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Abstract—We have developed an automated feature detec-
tion/classification system, called GENetic Imagery Exploitation
(GENIE), which has been designed to generate image processing
pipelines for a variety of feature detection/classification tasks.
GENIE is a hybrid evolutionary algorithm that addresses the
general problem of finding features of interest in multispectral
remotely-sensed images. We describe our system in detail together
with experiments involving comparisons of GENIE with several
conventional supervised classification techniques, for a number of
classification tasks using multispectral remotely sensed imagery.
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I. INTRODUCTION

L ARGE volumes of remotely sensed multispectral data are
being generated from an increasing number of increas-

ingly sophisticated airborne and spaceborne sensor systems.
While there is no substitute for a trained analyst, exploitation
of this data on a large scale requires the automated extraction
of specific features of interest. Creation and development of
task-specific feature-detection algorithms is important, yet can
be extremely expensive, often requiring a significant investment
of time and effort by highly skilled personnel.

Our particular interest is the pixel-by-pixel classification of
multispectral remotely-sensed images, not only to locate and
identify but also to delineate particular features of interest.
These range from broad-area features such as forest and open
water to man-made features such as buildings and roads. The
large number of features in which we are interested, together
with the variety of instruments with which we work, make the
hand-coding of suitable feature-detection algorithms imprac-
tical. We are therefore using a supervised learning approach that
can, using only a few hand-classified training images, generate
image processing pipelines that are capable of distinguishing
features of interest from the background. We remark that our
approach is to consider the two-class problem: although many
applications require the segmentation of an image into a larger
number of distinct land-cover types, we consider the simpler
problem of identifying a single class against a background of
“other” classes.
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Inapplyinggeneral-purposesupervised learning techniques to
multispectral imagery, the usual approach is to employ purely
spectral inputvectors, formedbythesetof intensityvalues ineach
spectralchannel foreachpixel intheimage.Thesevectorsprovide
a convenient fixed-dimensionality space in which conventional
classifierscan oftenwork well. It is clear, however, that spatial re-
lationships (such as texture, proximity, or shape, all of which are
disregarded with purely spectral vectors) can be very informative
in scene classification. Many different kinds of extra spatial con-
text informationcouldbeadded to thespectral information,asad-
ditional dimensions of the pixel input vector. The problem is that
there exists a combinatorically vast choice for these additional
vector dimensions; yet it is clear that a suitable choice of addi-
tional dimensions could make classification much easier. Unfor-
tunately, this suitable choice is, in general, application-specific.

To address this problem, we have developed a hybrid evolu-
tionaryalgorithmcalledGENetic ImageryExploitation(GENIE)
[2]–[8], that searches through the space of image processing al-
gorithms. GENIE is a hybrid in that the evolutionary part of the
program attempts to identify a pipeline of image processing op-
erations which transform the raw multi-spectral data planes into
a new set of image planes; these intermediate “scratch” planes
are then used as input to a conventional supervised classification
technique to provide the final classification results.

When adopting an evolutionary approach, a critical issue is
the representation of candidate solutions in order that they may
be effectively manipulated. We use a genetic programming (GP)
method of representation of solutions, due to the fact that each
individual will represent a possible image processing algorithm.
GP has previously been applied to image-processing problems,
including: edge detection [9], film restoration [10], face recogni-
tion [11] and image segmentation [12]. The work of Daidaet al.
[13] and Bandyopadhyay and Pal [14] (as well as our own work,
cited above) is of particular relevance since it demonstrates that
GP can be employed to successfully evolve algorithms for real
tasks in remote-sensing applications.

The beauty of an evolutionary approach is its flexibility: all
that is required is a representation for candidate solutions, a fit-
ness measure for comparing candidate solutions, and a scheme
for “mutating” candidate solutions into other candidate solu-
tions. Many varied problems beyond image processing have
been successfully solved using evolutionary computation, from
optimizing of dynamic routing in telecommunications networks
[15] to designing protein sequences with desired structures [16],
and many others.
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This paper describes our system in detail together with exper-
iments involving comparisons of GENIE with several conven-
tional supervised classification techniques, for a number of clas-
sification tasks using multispectral remotely-sensed imagery.

The remainder of the paper is organized as follows: Section II
describes the GENIE system in detail. Section III describes the
conventional supervised classification techniques with which
GENIE is to be compared. Section IV describes the data and
classification tasks on which the algorithms are to be tested and
compared. Section V describes the results of the comparisons.
Section VI describes further comparison with multiclass ver-
sions of the supervised classifiers. Finally, Section VII discusses
these results and concludes.

