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Abstract - In this paper, we evaluate the appearance
trackiing performance of multiple fusion schemes that
combine information from standard CCTV and ther-
mal infrared spectrum video for the tracking of sur-
veillance objects, such as people, faces, bicycles and
vehicles. We show results on numerous real world
multimodal surveillance sequences, tracking chal-
lenging objects whose appearance changes rapidly.
Based on these results we can determine the most
promising fusion schemes.
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1 Introduction

World events have ensured that security and surveil-
lance have received much research attention in recent
years. The desire to provide robust and accurate sur-
veillance information has led to considerable research
on methods to integrate information from different sen-
sors. This has the potential to provide more robust
systems by leveraging the combined benefits of using
different modalities whilst compensating for failures in
individual modalities.

In our work, we investigate the advantages of cap-
turing thermal infrared video in parallel with standard
visible spectrum CCTV, for tracking objects in sur-
veillance scenarios using appearance models. These
sources are intuitively complementary, since they cap-
ture object information in emitted and reflected radi-
ation, respectively. By utilising both complementary
sources of data, we obtain improved robustness against
camouflage, as foreground objects are less likely to be
of a similar colour and temperature to the background.
Using multiple sources also provides additional fea-
tures to assist the tracker in cluttered tracking envi-
ronments. This paper evaluates various fusion schemes
and similarity metrics for multi-modal tracking using
appearance models. We evaluate tracking performance
on real data using manually annotated ground truth.

This paper is organised as follows: In section 2, we
provide a brief background literature review to contex-
tualise our work. Section 3 describes the hardware we
used to capture our test data and how the data from
both cameras was aligned. The appearance model we

use for tracking is detailed in section 4, along with
the similarity metrics we use. In section 5, we outline
the different fusion schemes that we evaluated. We
present results in section 6, comparing the tracking
performance of the evaluated fusion schemes on real
surveillance data, and finally give our conclusions and
directions for future work in section 7.

2 Related work

In a review of video surveillance and sensor networks
research [1], Cucchiara argues that the integration of
video technology with sensors and other media streams
will constitute the fundamental infrastructure for new
generations of multimedia surveillance systems. Also
reviewing surveillance research [2], Hu et al. conclude
in their section on Future Developments in Surveil-
lance that 'Surveillance using multiple different sen-
sors seems to be a very irnterestirng subject. The main
problem is how to make use of their respective merits
and fuse irnformation from such kirnds of sensors'.

In the tracking literature, many approaches have
been proposed to combine the information from mul-
tiple sources, in order to provide more accurate and
robust detection and tracking. Probabilistic methods
are commonly used to fuse information sources. In
[3], Bayesian probability theory is used to fuse the
tracking information available from a suite of cues
to track a person in 3D space. A Bayesian track-
ing framework using particle filters is described in [4]
for fusing colour cues with stereo or motion informa-
tion. A Bayesian multi-object tracker is described in
[5] that fuses binary information from foreground de-
tection with colour tracking cues. Linear combina-
tions of sources have also been widely used to fuse
information from multiple sources. In [6], informa-
tion from image segmentation is fused with chamfer
matching scores to robustly detect people in cluttered
images. Lim and Kriegman [7] use a linear combina-
tion of shape and appearance to track people in an
indoor environment. Both [6] and [7] use fixed weight-
ing for the data sources. In [8], the weightings for each
tracking cue (colour and edge histograms) are adap-
tively updated using the Bhattacharyya coefficients.
Fumera and Roli [9] consider linear combinations of
classifiers and conduct a theoretical analysis, as well
as performing experiments on real data sets. Their



conclusions were that weighted average combinations
usually only provide a marginal improvement over sim-
ple averaging, even with optimal weights. Recently,
in [10], Ensemble Tracking was introduced as a gen-
eral tracking framework to combine information from
multiple sources. An ensemble of linear classifiers are
trained online in a least-squares manner, to distinguish
between object and background pixel features. This
allows any type of pixel data to be added to assist
the tracking. Kruppa and Schiele [11] fuse information
from multiple object models by determining a configu-
ration that maximises the mutual information between
the models. In [12], Torresan et al. describe a surveil-
lance system that fuses standard visible spectrum and
thermal infrared video to detect and track pedestrians.
They link foreground regions in consecutive frames and
do not model the appearances of tracked objects, there-
fore their method requires many complex ad-hoc rules
to account for the splitting and merging of foreground
regions.

