
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

98 | P a g e

www.ijacsa.thesai.org

Comparison of Hash Function Algorithms Against

Attacks: A Review

Ali Maetouq, Salwani Mohd Daud, Noor Azurati Ahmad, Nurazean Maarop, Nilam Nur Amir Sjarif, Hafiza Abas

Advanced Informatics Department

Razak Faculty of Technology and Informatics

Universiti Teknologi Malaysia

Kuala Lumpur, Malaysia

Abstract—Hash functions are considered key components of

nearly all cryptographic protocols, as well as of many security

applications such as message authentication codes, data integrity,

password storage, and random number generation. Many hash

function algorithms have been proposed in order to ensure

authentication and integrity of the data, including MD5, SHA-1,

SHA-2, SHA-3 and RIPEMD. This paper involves an overview of

these standard algorithms, and also provides a focus on their

limitations against common attacks. These study shows that these

standard hash function algorithms suffer collision attacks and

time inefficiency. Other types of hash functions are also

highlighted in comparison with the standard hash function

algorithm in performing the resistance against common attacks.

It shows that these algorithms are still weak to resist against

collision attacks.

Keywords—Hash function algorithms; MD5; PRIMEDS160;

SHA-1; SHA-2; SHA-3

I. INTRODUCTION

Among the most useful primitives that are crucial for data
security is the cryptographic hash function, which offers
message authentication, data integrity, and digital signature
[1]-[3]. Additionally, it is employed as a core element of
cryptographic protocols, secure transactions and crypto-
currencies. Fig. 1 presents an output of a fixed length (termed
as a message digest or hash code) that uses a one-way function
(known as a hash function) with an input of arbitrary length
(also termed as a ―message‖ or ―plain text‖) [4].

Fig. 1. Hash function.

The mathematical definition of a hash function (H) is
defined as follows:

H: {0, 1}* → {0, 1}n (1)

Where, {0, 1}* refers to the set of binary elements of any
length including the empty string. Meanwhile, {0, 1}n is used
to refer to a set of binary elements with length n. Thus, a set of
fixed-length binary elements is mapped to arbitrary-length
binary elements using the hash function.

The organization of the paper is as follows. In Sections II
and III, the basic concepts such as security properties and
applications of hash functions are discussed. A literature
review on the most popular hash function algorithms is
provided in Section IV. Then, the comparison of the standard
hash algorithm based on the general properties and common
attacks are discussed in Section V. Many researchers have also
proposed their own algorithms as discussed in Section VI.

II. PROPERTIES OF HASH FUNCTIONS

Several properties of security must be satisfied for
cryptographic hash functions [5], [6].

A. Resistance to Collision Attacks

It would be impossible for the attacker to find the same
hash value or H(M) for two messages (M, M’). A collision
attack happens when a pair of distinct messages having the
same hash as shown in Fig. 2. The hash function must have
the property of not producing same hash value for different
messages.

Fig. 2. Collision resistance.

B. Resistance to Pre-Image Attacks

A preimage is a message that hashes to a given value. In a
preimage attack, it is usually assumed that at least one
message that hashes to the given value exists as shown in

F AZ23ws$%

Arbitrary

Length

Message

Message Digest

Message Or Plain text

Hash function

 M
Given

 M’
and

H(M)
So

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

99 | P a g e

www.ijacsa.thesai.org

Fig. 3. Therefore, to be resistance to pre-image attacks, one
often says that the adversary (also called the attacker) is given
y = H(M) for some (randomly chosen) message M, which the
attacker does not know. In other words, the attacker should
find it is not possible to gain original data (or message (M))
from a given hash value H(M).

Fig. 3. Preimage resistance.

C. Resistance to Second Pre-Image Attacks

A second preimage is a message that hashes to the same
value as a given (randomly chosen) message, called the first
preimage. Obviously, the second preimage must be different
from the first. Here, we assume that the attacker is also given
the hash value of the first preimage. If not, then the attacker
can compute it himself. In the latter case the cost of hashing
the first preimage is placed on the attacker, which we do not
assume here. A brute force preimage attack can also be used to
find a second preimage.

