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Abstract. Various global optimization methods are compared in order
to find the best strategy to solve realistic drag reduction problems in
the automotive industry. All the methods consist in improving classical
genetic algorithms, either by coupling them with a deterministic descent
method or by incorporating a fast but approximated evaluation process.
The efficiency of these methods (called HM and AGA respectively) is
shown and compared, first on analytical test functions, then on a drag
reduction problem where the computational time of a GA is reduced by
a factor up to 7.

1 Introduction

The topic of drag reduction in the automotive industry has been extensively
studied since many years because of its great importance in terms of fuel con-
sumption reduction. However, a computational and automatic approach of this
problem has been unreachable until recently because of its difficulty due to the
main two reasons: the complexity of the cost function to minimize and the com-
putation time of each evaluation. The first attempt in this direction has been
presented, up to our knowledge, by the present authors in [1]: this article was
describing the drag minimization of a simplified 3d car shape with a global op-
timization method that coupled a genetic algorithm and a second order BFGS
method. The interest of such hybrid method had been clearly shown on analytic
cases where the convergence speed up was spectacular compared to a classical
genetic algorithm. Unfortunately, the improvement for the industrial case was
not so important because of the lack of accuracy of the gradient computation
and so forth of the hessian approximation. The present article is intended to go
further in this direction by performing a large comparison of different strategies
to enhance the convergence of genetic algorithms, either with a hybrid method
or with an approximated evaluation process. All these global optimization meth-
ods, described in paragraph 2, are compared on two analytic cases in paragraph
3 and on an industrial problem of car drag reduction in paragraph 4.
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2 Global Optimization Methods

There exists many methods for minimizing a cost function J defined from a set
O C IR™ to IR;. Among them, the class of genetic algorithms (GA), which main
principles are recalled in the next subsection, has the major advantage to seek for
a global minimum. Unfortunately, this method is very time consuming because
of the large number of cost function evaluations that are needed. All the hybrid
optimization methods presented in subsection 2.2 greatly reduce this time cost
by coupling a GA with a deterministic descent method. Another way to speed
up the convergence of a GA is described in subsection 2.3 and consists in doing
fast but approximated evaluations during the optimization process. In this last
case, an improvement of an existing approximation model is proposed.

2.1 Genetic Algorithms (GA)

Genetic algorithms are global optimization methods directly inspired from the
Darwinian theory of evolution of species ([2]). They consist in following the
evolution of a certain number N, of possible solutions, (z;)1<i<n, € ONr | also
called population. To each element (or individual) z; of the population is affected
a fitness value inversely proportional to J(x;) in case of a minimization problem.
The population is regenerated N, times by using three stochastic principles
called selection, crossover and mutation, that mimic the biological law of the
‘survival of the fittest’. These principles are applied in the following way: at
each generation, % couples are selected by using a roulette wheel process with
respective parts based on the fitness rank of each individual in the population. To
each selected couple, the crossover and mutation principles are then successively
applied with a respective probability p. and p,,. The crossover of two elements
consists in creating two new elements by doing a barycentric combination of
them with random and independent coefficients in each coordinate. The mutation
principle consists in replacing a member of the population by a new randomly
chosen in its neighborhood. A one-elitism principle is added in order to be sure
to keep in the population the best element of the previous generation. Thus, the
algorithm writes as:

— Randomly choose the initial population P, = {z;1 € 0,1 <i < N,}

— ng = 1. Repeat until ng = N,

— Evaluate {J(zin,),1 <i < Np} and m = min{J(2;,,),1 <i < Np}

— 1-elitism: if ng > 2 & J(Xp,—1) <m then v;,, = X, 1 for a random i
— Affect a fitness value to each element. Call X, the best element

- for k from 1 to %

— Selection of (Ta,n,,Tp.n,) with respect to the fitness value

- with probability p.: replace (Tan,,pn,) bY (xg,ng,x’ﬂ’ng) by crossover
— with probability pm : replace (x5, ., @, ) by (T8 1, @3, ) by mutation
- end for

— ng = ny + 1. Generate the new population P,
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2.2 Hybrid Methods (HM)