Occlusion handling is an important component in
practical tracking algorithms for surveillance. In [13],
all objects in the camera's field of view are tracked;
appearance models and linear velocity prediction are
used to cater for situations where objects occlude one
another. In [14], occlusion is handled using robust sta-
tistics and occlusion is declared when over 15% of pix-
els are determined to be outliers. We do not specifically
tackle the occlusion problem here, as we feel it is out
of scope of this paper that focuses on evaluating fusion
methods for tracking.

In [14], Zhou et al. introduce an adaptive model for
robust appearance tracking. Using image brightness
values in their appearance model, results are shown on
tracking the rear end of a car, a frontal face and an aer-
ial view of a tank. The objects they tracked do not al-
ter significantly in appearance, although the pose does
change. The appearance model we adopt in this pa-
per is inspired by [14], but with significant differences;
including the ability to track non-rectangular patches,
integrate information from background modelling algo-
rithms and perform rapid initialisation. Additionally,
we introduce an alternative similarity metric to match
the model to the image.

3 Data capture and alignment

3.1 Hardware

To obtain our raw video data, we use a Raytheon
ControlIR 2000B thermal imaging video camera that
is sensitive to wavelengths of 7,um-14,um, along with
a Panasonic WV-CP470 colour video camera. The
two cameras are synchronised (using gen-lock) to en-
sure that they capture frames simultaneously. Both
channels of analogue video output are captured and
digitised by a Falcon Quattro multi-channel frame-
grabber. Figure l(a) shows the configuration of the
visible and thermal cameras. A pane of thermally-
reflective glass was used to act as a beam-splitter.

(b)

(c) (d)
Figure 1: (a) Visible/Infrared camera rig, (b) Original
infrared image, (c) Visible image, (d) Aligned infrared
image

3.2 Frame alignment

To align pixels in the thermal and visible spectrum,
we determine the optimum planar homography [15]
and apply an image warping to all thermal infrared
frames. This homography is determined by manually
selecting many corresponding points in both modali-
ties and computing the homography with least-squared
error. There is no correlation between visible spec-
trum brightness and thermal infrared brightness val-
ues, so many of the automatic mutual-information
based alignment methods [16] [17] would not be appro-
priate. An automatic alignment technique that can be
used for images of very different modalities (such as
thermal and visible images) is proposed in [18], and
relies on the correlation between edge orientations in
the modalities. Currently, no automatic method is re-
quired, as only one warping needs to be computed for
an entire sequence, but this could be a direction for fu-
ture work. Figure 1 (d) shows an example of an aligned
infrared video frame.

4 Appearance model

4.1 Model description

The appearance model we use in this paper is inspired
by [14] but we note here the significant differences.
Firstly, we use a single multi-dimensional Gaussian
for each pixel, and not a mixture of Gaussians. Sec-
ondly, we introduce a per-pixel importance weighting,
to track non-rectangular patches and to integrate infor-
mation from background subtraction (or motion detec-
tion) algorithms. We also use update equations based
on expected sufficient statistics until enough samples
are obtained to switch to the exponentially 'forgetting'
equations, which allows faster adaptation at initialisa-
tion time. Additionally, we introduce an alternative
similarity metric to match the model to the image.