II. THE GENIE SYSTEM

GENIE employs a classic evolutionary paradigm: a popula-
tion is maintained of candidate solutions (chromosomes), each
composed of interchangeable parts (genes), and each assessed
and assigned a scalar fitness value, based on how well it per-
forms the desired task. After fitness determination, the evolu-
tionary operators of selection, crossover and mutation are ap-
plied to the population and the entire process of fitness evalu-
ation, selection, crossover and mutation is iterated until some
stopping condition is satisfied.

A. Training Data

The environment for each individual in the population con-
sists ofdata planes, each of these planes corresponding to a
separate spectral channel in the original image, together with a
weightplane and atruthplane. The weight plane identifies those
pixels to be used in training—these are the pixels for which the
analyst is confident in identifying as either “true” and “false”:
true defines areas where the feature of interest exists;falsede-
fines areas where that feature does not exist. The actual delin-
eation of true and false pixels is given by the truth plane. This
arrangement permits us the flexibility (not used in this study) to
employ both real-valued weights (representing degrees of confi-
dence or of importance) and real-valued truth (corresponding to
retrieval of continuous valued properties). The data in the weight
and truth planes may be derived from actual ground truth (col-
lected on the ground, at or near the time the image was taken) or
from the best judgement of an analyst looking at the data. Be-
cause collecting ground truth data is so expensive, our system
employs a graphical interface called ALADDIN to assist the an-
alyst in making judgements about and marking out features in
the data. The analyst can view a multispectral image in a va-
riety of ways, and can create training data by painting directly
on the image using a computer mouse. Fig. 1 shows an image
alongside the markup that an analyst provides as “ground truth.”
Figs. 4(b), and 6(b) show further examples where the analyst has
marked out the desired feature on the image.

B. Encoding Candidate Solutions

Each individualchromosomein the population consists of a
fixed-length string ofgenes. Each gene in GENIE corresponds
to a primitive image processing operation. Therefore the entire

(a)

(b)

Fig. 1. (a) Greyscale images of one of the scenes used to produce the training
data for “Urban Areas” (Urban 1). (b) Training data provided for the training
scene for “Urban Areas” (white= feature, grey= not feature, and black= no
assertion).

chromosome describes an algorithm consisting of a sequence of
primitive image processing operations.

A single gene consists of an operator name, a list of input
planes, specifying from which plane input is to come; a list
of (usually one) output plane; and a list of scalar parameters.
Parameters may be integer, floating point, or categorical. Each
gene used in GENIE takes one or more distinct image planes as
input, and produces one or more image planes as output. Input
can be taken from any data planes in the training data image
cube. Output is written to any of a small number ofscratch
planes—temporary workspaces where an image plane can be
stored. Genes can also take input from scratch planes, but only
if that scratch plane has been written to by another gene earlier
in the chromosome sequence.
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TABLE I
PRIMITIVE IMAGE PROCESSINGOPERATORS(GENES) USED IN GENIE AND WHAT THEY DO

The image processing algorithm represented by any partic-
ular chromosome can be thought of as a directed acyclic graph,
where the nonterminal nodes are primitive image processing op-
erations, and the terminal nodes are individual image planes ex-
tracted from the multispectral image used as input. The scratch
planes are the “glue” that combines primitive operations into
image processing pipelines. Traditional GP [17] uses a vari-
able sized (within limits) tree representation for algorithms. Our
representation differs in that it allows for reuse of values com-
puted by subtrees, since many nodes can access the same scratch
plane, i.e., the resulting algorithm is a graph rather than a tree.
It also differs in that the total number of nodes is fixed.

Our notation for genes is most easily illustrated by an ex-
ample: the gene applies pixel-by-pixel
addition to two input planes, read from data plane 1 and from
scratch plane 1, and writes its output to scratch plane 2. Addi-
tional operator parameters, if any, are listed after the input and
output arguments.

Our “gene pool” is composed of a set of primitive image pro-
cessing operators which we consider useful. For different appli-
cations, the user may want to choose different sets of primitive
operators; for the studies described here, we used the operators
described in Table I. These include spectral, spatial, spatio-spec-
tral, logical and thresholding operators.
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The set of morphological operators is restricted to function-set
processing morphological operators, i.e., gray-scale morpho-
logical operators having a flat structuring element. The shape of
the structuring elements used by these operators is chosen from
among: square, circle, diamond, horizontal cross and diagonal
cross, and horizontal, diagonal, and vertical lines. The shape and
size of the structuring element are defined by operator param-
eters. Other local neighborhood/windowing operators such as
mean, median, etc. specify their kernels/windows in a similar
way. The spectral operators have been chosen to permit weighted
sums, differences, and ratios of data and/or scratch planes.