The principle of hybrid optimization has been introduced in the previous decade
([3],4],[5]) in order to improve the convergence speed of an evolutionary algo-
rithm, such as a genetic algorithm, in the case of computationally expensive
optimization problems under limited computational budget. The general idea is
to couple a GA with a deterministic descent method which will explore more
rapidly the local minima of the objective function. More recently, this idea has
been used in conjunction with computationally cheap surrogate approximation
models (see the next paragraph for more details). In the present approach, the
local search is only performed starting from the best current element X, at a
generation n, after a stagnation in the GA process has been observed during
Nstag € IN generations. Moreover, this procedure is done with exact evaluations
of the cost function. Thus, the algorithm of the previous subsection is modified
in the following way:

— (Affect a fitness value to each element. Call Xy, the best element )
—if Xy Neag—1 # Xn, and Xpn, N,,,, = - = Xy, then apply a descent
method starting from Xy,
N,
— (fork from 1 to 52 )

Such hybrid method is called HMy,,, . Note in particular that HMg consists
to apply a descent method to the current best element of the population after
each improvement in the GA process. In [1], a hybrid method of type HMj3 has
been used.

The descent method can be of any type, first or second order (as in [1]
when the BFGS algorithm has been used). In the present article, a first order
gradient method with a backtracking line search strategy has been selected in
order to limit the influence of the approximation eventually done in the gradient
evaluation. A maximal number of five iterations in the descent method has also
been fixed.

2.3  Genetic Algorithms with Approximated Evaluations (AGA)

Another idea to speed up the GA convergence when the computation time of
the cost function z — J(z) is high, is to take benefit of the large and growing
data base of exact evaluations by making fast and approximated evaluations
z — J(z) leading to what is called surrogate or meta-models (see [6] and [7] for
an overview). This general idea has also been used recently in conjunction with a
hybrid process: in [8], a strategy for coupling an evolutionary algorithm with local
search and quadratic response surface methods is proposed whereas a parallel
hybrid evolutionary algorithm framework that leverages surrogate models for
solving computationally expensive design problems with general constraints is
presented in [9] and further extended. In the present work, the surrogate model
is developed independently of the hybrid process and consists to perform exact
evaluations only for all the best fitted elements of the population (in the sense
of J ) and for one randomly chosen element. The new algorithm, called AGA is
thus deduced from the algorithm of section 2.1 and writes as:
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— (ng =1. Repeat until ng = N )
— if ng = 1 then evaluate {J(x;n,),1 <i < Ny}
— elseif ng > 2
fori from 1 to N,

Evaluate j(mlng)

if j(ximg) < J(Xpn,-1) then evaluate J(z;n,)
— end for

for a random i: evaluate J(x; .y, )

end elseif
— ( 1-elitism )

The interpolation method chosen here comes from the field of neural networks
and is called RBF (Radial Basis Function) interpolation ([10]). Suppose that the
function J is known on N points {T;,1 < i < N}, the idea is to approximate J
at a new point z by making a linear combination of radial functions of the type:

Tw) =3 vi(le ~ T

where:
— {TZ, 1<i<n. C{T;1<i< N} is the set of the n. < N nearest points
to x for the euclidian norm ||.||, on which an exact evaluation of J is known.

— @ is a radial basis function chosen in the following set:

@1(u) = exp(~75)

By (u) = \/u? 412

1
Pl =

Dy(u) = exp(—%)

for which the parameter r» > 0 is called the attenuation parameter.
The scalar coefficients (¢;)1<i<n, are obtained by solving the least square
problem of size N X n.:

N Ne
minimize err(z) = Z(J(T’) —J(T))* + )\Zz/)f
i=1 j=1
where A > 0 is called the regularization parameter.