One simply ignores the first preimage, except that one may
take care not to try a message that is identical to the first
preimage. By selecting messages at random, assuming that the
domain of the hash function is much larger than the co-
domain, the probability of the second preimage being equal to
the first is negligible, and therefore we usually ignore this
possibility. Due to the above attack, finding a second
preimage seems to never be harder than finding a (first)
preimage. However, there are artificial constructions that
allow preimages to be found in constant time, but which are
collisions and second preimage resistant.

Fig. 4 shows that the hash value H(M) could change with
the slightest change in message (M). In summary, it should be
impossible for an attacker—which has been given a message
to obtain the original digest after manipulating it.

Fig. 4. Second preimage resistance.

Besides these properties, the hash function should also be
able to work and calculate the digest for any input message of
any size; the hash calculation process must be efficient.

III. APPLICATIONS OF HASH FUNCTION

Hash functions are used in many applications such as
digital signature, message integrity, and authentication. This
section discussed these applications.

A. Digital Signature

This is the first application of a secure hash function, it is a
mathematical scheme used to validate the authenticity of the
sender, message and signer of the document identity. In cases
where it is crucial that an altered document or message is
detected, or in any financial transaction, digital signature is
commonly implemented. The signature for a document is
produced via public and private keys utilized by the Digital
Signature. This indicates that without authorization, it is
difficult for another person to duplicate the document or
message created by the person who had signed it first [7].

B. Message Integrity

Integrity checking is the foremost and fundamental
objective of the hash function, which allows the detection of
any changes being made to the data. The integrity of a
message that is transmitted is checked via the sender, who
hashes the message, whereby both hash value and message are
sent. The message is generally sent from an insecure line, and
only sometimes from a secure one. The received message is
hashed from the side of the receiver, who checks the received
hash value against the resulting hash value. The preservation
of the message depends on whether or not the two hash values
match; a match indicates preservation while a mismatch
indicates non-preservation. There is a very low possibility that
hash value and message are both altered (the hash value of the
altered message is the altered hash value).

C. Message Authentication Code (MAC)

In constructions involving the Message Authentication
Code (MAC), hash functions are popularly used as building
blocks. Verification of identical sent and received messages
can be done using the Message Authentication Code.
However, only the sender or the recipient can compute the
MAC. Therefore, identity verification of a sender to a third
party cannot be executed using MAC. A keyed-hash function
(which includes a keyed-in addition input to the message) is
used to compute the MAC. The key must be kept secret or the
operation will fail. Although third parties will not be privy to
this key (kept secret from them), the same key must be used
from the recipient and sender side. In the process of
generating a MAC, any applicable constant string and hash
function is used for the sender to input message and key. This
is followed with the sending of the message and generated
MAC to the receiver. The same hash function and algorithm is
used on behalf of the receiver to generate a MAC of the
message, so as to eliminate any chances of the message being
manipulated. The message indeed would not have been
manipulated if the MAC received from the sender matches the
MAC generated by the receiver. This provides a simple way
for verifying message integrity. To ensure MAC computation
efficiency from both, the sender and receiver side, an efficient
and high-speed hash function is required [6].

 (M)

H(M) Given

Find

 M

H(M) H(M’)’

 M’ Given

Find

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

100 | P a g e

www.ijacsa.thesai.org

IV. STANDARD HASH FUNCTION ALGORITHMS

The most standard hash functions used today are the
dedicated hash, that is, hash functions that are especially
designed for hashing purpose only. In this section, we will
describe the more popular hash functions.

A. MD5(Message Digest 5)

MD5 is a popular hash function in the MD family,
designed by Rives in 1991. This hash function uses the
Merkle–Damgard construction. The MD5 algorithm outputs a
128-bit length from an input of an arbitrary length message.
However, several attacks have been found on MD5. In 1992,
Bore and Bosselaers found collision attacks usually targeting
the compression function. In 1996, Dobbertin published the
fact that collision attacks targeted MD5. Successful collision
attacks were also reported against MD5 in [8]. The
improvement of collision attacks on MD5 were also found in
previous works [9], [10].