The appearance of the object being tracked is mod-
elled as a rectangular grid of d pixels, with each pixel
modelled as having a Gaussian distribution. We de-
note ,(j) = {1(j),42(j),..., k(j)} as the mean vec-

tor value of pixel j at time t, where k is the num-
ber of features. For example, ul(j) could correspond
to the pixel's mean brightness value and 82(j) could
correspond to the pixel's mean edge magnitude. We
further denote 5(j) = {i(j),o2(j),...,k(j)} as the
diagonal covariance matrix. This assumes the pixel
features are independent. This assumption may not
hold for certain features, such as a pixel's RGB colour
components, but this can be overcome by switching
to a less correlated colourspace (such as the CIE Lab
colourspace) or by increasing the computational com-
plexity and using a full covariance matrix. Addition-
ally, we add a weighting factor for each pixel, I(j),
where 0 < 1(j) < 1. This weighting factor allows pix-
els that belong to the background to be removed from
the similarity computation, while emphasising track-
able features. We denote our model as 0 {,u, J, I}.

4.2 Similarity measures

For a particular vector of pixel features, x, we can
compute the probability that it matches the Gaussian
model of model pixel j using:

(1)
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Figure 2: Fusion architectures

N(x;p,2) (27F72)l/2exp -P( (X I)) (5)

where

P(x) {
92/2 if 1xz < c
clz - c2/2 otherwise (6)

In our experiments, as in the original paper, we set
c = 1.435, where c is an outlier threshold. Addition-
ally, we define an alternative similarity measure, S2,
which is the average probability of a pixel matching
its corresponding model pixel, weighted by the pixel
importance values.

SZ (X) j 1 () (7

P(x0( i))= i N(xi; pi(j), 7i(j))
i=l

where N(x; u, r2) is a one dimensional normal density:

N(x1=,u2) (27r2)1 2ex(p 1(x ii)2) (2)

To compute the similarity between the model
and a rectangular patch of d pixels (denoted X =

{X1,x2, ..., X}), [14] assumed the pixels were indepen-
dent of each other and obtained the matching proba-
bility as:

4.3 Appearance model update

We update the model using expected sufficient statis-
tics update equations then switch to L-recent window
version after L updates, where L is a time constant
that determines the update rate. The features for each
pixel are updated independently using the following
equations:

a
2

l = a0T72 + (1I _)(It X)2

t+i = at + (-a)x

It+± = alt + (1- a)f

(8)

(9)

(10)
d

P(XO0) P(xjlo(A) (3)
j=1

Our pixel weighting factor can be incorporated by al-
lowing it to represent the probability that the pixel
belongs to the object (and not the background). The
similarity measure then becomes:

d

S1(X 0) (1(j)PXj( 0(j)) + 1I (j)) (4)
j=1

where x is the current feature value, f is the binary
foreground value for this pixel, and

a= 1
i

min(N, L)
(11)

where N is the number of times the model has been
updated. Additionally, we add resilience to noise by
imposing the restriction that f is set to zero if the
pixel is not adjacent to a pixel from the model whose
importance value is greater than 1/L. For all our ex-
periments, we set L = 20, as suggested in [13].

However, we found that this probability computation
could be significantly affected by outliers, since a sin-
gle bad pixel match could return a probability very
close (or equal) to zero. Fortunately, the occlusion
handling mechanism used in [14] provides robustness
against outliers. The normal density of equation (1) is
replaced by N(X; ,u, or2):

5 Fusion models

In this paper, we are concerned with evaluating
the tracking performance of multiple different fusion
schemes. Figure 2 shows the two fusion architectures
that we utilise. In the first scheme, which we will refer



to as the general fusion model, the fusion occurs at the
pixel level, by using a single appearance model where
each pixel is modelled as a k-dimensional Gaussian,
where k is the number of data sources (or features). In
the second scheme, which we will refer to as a combi-
nattion of models, the fusion occurs at the model level,
by using a separate appearance model (with k = 1)
for each data source and combining their scores. We
examine a number of different methods of score fusion
at the model level.

5.1 General fusion model

In the general fusion model(GFM), a single appear-
ance model (grid of d pixels) is used, where each pixel
is modelled as a k-dimensional Gaussian, where k is
the number of data sources. Each pixel is assigned a
single importance value that weights its importance in
the overall similarity metric. In this framework, fusion
happens at the pixel level, which is represented by the
architecture in figure 2(a).