In order to attenuate or even remove the dependancy of this model to its
attached parameters, a secondary global optimization procedure (namely a clas-
sical GA) has been over-added in order to determine for each z, the best values
(with respect to err(z)) of the parameters n., r € [0.01,10], A € [0,10] and
@ € {Py, Py, P3, Py} As this new step introduces a second level of global opti-
mization, it is only reserved to cases where the time evaluation of x +— J(z) is
many orders of magnitude higher than the time evaluation of z — J(z), as in a
car drag reduction problem.
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3 Comparison of Global Optimization Methods on Two
Analytic Cases

Before applying them on a real drag reduction problem, all the previous global
optimization algorithms have been tested and compared on two analytic test
functions. These functions have been constructed in order to exhibit two be-
haviors that are supposed to be representative of a large number of realistic
optimization problems. The first one is a Rastrigin type function with 3 param-
eters, directly inspired from the original one with 2 arguments:

3
Rast(z) = Z (27 — cos(18x;)) +3

=1

defined on O = [—2,2]? for which there exists many local minima (more than a
hundred) and only a global minimum located at x,, = (0,0,0) equal to 0.

The second test function is a modification of the classical Griewank function
with 30 parameters:

30 2 30 .
Griew(z) = Z —t Hcos(—l_)
P Vi

defined on O = [~10, 10]3° which has also a unique global minima at the origin
but only few local minima. In order to achieve a quasi-certain convergence with
a simple genetic algorithm, the population number and the maximal generations
number are respectively fixed to (N, Ng) = (30,300) for the Rastrigin function
and (N,, Ng) = (100, 160) for the Griewank function. The crossover and muta-
tion probability have been set to their best observed value in this case, that is
pe = 0.3 and p,,, = 0.9 (see [11] for more details).

Figure 1 displayed below gives an example of convergence history for the Ras-
trigin and Griewank function respectively, with six different global optimization
methods that have been previously presented in paragraph 2 (GA, HMgy, HMo,,
HM3, HM, and AGA). Note that each gradient computation is counted as 2n func-
tion evaluations where n is the dimension number of the search domain (3 or 30
here) and that each approximated evaluation of the function in the AGA algorithm
is not counted as an evaluation. Due to the large number of curves displayed, the
authors must apologize for the poor visibility on a black and white copy.

On this figure, it can be seen that each method that has been constructed
gives better results than a simple GA on two different aspects: the first one is
the computational time which is assumed to be directly related to the evaluation
number of the function to minimize and the second one is the accuracy level that
is reached at the end of the computation.

In order to give more quantitative results, a statistical study based on a set
of 100 independent optimization processes has been realized. Table 1 gives the
approximated average gain compared to a classical genetic algorithm (ie the
evaluation number reduction rate for a given convergence level) that has been
observed for three global optimization methods. Note that the results obtained



Comparison of Global Optimization Methods 953

— GA

— HMO

O.

Valeur de la fonction (échelle log)
Valeur de la fonction (Echelle log)

-3

. i L 10 . .
0 2000 4000 6000 8000 10000 12000 v} 2000 4000 6000 8OO0 10000 12000 14000 18000
Nombre d'evaluations Nombre d'evaluations

Fig. 1. Example of convergence history for the Rastrigin function (left) and the
Griewank function (right) with 6 different global optimization methods

Table 1. Evaluation number reduction rate for HMo, HM3 and AGA compared to a
simple GA for each test function

Rastrigin function|Griewank function
HMj 2 2
HM3 10 4
AGA 4 10

for HM;, HM, and HM, have not been displayed as they were not as good as
those of HMy and HMs.

This table confirms the interest of all the global optimization methods pre-
viously presented, but on a various degree. For example, it can be observed that
HMj3; give better results than HMg, which could not have been easily forecast
before these tests. Thus, HM3 and AGA seem to be the most promising ones in
terms of convergence time reduction. One one hand, HM3 appears to be more
efficient than AGA on the Rastrigin function as the latter exhibits many local
minima that can be rapidly tracked by the local search process. On the other
hand, as the number of parameters increases, the AGA method performs bet-
ter than the HM3 method as it does not need any gradient computation which
becomes very costly by finite differencies.

In view of their promising results, these global optimization methods are now
used and compared in the next paragraph in the context of a car drag reduction
problem.