B. RIPEMD-160

It is a well-known hash function in the RIPEMD family,
designed by Dobbertin, Bosselaers and Perneel in 1996. It is
part of the international standard ISO/IEC10118-3:2004 of
dedicated hash functions. It also uses the Merkle-Damgård
construction. It produces a message digest length of 160 bits
[11]. However, semifree-start collision, preimage and collision
attacks on RIPEMD-160 were found in [10].

C. Secure Hash Algorithm (SHA)

Secure Hash Algorithm (SHA) is a group of hash functions
published by the National Institute of Standards and
Technology as a US Federal Information Processing Standard
(FIPS). All of the current SHA algorithms were developed by
the NSA:

 SHA-1: NIST (1995) developed the Secure Hash
Algorithm 1 or SHA-1, which also uses the Merkle–
Damgard construction as MD5, and generates a 160-bit
message digest for an arbitrary length input message.

However, collision attack was also founded against
SHA-1 in previous studies [12]-[14]. Therefore, NIST
announced the step-by-step elimination of SHA-1 [15].

 SHA-2: NIST (2002) added other algorithms to the
SHA family with respective hash code lengths of 256,
348, and 512 bits i.e. SHA-256, SHA-384 and SHA-
512, respectively. These follow the same structure as
MD5 and SHA-1, but are more complex since a
nonlinear function is added to the compression
function. However, SHA-2 is not preferred to ensure
integrity, as it is not as time efficient as SHA-1 [16].
On the other hand, Bitcoin, as the most popular crypto-
currency, uses SHA256 for Hashcash which provides
security over transactions made between peers in the
Bitcoin network. However, SHA-256 has no multi-
threading ability, and thus it is not fast enough for
transactions [17]. The most recent attacks on SHA-2
have been shown in previous works [18].

 SHA-3: After several successful collision attacks
which were progressively reduced in complexity (such
as MD5, SHA-1 and SHA-2), NIST, in the Federal
Register, announced a public competition to develop
SHA-3, a completely new hashing algorithm. In 2007,
the announcement for the initiative was published.
Then, four years later, on October 2nd, 2012, the
winner of the competition Keccak, was announced. In
2014, NIST considered SHA-3 as a standard hash
function. However, this algorithm is susceptible to first
collision-finding attacks [19], [20]. On the other hand,
the algorithm shows relatively low software
performance compared to other hash functions [21].

V. COMPARISON OF STANDARD HASH ALGORITHM

The comparison of the standard hash algorithm based on
the general properties, including block size, word size, output
size, logical operation, and the number of rounds as shown in
Table I. And also common attacks on these algorithms are
summarized as illustrated in Table II.

TABLE I. COMPARISON BETWEEN STANDARD HASH FUNCTION ALGORITHMS BASED ON PROPERTIES

Properties

Name of Algorithm

MD5
RIPEMD

-160
SHA-1

SHA-2

256/512

SHA-3

256/512

Block Size 512 bits
512

bits
512 bits 512/1024 bits 1088/576 bits

Word Size 32 bits 32bits 32bits 32/64 bits 320/320bits

Output Size 128bits 160 bits 160 bits 256/512 bits 1600/1600bits

Rounds 18 80 80 64/80 24/24

Operations

ADD,XOR,

AND,OR,

NOT,

SHIFT

ADD,,

ROTATE,

XOR,AND,

OR,NOT

ADD,

XOR

AND, OR,NOT,

ROTATE.

ADD,

XOR,

OR,

AND SHIFT,,

ROTATE

-

Construction Merkle-Damgard Merkle-Damgard Merkle-Damgard Merkle-Damgard Sponge

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

101 | P a g e

www.ijacsa.thesai.org

TABLE II. COMMON ATTACKS ON STANDARD HASH FUNCTION ALGORITHMS

Algorithm Type of attacks Complexity References

MD5
Collision 239 Ref [8]

Fast Collision 218 Ref [9]

RIPEM-160
 Collision 267 Ref [22]

Preimage 2158.91 Ref [23]

SHA-1

Collision < 269 Ref [12]

Collision 261 Ref [13]

Freestart Collision - Ref [14]

SHA-2
256 Preimage 2255.5 Ref [24]

512 Preimage 2511.2 Ref [24]

SHA-3
256 Practical Collision and near-Collision - Ref [19]

512 Possibility first Collision - Ref [20]

From the above discussion, it is found that most of the
popular hash functions from different families suffer from
collision attacks and also are not time efficient. As a solution
to this problem, researchers proposed other algorithms.