It should be noted that although all chromosomes have the
same fixed number of genes, theeffective lengthof the resulting
algorithm graph may be smaller than this. For example, an oper-
ator may write to a scratch plane that is then overwritten by an-
other gene before anything has a chance to read from it. GENIE
performs an analysis of chromosome graphs when they are cre-
ated and only carries out those processing steps that actually
affect the final result. Therefore, the fixed length of the chro-
mosome acts as a maximum effective length.

In an interesting parallel to “junk DNA” in natural chromo-
somes, the final chromosomes produced by GENIE often exhibit
some redundancy, i.e., genes and answer planes that do not con-
tribute to the answer. While these “junk genes” do not affect the
functionality of the chromosome, they can make it harder to un-
derstand how the chromosome works. We have therefore devel-
oped a simple postrun pruning process that removes junk genes
and ineffective answer planes from the final solution if this is re-
quired.

C. Backends

Final classification requires that the algorithm produce a
single scalar output plane, which can then be thresholded to
produce a binary output. It would be possible to treat, for
example, the contents of scratch planeS1 as the output from
the algorithm (thresholding of this plane may be required to
obtain a binary result). However, we have found it advanta-
geous to adopt a hybrid approach which applies a conventional
supervised classifier to a (sub)set of scratch and data planes to
produce the final output plane.

To do this, we first select a subset of the scratch and data
planes to beanswer planes. The conventional supervised clas-
sifier “backend” uses the answer planes as input and produces
a final output plane; in principle, we can use any supervised
classification technique as the backend but for the comparisons
reported here, we used theFisher Linear Discriminant[20].
This provides a linear combination of the answer planes that
maximizes the mean separation between true and false pixels,
normalized by the total variance in the projection defined by
the linear combination. The output of the discriminant-finding
phase is a continuous-valued (gray-scale) image, which is then
reduced to a binary image by finding the threshold value that
maximizes the fitness as described in the following section.

D. Fitness Evaluation

The fitness of a candidate solution is given by the degree of
agreement between the final binary output plane and the training
data. If we denote the detection rate (fraction of “true” pixels

Fig. 2. Software architecture of the GENIE System.

classified correctly) as and the false alarm rate (fraction of
“false” pixels classified incorrectly) as , then the fitness F of
a candidate solution is given by

(1)

Thus, a fitness of 1000 indicates a perfect classification result.
This fitness score gives equal weighting to type I (true pixel
incorrectly labeled as false) and type II (false pixel incorrectly
labeled as true) errors. Note a fitness score of 500 can be trivially
achieved with a classifier that identifies all pixels as true (or all
pixels as false).

E. Software Implementation

The evolutionary algorithm code has been implemented in
object-oriented Perl. This provides a convenient environment
for the string manipulations required by the evolutionary op-
erations and simple access to the underlying operating system
(Linux). Chromosome fitness evaluation is the computationally
intensive part of the evolutionary process and we currently farm
this job out to a separate process running a commercial image
processing engine (interactive data language (IDL), by Research
Systems, Inc. [21]). IDL does not provide all the image pro-
cessing operators we want, so we have implemented additional
operators in C that can be called from within the IDL environ-
ment. Within IDL, individual genes correspond to single prim-
itive image operators, which are coded as IDL procedures; a
chromosome is a sequence of genes and exists as lines of IDL
code in an IDL batch executable. In our present implementa-
tion, an IDL session is opened at the start of a run and commu-
nicates with the Perl code via a two-way UNIX pipe. This pipe
is a low-bandwidth connection. It is only the IDL session that
needs to access the input and training data (possibly hundreds
of megabytes), requiring a high-bandwidth connection. The AL-
ADDIN training data mark-up tool was written in Java. Fig. 2
shows the software architecture of the system.

