on ordinary kriging method.
doi:10.1371/journal.pone.0054660.g002
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topography types in the catchment were involved and each land

use/topography type contained at least ten sampling points to

ensure the validity when conduct statistical analysis. The field

sample collection lasted three days, and there was no rain during

these days. The distribution of the points was shown in Figure 1.

The soil samples in 10 cm, 20 cm, 40 cm, 60 cm, 80 cm and

100 cm depth were extracted using a soil auger at each point.

Once extracted from the ground, the samples were placed in

aluminum cans with tight-fitting lids, and the gravimetric water

content was determined from the weight loss after oven drying at

105uC to a constant mass. The soil bulk density was measured

synchronously in each plot using a ring cut. The volumetric water

content was calculated by multiplying the gravimetric water

content and the soil bulk density and dropping the units. The soil

moisture in 10–20 cm layers was averaged to present the upper

soil layer for each point, while the 40–100 cm to present the

deeper soil layer.

In the field, a GPS receiver with 5 m precision was used to

obtain the altitude, longitude, and latitude, which were later

imported into a geographic information system (ArcGIS 9.3) as

Albers coordinates. The slope degree and aspect were measured

with a geological compass. The land use types, primary soil types,

and vegetation species and coverage (%) were estimated by

observation.

To produce a spatially continuous surface and evaluate the

performance of each interpolation method, the 153 sampling

Figure 3. The soil moisture prediction map basing on inverse distance weighting method.
doi:10.1371/journal.pone.0054660.g003
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points were randomly divided into two sets by the ‘‘Create Subset’’

component of the Geostatistical Analyst extension in ArcGIS: the

training data set and the test data set with 2:1 ratio. The training

data set was used to create the model and the test data sets were

used to assess the performance of the model. In the present study,

the training data set included 102 points and the test data set

included 51 points. Considering that the distribution of the

training points may affect model performance, the subsetting was

repeated six times (S1 to S6). For each subset, the four

interpolation methods were used to produce the spatially

continuous surface, and the performance was assessed accordingly.

Methods
For the IDW and OK interpolation methods, the value of

variable Z at the unsampled location x0, Z*(x0) is estimated based

on the data from the surrounding locations, Z (xi), as

Z�(x0)~
Xn

i~1

wiZ(xi) ð1Þ

where wi is the weight assigned to each Z (xi) value and n is the

number of the closest neighboring sampled data points used for

estimation. The weights for the IDW are usually proportional to

the inverse of the squared distance between the prediction point

Figure 4. The soil moisture prediction map basing on linear regression method.
doi:10.1371/journal.pone.0054660.g004
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and the observation points, and they sum to 1. That is,

wi~
1=d2

i

Pn

i~1

1=d2
i

ð2Þ

where di is the distance between the estimated point and the

observed point.

The number of the closest neighboring samples is an important

factor affecting the precision of IDW. Considering the sample

spatial density and the hilly gully terrain of our research area, the

number of the closest neighboring samples should be small

because the samples taken on the other side of the hill should have

little correlation with the predicted point in reality. Thus, the

number of the closest neighboring samples we applied varied from

3 to 6. Cross-validation was used to compare the results obtained

with a different number of the closest neighboring samples. The

numbers of the closest neighboring samples producing the best

agreement between the observed data and the estimates were

chosen as the optimal IDW weighting parameters [20].

Kriging calculates the values of wi by estimating the spatial

structure of the variable’s distribution represented by a sample

variogram as

Figure 5. The soil moisture prediction map basing on regression kriging method.
doi:10.1371/journal.pone.0054660.g005
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c(h)~
1

2n

Xn

i~1

½Z(xi){Z(xizh)�2 ð3Þ

where xi and xi+h are sampling locations separated by a distance h,

and Z(xi) and Z(xi+h) are the observed values of variable Z at the

corresponding locations. The sample variogram is fitted with

a variogram model and the adequacy of the chosen model is tested

using cross-validation. In this study, we considered the spherical,

Gaussian, and exponential models for the sample variogram

fitting. The cross-validation was conducted with varying model

parameter values and the numbers of the closest neighboring

samples ranging from 3–10 until the highest estimation accuracy

was reached.

Linear regression is a common forecasting tool for many

research areas. It is a statistical tool for modeling the relationship

between a dependent variable and one or more independent

variables. In linear regression models, the dependent variable is

a linear function of one or more independent variables, as shown

in the equation below.

y~b0z
Xn

i~1

biXi ð4Þ

The parameters of the linear regression model are typically

estimated using the least squares method, which results in a line

that minimizes the sum of squared vertical distances from the

observed data points to the line [19].