4 Comparison of Global Optimization Methods for Car
Drag Reduction

A classical 3D car drag reduction problem ([12]), already investigated in [1],
has been extensively studied with the global optimization methods presented in
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A

Fig. 2. 3D car shape parametrized by its three rear angles o, § and ~

paragraph 2. It consists in minimizing the drag coefficient (also called Cy) of a
simplified car shape with respect to the three geometrical angles defining its rear
shape (see Figure 2): the back light angle (called «), the boat-tail angle (3) and
the ramp angle (7).

The drag coefficient to be minimized is defined by the following expression:

F,
3PV2S

Cd = Cd(OZ,/B, 7) =

where p is the mass density, S the front surface, V,, the freestream velocity and
F, the longitudinal component of the aerodynamic force exerted on the car. The
latter is obtained after a 3D turbulent Navier Stokes computation around the
car. This computation, very costly and sensitive to the car geometry, explains
the major difficulty of such optimization problem.

In order to improve the first optimization attempt presented in [1], the search
domain has been reduced: here, (a, 8,7) € [15,25] x [5,15] x [15,25] (degrees)
and the aerodynamic computation is done with a finer grid, namely with a 6
million cells mesh. In this context, one Cy evaluation, done with a commercial
CFD code, takes 14 hours CPU time on a single processor machine.

Three different types of global optimization methods have been compared on
this problem. The first and reference type is a classical GA with a population
number N, equal to 20 and (pc,pm) = (0.3,0.9). The second type consists of
hybrid methods, HMy and HMjs, as described in paragraph 2.2 with gradient
evaluations computed by centered finite differences. The third type is a GA with
fast and approximated evaluations (called AGA) with or without a secondary
optimization of the interpolation parameters n., A, r and @: see paragraph 2.3.

The convergence history of all these optimization methods for the present
drag reduction problem is depicted in Figure 3. In order to achieve a reasonable
computational time, parallel evaluations on a cluster of workstations have been
done.
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Fig. 3. Convergence history for drag reduction of a 3d car shape with six different
global optimization methods (right figure: zoom of left figure)
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Fig. 4. Iso pressure streamlines coloured by the longitudinal speed for the lowest drag
(left) and a high drag (right) car shape

This figure show in particular that all the methods have nearly reached the
same drag value, around 0.117, starting with an almost double value, but with a
different number of cost function evaluations. More precisely, the AGA algorithm
has permitted to reduce this number by a factor 7 compared to a classical GA.
Note that the AGA methods with a fixed set of parameters (called AGA1 and
AGA2) exhibit a lower gain, which seems to justify the interest of a secondary
optimization of the approximation parameters. On the other hand, the hybrid
method HMy and HM3 don’t exhibit a significant improvement compared to the
GA, likely because of the lack of accuracy in the gradient computation.

The optimal angles obtained by all the global optimization methods are
nearly equal to («,3,v) = (17.7,10,18.4). These values have been experimen-
tally confirmed to be associated with the lowest drag value that can be reached.
The associated computational aerodynamic wake flow is depicted in Figure 4
and compared to an example of a high drag shape (Cd = 0.22).

It can be seen in particular that the optimized shape exhibits a narrow and
regular recirculation volume behind the vehicle as predicted by many authors.
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Note that such aerodynamic interpretation must be done on a 3D level and not
from a longitudinal projection because of the real ’three dimensionality’ of the
flow.

5 Conclusion

In this article, two types of global optimization methods have been compared
with the classical genetic algorithm method (GA). The first type, called hybrid
methods (HM), consists in including a local search process for some well chosen
individuals during the GA evolution. The second type, called AGA, incorporates
a fast but approximated evaluation process for some individuals. For all the
tested problems, the needed number of cost function evaluations to achieve global
convergence has been largely decreased, between a factor 2 and 10 compared to
a classical GA. For instance, in a classical car drag optimization problem, the
AGA method with a new surrogate model has permitted to obtain the lowest
drag car shape 7 times quicker than any other existing method. Such promising
method is now ready to be applied to reduce the aerodynamic drag coeflicient
of more and more realistic car shapes with a larger number of parameters.
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