III. CONVENTIONAL SUPERVISEDCLASSIFICATION

Many implementations of standard supervised classifiers
exist. One of the most widely used remote-sensing software
packages is the ENvironment for Visualizing Imagery (ENVI)
[1], which is built on IDL and is also distributed by Research
Systems, Inc. Supervised classification techniques provided as
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part of the ENVI package were used in the comparison exper-
iments with GENIE. Currently GENIE is set up to be trained
using effectively three classes: “feature,” “nonfeature,” and
“don’t care” and to be able to classify every pixel in its input
data into one of two classes: “feature” and “nonfeature.” The
normal mode of operation of the ENVI supervised classifiers is
to use training data for the one “true” class, i.e., the feature of
interest. The ENVI classifier is then used to classify the input
image into “feature” or “unclassified”. The user adjusts the pa-
rameters of the particular supervised classifier in order to attain
optimal performance, with respect to feature identification. For
our experiments, these parameters were adjusted to maximize
the fitness defined in (1).

The one exception to this is the maximum likelihood clas-
sifier, which requires more than one class in the training data.
In this case we used the “feature” and “nonfeature” classes and
the maximum likelihood classifier classified every pixel in the
input data into one or other of these two classes, with no “unclas-
sified” pixels being allowed. For applying the ENVI-supplied
classifiers to out-of-training-sample data, the training data (ref-
erence spectra) used in the training was provided, together with
the parameters that gave optimal performance on the training
data. For the GENIE case, it was simply a case of applying the
algorithms found by GENIE to the out-of-training-sample data
(including the linear discriminant and threshold found during
training).

In Section VI, we show auxiliary results from training the
ENVI classifiers with more than just these two (“feature” and
“nonfeature”) classes.

The following ENVI-supplied supervised classification tech-
niques were used in the comparison experiments [22].

A. (MIN) Minimum Distance

The minimum distance supervised classification technique
[22], [23] computes the mean pixel vector of the “feature” class,
and then assigns new pixels to the “feature” class based on the
Euclidean distance from that pixel to the mean. For the multi-
class case, the pixel is assigned to the feature whose mean value
is the minimum distance from the pixel. For the simple fea-
ture/nonfeature discrimination here, the pixels is identified as
a “feature” if the distance is less than a user-defined threshold
(adjusted to obtain optimum performance on the training data);
otherwise, it is a “nonfeature.”

B. (MAX) Maximum Likelihood

Maximum likelihood classification is the most common su-
pervised classification method used with remote sensing data
[23], and among the classifiers considered here, the one with
the most free parameters. Here each class (“feature” and “non-
feature”) is modeled with separate multivariate gaussian distri-
butions. New pixels are assigned to the class that had the highest
probability of generating that pixel.

C. (MAH) Mahalanobis Distance

The Mahalanobis distance technique [23] is very similar to
the maximum likelihood classifier, but with the simplification

that all classes are modeled as having identical covariance ma-
trices (which define the shape and orientation of the normal dis-
tribution). In the one class case, we compare the probability that
a new pixel was generated by the “feature” class, to a user-de-
fined threshold, in order to decide the class to which each pixel
belongs.

D. (SAM) Spectral Angle Mapper

The spectral angle mapper (SAM) technique [24] is moti-
vated by the observation that changes in illumination caused by
shadows, slope variation, sun position, light cloud, etc., approx-
imately only alter the magnitude of a pixel’s vector, rather than
the direction. Therefore we can eliminate these effects by nor-
malizing all pixel vectors to unit magnitude and then looking
at the angle between a given pixel and the mean vector for the
“feature” class. Pixels are assigned to the “feature” class if this
angle is less than a user-defined threshold.

E. (BIN) Binary Encoding

Binary encoding classification [23], [25] encodes the data and
reference spectra into ones and zeros, based on whether a par-
ticular band value lies above or below the spectrum mean. The
comparison between the encoded reference spectrum with the
encoded data spectra is performed using a Boolean logic exclu-
sive OR (XOR) function. A user specifies the minimum fraction
of bands that must match between the encoded reference spec-
trum and the data spectra. Pixels that do not meet this criterion
are labeled as “nonfeature.” We note that binary encoding pro-
duces an extreme coarsening of the data. It was invented for, and
is most appropriately applied to, hyperspectral data.