VI. DISCUSSIONS

Many researchers have proposed their own algorithm in
order to overcome the above issue as shown in Table III. In
this section, the authors have discussed some of the variations
in hash function algorithms.

Belfedhal and Faraoun [25] used a variant of the Merkle-
Damgard construction basing off on cellular automata to
introduce a hash function algorithm producing a 256-bit hash
value. Although the algorithm yielded good results for
statistical test, it was not tested against collision and preimage
attacks.

Li et al. [26] used a dynamic S-box to design a chaotic
hash function that produces 128-bit hash values as the final
hash code and thus compromising its practicability and

flexibility lent via the S-box. One major drawback of this
proposed algorithm is that the length of the hash code is not
enough to guarantee security against collision or second pre-
image attacks.

Abdulah et al. [27] developed a new hash function based
on MD5, generating a 224-bit hash value. Perhaps the most
serious disadvantage of this development is the time required
to produce the message digest, which is as much as the MD5,
meaning that the efficiency is very low.

Tur and Javurek [28] used neural network to develop hash
function generation, which produced a 128-bit hash value.
However, approaches of this kind are very difficult to execute
besides having a short hash value.

Ahmad et al. [29] had integrated 2D and 1D chaotic maps
in the development of a novel hash function scheme, where
128-bit hash value for an arbitrary length message was
generated. Nevertheless, the length of the hash value is short
and thus it is not resistant against collision attacks.

TABLE III. COMPARISON OF VARIATIONS OF HASH FUNCTION ALGORITHMS

Author Year of publication Advantages Limitations

Belfedhal and Faraoun [25] 2015

It provides good cryptographic

properties such as pseudo- random
behavior and sensitivity to the input

changes.

It was not tested against attacks that are cryptographic in
nature e.g., meet-in-the-middle attacks, collision or birthday

attacks.

Wang et al. [31] 2015 It provides variable output. It was not tested against common attacks such as collision.

Li et al. [26] 2016
It has good statistical performance and
collision resistance.

Any attacker could launch exhaustive collision attacks on
the function because the final hash value is 128 bits

Tur and Javurek [28] 2016

Extra modules are still required to enable the proposed
system to be used as a real application.

It was not tested against attacks that are cryptographic in

nature e.g., meet-in-the-middle attacks, collision or birthday

 Li and Liu [30] 2016
The confusion and diffusion property of

the proposed algorithm hash is good.

Any attacker could launch exhaustive collision attacks on

the function because the final hash value is 128 bits.

Ahmad et al. [29] 2017

It has great statistical performance.

It can generate hash value of length

160,256 or 512 bits.

 Zhang et al.[2] 2017
The proposed algorithm satisfies the

requirement of statistical performance.
The algorithm is not time efficient to obtain the hash value.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

102 | P a g e

www.ijacsa.thesai.org

Li and Liu [30] used chaotic mapping that is generalized
and parameters that are variable to propose a hash function. In
their work, an arbitrary length message was converted to
corresponding ASCII values in the process of executing 6-unit
iterations that has variable message values and parameters.
Towards achieving the final hash value, iteration state values
were used to cascade extracted bits. Based on a definition of
the birthday attack, 128-bit hash value is not enough to
guarantee a secure algorithm.

Wang et al. [31] proposed a hash algorithm, which
generated a variable size digest. Their proposed algorithm was
an improved version of MD-5 algorithm on the output length.
Although the proposed algorithm has a variable size digest,
which is good property to increase security, however it still
uses the same construction as MD5.

Many researchers have proposed their own hash function
algorithm as shown in Table III. Some of them were based on
the chaotic design, with some being based on the complex
chaotic system, the chaotic neural network, and the chaos tent
map. Some of the current hash function designs produce a
hash value size of 128 bits only which is not secure enough
against collision attacks. Although these algorithms have
offered satisfactory statistical performances, they are still
weak in resisting collision attacks. Consequently, it is
necessary to develop new approaches to hash function
algorithm design that is able to prevent attacks effectively in
comparison to existing algorithms as they are not sufficient to
meet the requirement of latest technologies and security
concern.