5.2 Model combination fusion methods

To perform fusion at the model level, illustrated in fig-
ure 2(b), we use a combirnation module (CM) to fuse the
similarity score from one or more appearance models.
The following sections describe the various combina-
tion strategies we evaluated.

5.2.1 Simple and weighted averaging

M

Saverage(X) = wiSi(X) (12)
i=l

where Si(X) is the similarity score between the jth
model and image patch X, and wi is the weight as-
signed to the jth model (See subsection 5.2.4 for details
on how the weights are chosen). For simple averaging,
the weights are fixed, with Wi = 1 for i = 1..M where
M is the number of models being combined.

5.2.2 Similarity score product

M

Sproducti(X) JJSi(X) (13)
i=l

If the similarity scores returned by each model can be
thought of as probabilities, this combined similarity
returns the probability of matching the image patch
X, using an assumption of independence.

5.2.3 Min and max score fusion

Smin (X) = min Si (X) (14)

Using the minimum operator, an image patch with the
greatest similarity will be such that no model believes
this to be a bad match. Thus, we chose the new model
position as the one that gives the 'least bad' match.

(15)Smax(X) = max Si (X)

Swmax(X) = max w (i) Si (X) (16)

The maximum operator emphasises the score of a
model that is very confident of finding a good match.
We also use a weighted version of the maximum oper-
ator. A weighted min fusion scheme would not make
sense, as it would use the most unreliable model for
matching.

5.2.4 Dynamic Weighting

The weights shown first in equation (12) and also used
in equation (16), are initialised with wi M for
i = 1..M. However, we also dynamically adapt the
model weights based on how well the model discrimi-
nates within the search space. If a model returns many
good matches, it is less specific on the best object po-
sition and its weight will be reduced. A model that re-
turns one good match, corresponding to a sharp peak
in the search space, will receive an increased weighting.
More precisely, for each model, we take the maximum
score returned over all search positions, and we divide
it by the sum of scores returned by that model for all
evaluated positions. This value, si for model i, is used
to measure the model's specificity. We first compute
normalised values, Si = si/ E sp and then update the
weights as follows:

wi = awi + (1 -a)si (17)

where a is the update rate from equation (11).

5.3 Search strategies

Irrespective of the appearance model used, we adopt
the same search strategy to locate the best match for
the model in each frame, in all our experiments. We
denote the object motion by an affine transformation
[15] A = {al,a2,a3, a4, tx tyt} where {tx, ty} are the
translation parameters and {a,, a2, a3, a4} are the de-
formation parameters. For our experiments, the ob-
jects we tracked were assumed to have negligible rota-
tion, so we set two of the deformation parameters to
zero, to only account for scale changes. In [14], particle
filtering was used to search the transformation space
to find the object in the current image. We adopt a
deterministic approach, using coarse-to-fine gradient-
ascent search of the transformation space, first adapt-
ing the translation parameters to maximise the simi-
larity score, then adapting the scale parameters. This
allows a more precise sub-pixel object detection than
using randomly generated particles, which assists the
tracker to remain locked onto targets when their ap-
pearance is changing.

6 Results

In this section, we evaluate the tracking performance of
the fusion schemes that we described in the previous



section, on six representative surveillance sequences.

Details of the objects in the tracking sequences are

given in table 1, whilst the notation for the trackers
we used is described in table 2. The objects (along
with their trajectories) are shown in figure 3.

In all our experiments, we used the background
modelling algorithm described in [19], which is an im-
proved version of the popular mixture of Gaussians
model proposed by Stauffer and Grimson [20], pro-

viding a shadow removal mechanism. The infrared
background is modelled separately using the same al-
gorithm, but treating the pixels as greyscale. We use

bi-linear feature interpolation for sub-pixel matching,
updating and tracking. Four features (k = 4) are used
in our tracking experiments: visible brightness value,
infrared brightness value, visible edge magnitude and
infrared edge magnitude. Edges were computed us-

ing the Sobel operator [21]. All trackers, except for
GFMv and GFMI use all four features. In our gen-

eral fusion model tracker, GFM4, only one importance
value is used per pixel. This requires that the binary
foreground maps from each modality be fused into one

map, which is used in the model update stage. We
use the method described in our previous work [22],
using a pixel's spatial support when there is modality
disagreement.