It is worth noting that for the traditional supervised classifiers,
the user-defined thresholds determined as being optimal for
the training data may not be optimal for out-of-training-sample
data. However, we can envisage a production scenario,
where the classifiers are trained on one set of data to find
a particular feature, where some kind of “ground truth” is
available and the resultant classifier is applied to some other
out-of-training-sample data, in order to determine if that partic-
ular feature is present or not in the data, and “ground truth” data
not be available for that data. In this case, the lack of ground
truth means that there is no quantitative way of determining
the optimal threshold value for the out-of-training-sample data.
It should also be pointed out that this is also the case for the
GENIE classifiers. GENIEs backend has a threshold which
needs to be determined and the value determined as optimal
for a training set may not be optimal for out-of-training-sample
data. So, for a fair comparison, thresholds determined for
all classifiers during training where left unchanged when the
classifiers were applied to out-of-training-sample data. In addi-
tion, experiments were also conducted in which user-adjusted
thresholds were not employed, where the traditional classifiers
were forced to classify the entire scene into feature or non-
feature based on the particular distance measure appropriate
to the classifier. This amounts to a planar separating surface
compared to a sphere for the user-defined threshold case. It
was found that the user-adjusted threshold scenario performed
better, in general.
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TABLE II
LIST OF DATA SETS USED IN THE EXPERIMENTS

IV. EXPERIMENTAL DATA AND CLASSIFICATION TASKS

A. Data Used in the Experiments

The remotely-sensed images referred to in this paper were de-
rived fromtheAirborneVisibleand InfraRed ImagingSpectrom-
eter(AVIRIS) [26],asensordevelopedandoperatedbytheNASA
JetPropulsionLaboratory.TheAVIRISsensorcollectsdatain224
contiguous,relativelynarrow(10nm),uniformly-spacedspectral
channels. AVIRIS is an airborne sensor and spatial resolution can
vary from a few meters to 20 m, depending on the altitude of the
collecting platform. We used data from 1996 and 1997 AVIRIS
campaigns from a range of sites shown in Table II; more detail is
available from the AVIRIS quicklook website [27].

For the studies reported here, we used a reduced number of
relatively wide spectral bands, designed to simulate imagery
from a new remote sensing satellite called the Multispectral
Thermal Imager (MTI) [28]. The MTI satellite was launched
in March 2000 and collects data in 15 spectral bands. Ten of
these bands sample wavelengths between 0.4 and 2.4 microns,
a region covered by the AVIRIS instrument. As test data to de-
velop analysis codes for the MTI mission, AVIRIS data were
convolved with the MTI spectral filter functions to produce sim-
ulated MTI data. This 10-band simulated data was used for de-
velopment of both conventional remote sensing algorithms and
for GENIE development, such as reported here.

The images displayed here are false-color images (which
have then been converted to gray-scale in the printing process).
The color mappings used are the same for all original image
data shown. The particular color mappings used here involve
averaging MTI bands A (0.45–0.52m) and B (0.52–0.60

m) for the blue component, bands C (0.62–0.68m) and
D (0.76–0.86 m) for the green component and bands E
(0.86–0.89 m) and F (0.91–0.97m) for the red component.
In addition, the images have been contrast enhanced. The
choice of color mappings was arbitrary, in that it was a personal
decision made by the analyst in order to best “highlight” the
feature of interest, and thereby enable the production of high
quality training data. This ability to manipulate the image
with color mappings and contrast enhancement is an important
feature of the graphical interface.

B. Classification Tasks

We chose four different features of interest: roads, golf
courses, urban areas, and clouds. These features were chosen

TABLE III
COMPARISON OFGENIES EVOLVED ALGORITHM WITH ENVI ALGORITHMS

(DR = DETECTION RATE, FAR = FALSE ALARM RATE)

because of their particular attributes in multispectral data.
The features were considered a good test of a supervised
classification technique due to the different levels of difficulty
they posed for these techniques. Clouds are relatively easy, and
mostly spectral; urban areas encompass a land-cover distinc-
tion; roads are easy for the eye to find, but notoriously difficult
for automated algorithms; golf courses require a combination
of spectral and spatial information to disambiguate them from
other similarly-vegetated areas (e.g., lawns).

We set the various supervised classification techniques the
task of distinguishing these features within several scenes of
the ten-channel multispectral data as described above. For
each feature of interest three separate scenes had training data
marked-up using the ALADDIN tool. This provided “ground
truth” for training data and for assessing the performance of
the classification scheme on out-of-training-sample data. We
employed a cross-validation scheme where, for each feature, we
trained a classifier separately on the three marked-up scenes,
and then for each scene, applied the resulting classifier to the
two remaining out-of-sample scenes. GENIE was run, with a
population of 100 individuals, for 500 generations, or until a
(perfect score) fitness of 1000 was achieved.