A large body of research indicates that the SM in the Loess

Plateau is strongly affected by land use types, soil properties, and

terrain [11,40,45,46,47]. Considering the soil properties were

fairly homogeneous in our research area (mainly loessial sandy

loam soil with the silt particles being 65–75% and bulk density

being 1.2–1.4 g/cm3 basing on laboratory detection), the in-

dependent variables were selected as land use types, slope, and

annual average solar radiation, which were preliminary detected

basing on correlation analysis and finally determined basing on the

significance of regression coefficient (P,0.05) in the regression

equation. The slope and annual average solar radiation were

continuous variables, which were produced by digital elevation

model (DEM, 3 m63 m). The land use types were categorical

variables and were converted into dummy variables before they

were introduced into the regression analysis. When all of the

parameters of the linear function were produced and satisfied the

Table 1. The basic statistical properties of soil moisture of each data set.

Count Min Max Average Std.dev Skewness Kurtosis CV

O/L O/L O/L O/L

All 153 5.49 35.94 14.08 5.85/0.38 1.16/0.39 3.95/2.44 0.42/0.15

S1 102 5.49 28.59 13.96 5.57/0.38 0.82/0.25 2.67/2.12 0.40/0.15

S2 102 6.44 35.94 14.20 6.19/0.40 1.22/0.47 4.03/2.41 0.44/0.16

S3 102 6.60 35.94 14.03 5.96/0.39 1.21/0.53 4.02/2.36 0.42/0.15

S4 102 5.49 35.94 14.42 6.02/0.39 1.19/0.33 4.11/2.62 0.42/0.15

S5 102 5.49 29.16 13.70 5.47/0.37 1.16/0.43 3.70/2.55 0.40/0.15

S6 102 6.44 35.94 14.07 5.82/0.38 1.20/0.42 4.23/2.44 0.41/0.15

O. Statistical value from Ordinary dataset.
L. Statistical value from Log-transformed dataset.
doi:10.1371/journal.pone.0054660.t001

Table 2. The correlation between the G-values and the sample pattern properties basing on correlation analysis.

Std.dev Skewness Kurtosis CV

Method (soil depth, cm) PCC P PCC P PCC P PCC P

OK (10–20) 20.75 0.08 20.68 0.14 20.73 0.10 20.74 0.09

IDW (10–20) 20.70 0.12 20.45 0.37 20.39 0.44 20.85 0.03

LR (10–20) 20.44 0.38 20.32 0.54 20.40 0.43 20.44 0.38

RK (10–20) 20.60 0.21 20.54 0.27 20.56 0.25 20.68 0.14

OK (40–100) 20.53 0.27 20.12 0.82 20.09 0.86 20.67 0.15

IDW (40–100) 20.59 0.22 20.20 0.70 20.14 0.79 20.74 0.09

LR (40–100) 20.76 0.08 20.23 0.66 20.28 0.59 20.80 0.06

RK (40–100) 20.67 0.14 20.27 0.60 20.30 0.57 20.75 0.08

PCC. Pearson correlation coefficient.
P. Significance value (2-tailed).
doi:10.1371/journal.pone.0054660.t002
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significance test (P,0.05) in SPSS 13.0 software, they were

adopted to produce the prediction map in ArcGIS 9.3.

RK is a spatial interpolation technique that combines the

regression of the dependent variable on auxiliary variables with

the kriging of the regression residuals. The target variable SM, was

fitted with each auxiliary data set using the linear regression. By

detrending the regression predictions, the residuals were geosta-

tistically analyzed and interpolated using SK, and finally the

regression predictions and interpolated residuals were summed.

Eventually, the SM predictions were back-transformed to normal

SM values. In RK, the auxiliary data sets in the regression were

the same as in the LR [25].

The IDW and OK method were conducted using ArcGIS 9.3.

With the LR and RK methods, the linear regression function was

established by SPSS 13.0 and the prediction of the continuous

spatial surface was conducted by ArcGIS. Eventually, all of the

predicted maps were laid out using ArcGIS with comparable

design (Fig. 2, 3, 4, 5).

Assessment of Method Performance
The performance of the methods was assessed by identifying the

error in the predictions. For each method, the prediction values

and corresponding observed values in the test data set were

compared, and the following evaluation indicators were calculat-

ed.