To accurately judge the performance of the evalu-
ated trackers, we manually annotated all of our video
test sequences, by marking a bounding box, in each
frame, around the object we wished to track. Using
this bounding box, R1, and the tracker's returned po-

sition, R2, we compute the tracker's precision and re-

call:

O(R1,R2)
precision = 0Rl (18)

recall (R,R 2) (19)

where O(a, b) is the overlapping area of rectangles a

and b, and lRl denotes the area of the rectangle R.
We determine that a tracker has failed if its precision
or recall drops below 0.1 for at least three consecu-

tive frames. The performance of each tracker on all
of the sequences, using both similarity metrics is de-
tailed in table 3. The figures denote the percentage
of frames in which the object was successfully tracked,
for each tracker for 2 different similarity metrics. The
empty entries in the table indicate that trackers CMavg
and CMwavg were not evaluated with similarity met-
ric, S1. This is because the similarity values computed
with S, are beyond the floating-point precision of stan-
dard processors (since it is derived from the product
of many probabilities). Other computations, such as

multiplication for CMprod, can be achieved by adding
logarithm values. The cases where a tracker 'fails' after
a large number of frames (e.g. 97%) are due to either
the object becoming very small (only a few pixels in
size) or because the object enters an area where the
visible and infrared images do not fully overlap (hence
the infrared values are unknown).

Table 1: Tracked Objects

There are a number of conclusions that can be
drawn from the figures in table 3. The best over-

all tracker was CMprod which performed perfectly on

all six sequences with either similarity metric. As
expected, the tracker using visible spectrum only,
GFMV, failed on the night-time sequence (Seq-2).
None of the sequences were particularly challenging for
infrared, as the objects all had a strong signal com-

pared to the background, therefore GFMI fares quite
well. We found that the adaptive weighting of models
does not seem to add additional tracking performance
(note the near identical performance of trackers CMavg
and CMwavg, and trackers CMmax and CMwmax). We
speculate that this is because our models already ac-

count for noisy tracking by adapting the variance of the
pixel models, giving lower scores for larger variances.
Another explanation may be that the weightings were

not strong enough, or were adapted too slowly. How-
ever, the weights generated by the proposed algorithm
may have other uses, such as determining areas where
a sensor is weak. It could also have uses in classi-
fication: for example, an object that has a weak in-
frared weight is probably of the same temperature as

the background and therefore unlikely to be a person.

Additionally, the method could prove useful in situa-
tions where one modality fails completely, such as when
an infrared camera performs rapid automatic gain cor-

rection. Investigating this possibility remains as fu-
ture work. From the table, we also see that tracker
GFM4 failed in a number of cases. This is likely due
to the fact that there is a single importance weighting
per pixel, rather than a per-pixel-per-modality impor-
tance. Therefore, incorrectly labelled foreground pixels
caused by the halo-effect in infrared could label visible
background as 'important'. Figure 4 shows an exam-

[Seq Object [Frames I Description ]
1 Face 113 Scale increase as

person moves to-
wards camera

2 Person 224 Dark night-time
sequence

3 Bicycle 440 Large changes
in scale and
shape as cyclist
approaches and
turns

4 Motorbike 256 Large scale de-
crease as motor-
bike drives away

5 Person 666 Slight occlusion
by background
and shape change

6 Bicycle 314 Severe occlusion
by another mov-
ing person and
shape change



Table 3: Tracking Results

Seq-I Seq-2 Seq-3 Seq-4 Seq-5 Seq-6
Tracker S1 S2 S T S2 S | S2 Si s2 Si s2 S S2
GFM4 64 100 100 69 100 100 84 92 100 94 60 100
GFMv 100 100 8 9 100 100 100 100 96 100 45 100
GFMI 100 100 100 100 100 42 91 76 95 34 100 37
CMavg 100 - 24 - 100 - 97 - 94 - 100 -