An example of an image plus associated training data is
shown in Fig. 1. This figure shows the false-color image for one
of the scenes used for the “urban area” feature classification,
and the associated training data. In the training data image the
white pixels correspond to the places on the image where the
feature is asserted to be, the grey pixels to where the feature
is asserted not to be, and the black pixels correspond to places
where no assertion is made.

V. COMPARISONEXPERIMENTS

For the training phase, we ran GENIE and the ENVI-sup-
plied classifiers on the training data. For GENIE, the result of
this training phase is an image processing pipeline which can
be applied to and tested on other data. To apply the ENVI-sup-
plied classifiers to out-of-training-sample data it was necessary
to save the regions of interest of the marked-up training classes
and provide them as the reference spectra for application of the
classifiers to out-of-training-sample data.

We measured the fitness, detection rate and false-alarm rate of
all the classifiers on the training data and out-of-training-sample
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Fig. 3. Image processing pipeline discovered by GENIE for finding golf
courses. Dotted lines indicate scratch planes which did not contribute
significantly to the final classification.

data. Table III summarizes the quantitative results of the com-
parison between the GENIE algorithm output and the traditional
algorithms’ output for each of the features. The bottom four
rows of the table show the average, for each classification tech-
nique, across all features sought. It is interesting to notice that
the relative ranking (based on fitness score) of each of the classi-
fiers is relatively stable over the different features, with the more
complicated classifiers generally achieving the highest scores.
For the out-of-training-sample data, by contrast, the simpler al-
gorithms (with fewer free parameters) perform much better. The
main exception is GENIE, which performs well on both the
traning data and on the out-of-training-sample data.

An example of an image processing pipeline produced by
GENIE is given by the following solution to the golf course-
finding task:

As described in Section II-B, each line consists of a single
primitive image processing operation: the name of the oper-
ator, which data or scratch planes were read ) from
and which were written ) to, and what parameter values were
used (see Table I for details on the individual operators). GENIE
produced a solution with five answer planes, and the backend
produced a linear combination of those planes, along with a
threshold value, to give a binary classification. A graphical rep-
resentation of this pipeline is illustrated in Fig. 3. Note that the
circled s represent the input data planes and the circleds rep-
resent the answer planes that are input to the back-end classifier
(Fisher Linear Discriminant plus threshold), to produce the final
classification result. To aid clarity, we now provide a narrative
description of the operation of this pipeline.

The RANGEoperator computes the difference between the
maximum and minimum value in a 7 7 kernel of data plane

, and writes the result to scratch plane. The parameters
“ ” correspond to a square 7 7 kernel. The first integer
parameter for this operator, “3,” actually defines the “radius”
of the smoothing kernel, where the “diameter” of the kernel is
always an odd integer, and defined as . The
second integer parameter, “0”, defines the particular choice of
kernel shape, in this case a square. A “1” would define a circle,
“2” a vertical cross, “3” a diagonal cross, etc.

The first MEANoperator, , smooths
the data plane with a 9 9 square kernel, and writes the
solution to scratch plane . The secondMEANoperator,

, smooths the result stored in the
plane with a 7 7 square kernel, and theCLOP operator
performs a morphological close-open operation, again with a
7 7 square kernel, writing the output to scratch plane.

TheASF OPCLoperator performs an alternating sequential
open-closing with a square kernel of maximum size 77 on
data plane , and writes the output to scratch plane.

TheVARoperator computes the variance in a 77 kernel of
data plane , and writes the result to scratch plane. That
plane is further modified by theOPRECoperator, which per-
forms a morphological opening with reconstruction, again based
on a 7 7 kernel.

TheQTREGoperator also reads data planeand writes three
scratch planes ( , , and ), two of which ( and ) are
overwritten by other operators before being used.

Finally, the Fisher Discriminant backend applies a linear
combination of the scratch planes, followed by a threshold,
to produce a binary answer plane. The coefficients applied to
the five answer planes ( , , , , ) are:

.
There is an additional dc offset value of applied to
the output of the linear combination. The threshold value for
determining the binary output was 0.664 305.

It can be seen that this image processing pipeline has only
used four of the available ten data planes as input: data planes
D2, D4, D7, and D10. These correspond to the MTI bands B
(0.52–0.60 m), D (0.76–0.86 m), G (0.99–1.04 m), and
O (2.08–2.35 m), respectively. GENIEs choice of input data
bands is (in retrospect) not too surprising, given the task. The al-
gorithm is using the green band (B), as well as two near-infrared
(NIR) bands (D,G) and a short-wave infrared (SWIR) band (O).
Vegetation is highlighted in the two NIR bands that GENIE se-
lected, as well as in the green band.