The accuracy was measured by MAPE, which is an accuracy

measure based on percentage (or relative) errors and RMSE,

which measures the average magnitude of the error [26]. The

errors are squared before they are averaged, so the RMSE gives

a relatively high weight to large errors. This means that RMSE is

most useful when large errors are particularly undesirable. Small

MAPE and RMSE values indicate a model with few errors and

more accurate predictions.

The MAPE is calculated as follows:

MAPE~
1

n

Xn

i~1

D(pi{oi)=oi D ð5Þ

Where n is the number of validation points, pi is the predicted

value at point i, oi is the observed value at point i.

The RMSE is calculated as follows:

RMSE~½
1

n

Xn

i~1

(pi{oi)
2�1=2 ð6Þ

Where n is the number of validation points, pi is the predicted

value at point i, oi is the observed value at point i.

The effectiveness of the models was evaluated using a goodness-

of-prediction statistic (G). The G-value measures how effective

a prediction might be relative to that which could have been

derived using the sample mean:

G~1{½
Xn

i~1

(pi{oi)
2=

Xn

i~1

(oi{o)2� ð7Þ

Table 3. The performance assessment of the four interpolation methods for 10–20 cm soil layer.

MAPE RMSE G-value

OK IDW LR RK OK IDW LR RK OK IDW LR RK

S1 0.28 0.29 0.19 0.15 3.65 3.58 2.68 2.28 0.54 0.56 0.75 0.82

S2 0.36 0.37 0.26 0.24 3.77 3.86 2.64 2.99 0.17 0.13 0.59 0.56

S3 0.40 0.35 0.22 0.19 4.40 3.69 2.72 2.53 0.24 0.47 0.71 0.75

S4 0.28 0.25 0.21 0.19 3.61 3.27 2.13 2.29 0.42 0.53 0.80 0.83

S5 0.41 0.43 0.20 0.24 5.01 4.88 3.16 3.43 0.50 0.53 0.80 0.83

S6 0.39 0.29 0.27 0.22 3.77 3.15 2.85 2.79 0.20 0.44 0.54 0.56

Average 0.36 0.33 0.23 0.20 4.04 3.74 2.70 2.72 0.35 0.44 0.70 0.69

doi:10.1371/journal.pone.0054660.t003

Table 4. The performance assessment of the four interpolation methods for 40–100 cm soil layer.

MAPE RMSE G-value

OK IDW LR RK OK IDW LR RK OK IDW LR RK

S1 0.36 0.33 0.26 0.25 5.82 5.44 4.72 4.50 0.28 0.37 0.53 0.57

S2 0.28 0.29 0.23 0.23 4.03 4.09 3.54 3.84 0.09 0.06 0.30 0.28

S3 0.36 0.34 0.23 0.23 4.99 4.93 3.80 3.50 0.26 0.28 0.57 0.64

S4 0.29 0.26 0.28 0.26 4.91 4.47 4.47 4.21 0.40 0.50 0.50 0.55

S5 0.41 0.40 0.26 0.27 5.91 5.49 4.40 4.18 0.37 0.45 0.65 0.68

S6 0.27 0.27 0.26 0.26 4.97 4.64 4.25 4.41 0.26 0.36 0.46 0.42

Average 0.33 0.32 0.25 0.25 5.10 4.84 4.20 4.11 0.28 0.34 0.50 0.51

doi:10.1371/journal.pone.0054660.t004
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Where n is the number of validation points, pi is the predicted

value at point i, oi is the observed value at point i, and ō is the

sample arithmetic mean. A G-value equal to 1 indicates perfect

prediction, a positive value indicates a more reliable model than if

the sample mean had been used, a negative value indicates a less

reliable model than if the sample mean had been used, and a value

of zero indicates that the sample mean should be used [20].

Results

Basic Statistics of Soil Moisture
The SM of the overall samples ranged from 5.49% to 35.94%,

with an average value of 14.08%. The SM spatial variability was

significant, with a standard deviation (Std.dev) of 5.85 and

coefficient of variation (CV) of 0.42 (Table 1). The skewness

values of the data sets were positive and the asymmetry was

obvious, with the value of 1.2. After the log-transformation, the

corresponding skewness values were much smaller (0.39), which

means that the data distribution was closer to normal. The log-

transformed data sets were used in the Kriging interpolation

method, which strictly demands normality of the data set [48].

The statistics values of each subset (S1 to S6) were also listed in

Table 1.

Correlation between the Sample Pattern and the
Performance of the Interpolation Methods
The Std.dev, skewness, kurtosis, and CV statistics were used to

represent the pattern properties of each subset. The Pearson

Correlation between the pattern properties and the G-values were

used to analyze the effect of the sample pattern on the

performance of each method. Table 2 shows that all of the

correlations were poor and none of the correlation coefficients

were significant in this study.