VII. CONCLUSION

There are various types of hash functions algorithms used
to ensure the integrity and authentication of messages. Some
have emerged as the standard, such as MD5, SHA-1, SHA-2
and SHA-3. This paper discusses these algorithms. It was
found that most of them are either breakable, or are not time
efficient. Also, this paper discusses other hash algorithms
which were presented by researchers, but most of them were
not tested against attacks that are cryptographic in nature such
as collision attacks. Therefore, it can be concluded that a hash
function that is efficient and safe, and fulfills application
requirements such as data integrity and authenticity, must be
designed and made into a priority.

ACKNOWLEDGMENT

We would like to express our gratitude to Ministry of
Education (MOE Malaysia) for providing financial support
(research grant Q.K130000.2538.19H12) in conducting our
study. Our special thanks to Universiti Teknologi Malaysia
(UTM) and specifically Advanced Informatics Department in
Razak Faculty of Technology and Informatics for realizing
and supporting this research work.

REFERENCES

[1] S. Mohammed, ―Secure Hash Design & Implementation Based On Md5
& Sha-1 Using Merkle – Damgard Construction,‖ Int. J. Adv. Res.
Comput. Sci. Technol. (IJARCST 2016) Vol., vol. 4, no. 2, pp. 92–94,
2016.

[2] P. Zhang, X. Zhang, and J. Yu, ―A Parallel Hash Function with Variable
Initial Values,‖ Wirel. Pers. Commun., vol. 96, no. 2, pp. 2289–2303,
2017.

[3] R. Haddaji, ―Comparison of Digital Signature Algorithm and
Authentication Schemes for H . 264 Compressed Video,‖ Int. J. Adv.
Comput. Sci. Appl., vol. 7, no. 9, pp. 357–363, 2016.

[4] R. P. Arya, U. Mishra, A. Bansa, and W. S. Email, ―A Survey on Recent
Cryptographic Hash Function Designs,‖ internatonal J. emrging trends
Technol. Comput. Sci., vol. 2, no. 1, pp. 1–6, 2013.

[5] N. Garg and N. Wadhwa, ―Design of New Hash Algorithm with
Integration of Key Based on the Review of Standard Hash Algorithms,‖
Int. J. Comput. Appl. (0975 – 8887), vol. 100, no. 8, pp. 11–18, 2014.

[6] M. Ghebleh and A. Kanso, ―A structure-based chaotic hashing scheme,‖
Nonlinear Dyn., pp. 27–40, 2015.

[7] A. A. Alkandari, I. Al-shaikhli, and A.Alahmad, ―Cryptographic Hash
Function : A High Level View,‖ Int. Conf. Informatics Creat. Multimed.
Cryptogr., pp. 129–135, 2013.

[8] X. Wang and H. Yu, ―How to Break MD5 and Other Hash Functions,‖
EUROCRYPT 2005, LNCS 3494, pp. 19–35, 2005.

[9] T. Xie, F. Liu, and D. Feng, ―Fast Collision Attack on MD5,‖ pp. 1–12,
2013.

[10] V. Chiriaco, A. Franzen, and R. Thayil, ―Finding Partial Hash Collisions
by Brute Force Parallel Programming,‖ in 37th IEEE Sarnoff
Symposium 2016, Newark, NJ, September 19-21, 2016, vol. 5, pp. 1–6.

[11] F. Mendel, T. Peyrin, and M. Schl, ―Improved Crypanalysis of Reduced
RIPEMD-160,‖ Int. Conf. Theory Appl. Cryptol. Inf. Secuerty., pp.
484–503, 2013.

[12] X. Wang, Y. L. Yin, and H. Yu, ―Finding Collisions in the Full SHA-1,‖
Int. Assoc. Cryptologic Res. 2005, no. 90304009, pp. 17–36, 2005.

[13] M. Stevens, ―New Collision Attacks on SHA-1 Based on Optimal Joint
Local-Collision Analysis,‖ Int. Assoc. Cryptologic Res. 2013, pp. 245–
261, 2013.