Of these five answer planes the most important were S1, S2,
and S4; using only those planes we could still achieve the same
fitness value, on the training data and out-of-training-sample
data, as when all the answer planes were used. Hence, two of
the operators did not contribute substantially to the solution. The
outputs of the useful answer planes, as can be seen from Fig. 3,
are derived from the NIR and SWIR bands. In this case we see,
somewhat surprisingly, that the green band is not contributing
significantly to the solution. We might expect green to be very
useful for identifying golf courses, and this is probably how it
made its way into the chromosome. However, in the end, the
NIR and SWIR bands were found to be more informative.
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(a)

(b)

Fig. 4. (a) Greyscale images of one of the scenes used to produce the training
data for “Golf Courses” (Golf 3). (b) Training data provided for the training
scene for “Golf Courses” (white= feature, grey= not feature, and black= no
assertion). The black “buffer area” around the golf course reflects the analyst’s
lack of concern with a detailed delineation of the precise extent of the golf
course.

We illustrate the results of these classification techniques on
training and out-of-training-sample data with an example of
output from GENIE, and from the best-performing ENVI clas-
sifier, on the golf course problem. Figs. 4 and 5 compare GENIE
to MAX for one of the training data sets, and Figs. 6 and 7 com-
pare GENIE to the Spectral Angle Mapper (SAM) on out-of-
training-sample data.

An interesting aspect of GENIEs performance to consider is
its repeatability; i.e., whether or not, for a given feature, GENIE
leads to the same result (i.e., the same “image processing
pipeline”) when trained on different scenes. In general, GENIE
will not produce the same image processing pipeline even when
trained on the same scene, if it starts with a different random
number seed. However, the different solutions will generally

(a)

(b)

Fig. 5. (a) GENIE results on training data: Fitness= 999:2. (b) Best
ENVI classifier for the particular training scene (minimum distance):
Fitness= 957:4. Here, GENIEs use of spatial information is clearly evident.
The ENVI classifier actually did a better job of delineating the extent of the
golf course, whereas GENIEs spatial operators led to a “fatter” golf course
than the purely spectral data would warrant. On the other hand, though, this
spatial information allowed GENIE to veto the golf course-like spectra in the
rest of the image. Because the “fatter” golf course fits inside the no-assertion
region, GENIE is not penalized.

have the same approximate performance, both on training data
and on out-of-sample data, and there will often be an overlap
in the choice of operators and data planes used in the image
processing pipeline that is evolved. But the space of image pro-
cessing pipelines it too large and too rugged to achieve any real
level of “robustness,” in this regard.

VI. FURTHER EXPERIMENTS AND RESULTS

Depending on the application at hand, an image analyst is
sometimes interested in the identification of a single specific
feature against a background of everything else in the image,
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(a)

(b)

Fig. 6. (a) Greyscale images of one of the scenes used to produce training data
for “Golf Courses” (Golf 1). (b) Training data provided for the training scene
for “Golf Courses” (white= feature, grey= not feature, and black= no
assertion).

and is sometimes interested in the simultaneous extraction of
multiple features (for instance, when making a landcover map).
The experiments described in the previous sections take the first
point of view and it is this binary classification task that GENIE
was designed to handle.

However, for MAX and other conventional classifiers, the
“background of everything else” is not well modeled as a single
unimodal class. To address this difficulty, it has been suggested
[29] to artificially divide the background into multiple classes,
and then employ multi-class classification techniques. This
combined use of labeled and unlabeled samples can often lead
to more powerful supervised classification [30]–[33].

In order to address these same issues, we conducted a series
of further experiments where we adopted a similar approach, in
which the standard supervised classification techniques were

(a)

(b)

Fig. 7. (a) GENIE results on out-of-training-sample data: Fitness= 946:9.
(b) Best ENVI classifier (for particular training scene) on out-of-training-sample
data (spectral angle mapper): Fitness= 856:7. Again, Genie has used its spatial
operators to produce “fatter” golf courses, but it was also able to censor more
of the nongolf-course area in the rest of the scene.

given the task of classifiying the scenes into multiple classes
instead of the two feature/nonfeature classes described in the
previous experiments.