Performance of the Interpolation Methods
The MAPE (RMSE) were generally decreasing from OK to RK

in Table 3 and Table 4, with the corresponding average values of

0.36 (4.04), 0.33 (3.74), 0.23 (2.70), 0.20 (2.72) for the 10–20 cm

layer and 0.33 (5.10), 0.32 (4.84), 0.25 (4.20), 0.25 (4.11) for the

40–100 cm layer, which indicated a greater probability that errors

occur in OK and IDW than in LR and RK.

The G-value reflects the prediction effectiveness of each

method. For the S1 to S6 subsets, the G-values were ranked as

OK,IDW,LR,RK, with corresponding average values being

0.35, 0.44, 0.70, 0.69 for the 10–20 cm soil layer and 0.28, 0.34,

0.50, 0.51 for the 40–100 cm soil layer. According to the multiple

mean comparison (Student-Newman-Keuls) of G-value of each

method, the four interpolation methods were divided into two

classes. The OK and IDW methods were classed into a same

group because the G-values were not significantly different, while

the LR and RK were classed into another group (Table 5, Table 6).

The G-values difference between the two classes was significant

(P,0.05), which means that the effectiveness of the LR and RK

methods was significantly better than the distance-based OK and

IDW methods. For OK and IDW, the G-value of data set S2 for

40–100 cm soil layer was close to 0, which indicates that the

effectiveness of the prediction was not better than if the sample

mean was used [20]. Although the relatively better performance of

IDW than OK, both of them were not optimal in complex terrain

because of their larger error and lower prediction effectiveness.

Comparatively, the performances of LR and RK were much

better, with the average G-values about 0.7 for 10–20 cm soil layer

and 0.5 for 40–100 cm soil layer. Although the G-value of LR was

higher than RK in several cases, the RK performance was

generally better than LR in terms of all the three assessment

indicators (Table 3, Table 4).

Discussion

Many researchers indicated that data normality [48] and CV

[26] might affect the performance of spatial interpolation methods.

In our research, the S1 to S6 subsets corresponded to six different

sample patterns. For each interpolation method, the prediction

errors between the six patterns obviously differed, indicating that

the sample pattern may significantly affect the performance of the

methods, which has been referred in many studies [49,50].

However, from the correlation analysis, we did not find any

significant correlation between the sample pattern properties and

the G-values (Table 2). The factors inducing the performance

difference between each sample pattern is still not clear in this

study and need to be analyzed in further research.

The spatial autocorrelation of the target variable is a basic

assumption for the distance-based interpolation method. The

spatial autocorrelation is present when the value of a variable at

one location exerts an influence on the value of the same variable

in neighboring locations [51]. Theoretically, the spatial autocor-

relation of SM should exist at a small scale because of the water

mobility in soil. However, SM may have little autocorrelation at

small catchment scale because of the strong control of local

geographical factors to SM [11]. Climate could be seen as

homogeneous in small catchment scale, thus the local factors, such

as land use types, vegetation, soil types and topography therefore

stood out as the main factors dominating the soil moisture spatial

Table 5. The means comparison of the G-value of the four
interpolation methods for 10–20 cm soil layer.

Sub-classification for P=0.05

Method

Sample

Number 1 2

OK 6 0.35

IDW 6 0.44

LR 6 0.70

RK 6 0.73

P 0.25 0.75

P. Significance value.
doi:10.1371/journal.pone.0054660.t005

Table 6. The means comparison of the G-value of the four
interpolation methods for 40–100 cm soil layer.

Sub-classification for P=0.05

Method

Sample

Number 1 2

OK 6 0.28

IDW 6 0.34

LR 6 0.50

RK 6 0.52

P 0.45 0.06

P. Significance value.
doi:10.1371/journal.pone.0054660.t006
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distribution. Because of the spatial fragmentation of these factors

in hilly-gully area, the soil moisture may show poor spatial

autocorrelation. The semivariogram cloud confirmed the short-

distance autocorrelation of the SM in this complex terrain area

(Fig. 6, Fig. 7), showing that spatial autocorrelation only exists at

slope scale (,100 m) and no obvious autocorrelation exists at

small catchment scale. One of the basic assumptions of ordinary

kriging was that the observations have obvious spatial autocorre-

lation and the autocorrelation is a function of the distance between

the observations [50]. Obviously, the short autocorrelation range

of SM in this area was a lack of statistical effectiveness, which

could hardly fit this assumption. Thus, it is not difficult to

understand the poor performance of OK in the present research

(Fig. 3). For IDW, the performance was slightly better than OK

because it simply relies on the similarity of neighboring sample

points to predict the unmeasured points. However, the IDW still

did not perform its best because of the limitation of the low

sampling density relating to the complex terrain (Fig. 4).