CMwavg 100 - 24 - 100 - 97 - 100 - 100 -

CMprod 100 100 100 100 100 100 100 100 100 100 100 100
CMmin 100 100 100 100 41 100 100 100 3 98 100 59
CMmax 100 100 8 9 100 42 91 76 95 34 100 37
CMwmax 100 100 8 9 100 42 91 76 95 34 100 37

Table 2: Tracker Descriptions

(a) Object 1

(c) Object 3

(b) Object 2

(A\ C)L ;,- A

(e) Object 5 (f) Object 6

Figure 3: Tracked Objects listed in table 1

ple of the GFM4 appearance model of the person in
Seq-5, showing large variance in the leg pixels, due to
the walking motion. It is difficult to evaluate the mer-

its of the two similarity metrics we used, as neither
shows a remarkable advantage over the other. How-
ever, the metric we proposed is more computationally
efficient, since it does not requires the calculation of
logarithm values. In all sequences, except Seq-6 (using
Si), the CMmax and CMwmax trackers seem to per-
form only as well as the weakest of either GFMv or

GFMI. This suggests that maximum score selection is
a poor scheme for fusing data from appearance models
for tracking. The CMmin tracker fares quite well over-

all, but fails immediately at the start of Seq-5, when
it locks onto the background due to the scores of the
visible edge features. Both CMmax and CMmin choose
one score, and exclude all others. Experimental results
validate this as an unwise approach.

(a) (b) (c) (d) (e)

Figure 4: General fusion model of walking person from
Seq-5: (a)-(d) Mean and variance of the four features
we use for tracking, (e) Pixel importance weighting

Name Description
GFM4 General fusion model using

all four features
GFMv General fusion model using

visible brightness only
GFMI General fusion model using

infrared brightness only
CMavg Model combination using

score average
CMwavg Model combination using

weighted score average
CMprod Model combination using

score product
CMmin Model combination using

minimum score
CMmax Model combination using

maximum score
CMwmax Model combination using

weighted maximum score



7 Conclusions and future work

In this paper, we evaluated the appearance model
tracking performance of multiple different fusion
schemes, using manually annotated multi-modal sur-

veillance video. The appearance model we used was

based on an existing tracker but with notable improve-
ments, including the ability to track non-rectangular
patches, integrate information from background mod-
elling algorithms and perform rapid initialisation. Ad-
ditionally, we introduced an alternative similarity met-
ric to match the appearance model to image patches.

There remain many avenues of future investigation.
These include discovering the exact nature of the fail-
ures in individual cases, as well as performing more

comprehensive testing using different video sequences,
especially using data that is challenging for infrared
alone. A theoretical analysis of the product fusion
would be very useful, as it might further justify the
tracking performance it achieved on our surveillance
video.

One popular framework for data fusion that was

not considered in the paper is the Transferable Be-
lief Model [23]. It provides mechanisms to cater for
doubt and uncertainty, which could be useful when
there are multiple prominent peaks in the matching
search space, or when one modality is missing (where
the images from both modalities do not overlap). An-
other similarity metric to evaluate in future work is to
compute the median pixel matching probability. This
would be more robust to outliers and shape changes,
but with a greater computational burden. Another
area of future work will examine whether it would be
beneficial to switch between similarity metrics, as our

results seem to indicate that they can be complemen-
tary.

Acknowledgments

This material is based on works supported by Science
Foundation Ireland under Grant No. 03/IN.3/1361 and
sponsored by a scholarship from the Irish Research
Council for Science, Engineering and Technology (IRC-
SET): Funded by the National Development Plan. The
authors would also like to express their gratitude to
Mitsubishi Electric Research Labs (MERL) for their
contribution to this work.