A. Experimental Procedure

The training data as provided to GENIE and as used in the
experiments described in Section V were used to create the
training data provided to the standard supervised classifiers. The
“feature” class was kept as it was, but the “nonfeature” class
was divided up into multiple classes. The combination of the
“feature” class and the subdivided “nonfeature” class was then
given as training data to the standard supervised classification
techniques.
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TABLE IV
RANKINGS, BASED ONFITNESSSCORESAVERAGED OVER ALL CLASSIFICATION

TASKS, OF THE BEST MULTIPLE-CLASS VARIANTS OF THE STANDARD

SUPERVISEDCLASSIFIERS; ON BOTH TRAINING DATA AND TESTINGDATA

It should be noted that the binary encoding supervised clas-
sification technique was not included in these additional exper-
iments.

The “nonfeature” class was divided into multiple classes by
applying ENVIs unsupervised k-means classification algorithms
[1], [34], [35], to the entire “nonfeature” class. This k-means
classification was performed several times, varying the number
of classes into which the nonfeature class was classified. The
k-means classification with the number of classes that provided
the best final classification performance in terms of fitness, was
the one included in the additional results shown here.

Table IV shows the overall ranking for the multiple-class
classification algorithms, averaged over all the features for
the training data. In this table, “(M)” indicates the use of
multi-class training; the nonmultiple-class results are those
results described and shown in Section V.

VII. D ISCUSSION

With a single exception, GENIE outperformed all the
other classification techniques on both training data and
out-of-training-sample data, for all of the classification tasks
considered. For the training data, the gap, with respect to
fitness, between GENIEs performance and the best of the other
techniques was much less than for the out-of-training-sample
case. This suggests that GENIE is significantly better at
generalizing than the other techniques compared here. An
interesting observation is that the best of the other techniques
on the training data did not necessarily guarantee it to be the
best of the other techniques on the out-of-training-sample data.
This indicates the sensitivity of these techniques to training
data and highlights GENIEs generalization abilities.

The one exception was the multiclass SAM applied to golf
courses, on out-of-training-sample data. This suggests that golf
courses are relatively well identified by their spectral signatures
(perhaps not surprising in a desert/mountain environment where
they are quite distinctive), and that the illumination-invariance
built into the SAM provided it the edge to better generalize to
other scenes. Since GENIE was trained on only one scene at a
time, it did not “learn” to employ an illumination-independent
solution.

One issue to be addressed is training time. At present GENIE
requires the testing of potentially thousands of candidate algo-
rithms on the training data. Depending on the size of the data,
this can take hours to complete. This is considerably longer to
train than the other techniques. It should be noted, though, that

the result of GENIEs training is an image processing algorithm
that can be applied to other data with times comparable to that
of the other techniques’ application to out-of-training-sample
data. We also remark that a few hours is usually a small fraction
of the time it would take to hand-design an equivalent image
processing pipeline that is customized not only to the specific
feature, but also to the specific data set. Another point to con-
sider is that being a population-based optimization technique,
GENIE lends itself well to parallelization, which can dramati-
cally reduce training time. Some experiments have been carried
out to demonstrate this [6].

Although the traditional classification techniques that were
compared here use only spectral information, it is possible to en-
able these techniques to use spatial information as well. There is
in fact a large literature on methodologies for combining spatial
and spectral information (e.g., see [36]–[39]). Our approach was
to apply a set of spatial operators to each plane in the input multi-
spectral data and then combine these new processed data planes
with the raw data planes; both sets of planes would then be pro-
vided as input to the supervised classifiers. We applied a number
of morphological smoothings at different scales to the input data
and combined this with the original data. We found that this in-
formation did improve the fitness scores achieved by the con-
ventional supervised classifiers, but they were still considerably
below the performance of GENIE on the original data. Also, the
improved performance was only for the training data. The clas-
sifiers actually performed worse on out-of-training-sample data
(i.e., they were less robust). Obviously, if one were to adopt this
approach, the choice of which spatial operators to apply is very
important and the search space in this regard is immense. If one
considers a scenario where some sophisticated technique is used
to search the space for the optimal combination of spatial oper-
ators, one is entering the arena in which GENIE is designed to
function.

In conclusion, an automated feature detection/classification
system based on genetic programming has been described.
Experiments comparing this new system with traditional super-
vised classifiers indicate consistently better performance, on
both training data and out-of-training-sample data. We attribute
GENIEs success to the choice of solution representation—as a
multispectral image processing pipeline—and to the fact that
it very naturally combines information from both the spectral
and spatial domains.
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