Although the SM in upper soil was more sensitive to ground

impact factors (such as weather) and was expected to have better

spatial autocorrelation at catchment scale, the results of the

semivariogram analysis (Fig. 6) showed little difference with that in

the deeper soil (Fig. 7). The performance of the four methods for

the upper soil moisture generally appears better than that for the

deeper soil moisture in terms of RMSE and G-value. However, the

relative performance showed no difference, both with the accuracy

ranking as OK,IDW,LR,RK.

In addition to the theoretical unsuitability, there are many

practical problems if distance-based interpolation methods are

used in a complex terrain area. Figure 8 shows two examples of

these problems. In the first example, point A (located in the

bottom of the valley) was covered with farmland and had high SM,

which was similar to nearby points A1 and A2. The points B1 and

B2 located on the top and the other side of the hill around the

valley, covered with forest/shrub, usually had low SM. However,

in the distance-based interpolation methods, the points A1 and A2

would not be chosen to predict the SM in point A because they are

not the closest to point A based on the horizontal distance. In

contrary, points B1 and B2, which had little similarity with point

A, would be determined as the closest points to predict the SM at

point A. Thus, a rather unreliable prediction would be produced.

Similarly, in the second example, the SM at the bottom of the

valley (point A) would be predicted based on the SM on the ridges

(points B1, B2 and B3), where the SM condition is usually rather

different from that in the valley. On the other hand, the points

(point A1)similar to point A would be neglected or only given

a very small weight (Fig. 8). Thus, it is difficult to produce a reliable

prediction basing on the distance-based interpolation methods in

this type of complex terrain, which was confirmed by the

performance assessment (Table 3, Table 4).

The LR method showed more effectiveness than the distance-

based methods, clearly expressing the impact of the environmental

factors on SM, and the prediction was more detailed and accurate

than OK and IDW. The variance of SM between different land

use types, slopes, and slope aspects is fully displayed in the

prediction map (Fig. 4). However, there are some disadvantages to

this method. The SM change was fairly sharp at the boundary of

the land use types and the junction of the sunny (southern) and

Figure 6. The autocorrelation range of the 10–20 cm soil moisture in complex terrains.
doi:10.1371/journal.pone.0054660.g006
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shady (northern) slopes. This is inconsistent with the reality, as

water is mobile in soil and its spatial change should be gradual at

a small scale.

The RK method effectively released the problems of LR, and

combined the advantages of LR and kriging model. It not only

reserved the impact of the environmental factors on SM obtained

from the regression model, but also added the gradually changing

property obtained from the kriging model. The prediction map

displayed a detailed, reasonable continuous surface, which was

more consistent with the reality (Fig. 5). The performance

assessment evidently confirmed that this hybrid interpolation

method was the most suitable and accurate to the complex terrain

in our research.

In conclusion, we suggest that in an area with complex terrain,

where the spatial autocorrelation of the interested variable exists

only at a small scale and the target variable is significantly

correlated with auxiliary variables, the hybrid RK model would

perform much better than the distance-based methods in

predicting the spatially continuous surface. This conclusion is

consistent with the work of Zhu and Lin [23], whose study

indicated that RK is more accurate for interpolating soil properties

when a strong relationship exists between target soil properties and

auxiliary variables as well as when the terrain is more complex.

Conclusions
The case study of SM spatial interpolation in the hilly gully

Loess Plateau shows three main things. First, the distance-based

OK and IDW methods performed poorly due to the poor spatial

autocorrelation of soil moisture in complex terrain areas, where

the environmental impact factors were discontinuous in space at

small catchment scale. Second, the LR model performed much

better than OK and IDW, and adequately showed the SM

difference with the variance of the impact factors. However, the

predicted SM changed too sharply near the boundary of the land

use types and at the junction of the sunny (southern) and shady

(northern) slopes, which was inconsistent with the reality because

the soil moisture should change gradually in short distance due to

its mobility in soil. Third, the hybrid RK model has evident

advantages over the three ordinary approaches for predicting SM

in complex terrain area in terms of MAPE, RMSE, and G

assessment, with the prediction map being more accurate and

realistic.
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