References
[1] R. Cucchiara. Multimedia surveillance systems. In VSSN

05: Proceedings of the third ACM international workshop
on Video surveillance & sensor networks, New York, NY,
USA, pages 3-10, 2005.

[2] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on

visual surveillance of object motion and behaviors. IEEE
Transactions on Systems, Man and Cybernetics, 34(3):334-
350, August 2004.

[3] G. Loy, L. Fletcher, N. Apostoloff, and A. Zelinsky. An
adaptive fusion architecture for target tracking. In IEEE
International Conference on Automatic Face and Gesture
Recognition (FGR), 2002.

[4] P. Perez, J. Vermaak, and A. Blake. Data fusion for visual
tracking with particles. Proceedings of the IEEE, 92(3):495-
513, March 2004.

[5] K. Smith, D. Gatica-Perez, and J.-M. Odobez. Using par-
ticles to track varying numbers of interacting people. In
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), June 2005.

[6] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection
in crowded scenes. In IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), June
2005.

[7] J. Lim and D. Kriegman. Tracking humans using prior and
learned representations of shape and appearance. In IEEE
International Conference on Automatic Face and Gesture
Recognition (FGR), pages 869-874, May 2004.

[8] K. She, G. Bebis, H. Gu, and R. Miller. Vehicle track-
ing using on-line fusion of color and shape features. In
IEEE International Conference on Intelligent Transporta-
tion Systems, October 2004.

[9] G. Fumera and F. Roli. A theoretical and experimental
analysis of linear combiners for multiple classifier systems.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 27(6):942-956, June 2005.

[10] S. Avidan. Ensemble tracking. In IEEE International
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2005.

[11] H. Kruppa and B. Schiele. Hierarchical combination of ob-
ject models using mutual information. In BMVC, 2001.

[12] H. Torresan, B. Turgeon, C. Ibarra, P. Hebert, and
X. Maldague. Advanced surveillance system: Combining
video and thermal imagery for pedestrian detection. In
Proc. of SPIE, Thermosense XXVI, volume 5405 of SPIE,
pages 506-515, April 2004.

[13] A. Senior, A. Hampapur, Y.-L. Tian, L. Brown,
S. Pankanti, and R. Bolle. Appearance models for occlusion
handling. In 2nd IEEE Int. Workshop on PETS, Kauai,
Hawaii, USA, Dec 2001.

[14] S. Zhou, R. Chellappa, and B. Moghaddam. Appearance
tracking using adaptive models in a particle filter. In Proc.
of 6th Asian Conference on Computer Vision (ACCV), Jan
2004.

[15] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2nd edition,
2003.

[16] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever. Mutual-
information-based registration of medical images: a survey.
IEEE Transactions on Medical Imaging, 22(8):986-1004,
Aug 2003.

[17] P. A. Viola. Alignment by Maximization of Mutual Infor-
mation. Phd thesis, Massachusetts Institute of Technology,
Massachusetts (MA), USA, June 1995.

[18] M. Irani and P. Anandan. Robust multi-sensor image align-
ment. In International Conference on Computer Vision,
pages 959-966, 1998.

[19] P. KaewTraKulPong and R. Bowden. An improved adap-
tive background mixture model for real-time tracking with
shadow detection. In 2nd European Workshop on Advanced
Video-based Surveillance Systems, Kingston upon Thames,
2001.

[20] C. Stauffer and W.E.L. Grimson. Adaptive background
mixture models for real-time tracking. In Proceedings of
CVPR99, pages 11:246-252, 1999.

[21] W. E. Snyder and H. Qi. Machine Vision. Cambridge
University Press, Jan 2004.

[22] C. 0 Conaire, N. O'Connor, E. Cooke, and A. Smeaton. De-
tection thresholding using mutual information. In VISAPP:
International Conference on Computer Vision Theory and
Applications, Setiibal, Portugal (to be published), Feb 2006.

[23] P. Smets. The combination of evidence in the transferable
belief model. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(5):447-458, 1990.