[14] M. Stevens, P. Karpman, and T. Peyrin, ―Freestart collision for full
SHA-1,‖ EUROCRYPT 2016., vol. 2012, pp. 1–21, 2016.

[15] K. Wu, Y. Li, L. Chen, and Z. Wang, ―Research of Integrity and
Authentication in OPC UA Communication Using Whirlpool Hash
Function,‖ Appl. Sci. ISSN2076-3417, pp. 446–458, 2015.

[16] S. Verma and G. Prajapati, ―Robustness and Security Enhancement of
SHA with Modified Message Digest and Larger Bit Difference,‖ in 2016
Symposium on Colossal Data Analysis and Networking (CDAN), 2016,
pp. 0–4.

[17] G. Meliolla, K. A. Nugroho, and F. I. Hariadi, ―Implementation of Hash
Function on Embedded- System Platform using Chaotic Tent Map
Algorithm,‖ in Electronics and Smart Devices (ISESD), International
Symposium on, 2016, pp. 179–183.

[18] N. Kishore and B. Kappor, ―Attacks on and Advances in Secure Hash
Attacks on and Advances in Secure Hash Algorithms,‖ IAENG Int. J.
Comput. Sci., no. September, 2016.

[19] I. Dinur, O. Dunkelman, and A. Shamir, ―New attacks on Keccak-224
and Keccak-256,‖ pp. 1–27, 2011.

[20] I. Dinur, O. Dunkelman, and A. Shamir, ―Collision Attacks on Up to 5
Rounds of SHA-3 Using Generalized Internal Differentials,‖ no. 827,
pp. 1–30, 2013.

[21] D. Kim, D. H. B, J. Lee, and W. Kim, ―LSH : A New Fast Secure Hash
Function Family,‖ Springer Int. Publ. Switz. 2015, pp. 286–313, 2015.

[22] F. Liu, F. Mendel, and G. Wang, ―Collisions and Semi-Free-Start
Collisions for Round-Reduced RIPEMD-160,‖ in 23rd Annual
International Conferences on Theory and Application of Cryptology and
Information Security,ASIACRYPT2017, 2017, pp. 1–32.

[23] Y. Shen and G. Wang, ―Improved Preimage Attacks on RIPEMD-160
and HAS-160,‖ KSII Trans. Internet Inf. Syst., vol. 12, no. 2, pp. 727–
746, 2018.

[24] D. Khovratovich, C. Rechberger, and A. Savelieva, ―Bicliques for
Preimages : Attacks on Skein-512 and the SHA-2 family,‖ pp. 244–263,
2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

103 | P a g e

www.ijacsa.thesai.org

[25] A. E. Belfedhal and K. M. Faraoun, ―Building Secure and Fast
Cryptographic Hash Functions Using,‖ J. Comput. Inf. Technol., pp.
317–328, 2015.

[26] Y. Li, G. Ge, and D. Xia, ―Chaotic hash function based on the dynamic
S-Box with variable parameters,‖ Nonlinear Dyn., vol. 84, no. 4, pp.
2387–2402, 2016.

[27] H. S. Abdulah, M. A. H. Al-rawi, and D. N. Hammod, ―Message
Authentication Using New Hash Function,‖ J. Al-Nahrain Univ., vol.
19, no. 3, pp. 148–153, 2016.

[28] M. Tur and M. Javurek, ―Hash Function Generation by Neural

Network,‖ in 2016 New Trends in Signal Processing (NTSP), 2016.

[29] M. Ahmad, S. Khurana, S. Singh, and H. D. Alsharari, ―A Simple
Secure Hash Function Scheme Using Multiple Chaotic Maps,‖ 3D Res.,
vol. 8, no. 2, pp. 1–15, 2017.

[30] Y. Li, X. Li, and X. Liu, ―A fast and efficient hash function based on
generalized chaotic mapping with variable parameters,‖ Neural Comput.
Appl., vol. 28, no. 6, pp. 1405–1415, 2016.

[31] M. Wang and Y. Zhen Li, ―Hash Function with Variable Output
Length,‖ in 2015 International Conference on Network and Information
Systems for Computers, 2015, pp. 3–6.

