
Comparison of Heuristics for Scheduling Independent Tasks on Heterogeneous 
Distributed Environments 

 
 

Hesam Izakian¹, Ajith Abraham², Senior Member, IEEE, Václav Snášel³ 
¹ Islamic Azad University, Ramsar Branch, Ramsar, Iran 

² Norwegian Center of Excellence, Center of Excellence for Quantifiable Quality of Service, 
Norwegian University of Science and Technology, Trondheim, Norway 

³Faculty of Electrical Engineering and Computer Science VSB-Technical University of Ostrava, 
Czech Republic 

Hesam.izakian@gmail.com, Ajith.abraham@ieee.org, vaclav.snasel@vsb.cz 
 

 
Abstract 

 
Scheduling is one of the core steps to efficiently 

exploit the capabilities of heterogeneous distributed 
computing systems and is an NP-complete problem. 
Therefore using meta-heuristic algorithms is a 
suitable approach in order to cope with its difficulty. 
In meta-heuristic algorithms, generating individuals 
in the initial step has an important effect on the 
convergence behavior of the algorithm and final 
solutions. Using some heuristics for generating one or 
more near-optimal individuals in the initial step can 
improve the final solutions obtained by meta-heuristic 
algorithms. Different criteria can be used for 
evaluating the efficiency of scheduling algorithms, the 
most important of which are makespan and flowtime. 
In this paper we propose an efficient heuristic method 
and then we will compare with five popular heuristics 
for minimizing makespan and flowtime in 
heterogeneous distributed computing systems.   
 
1. Introduction 
 

Mixed-machine heterogeneous computing (HC) 
environments utilize a distributed suite of different 
high-performance machines, interconnected with 
high-speed links, to perform different computationally 
intensive applications that have diverse computational 
requirements [1, 2]. To exploit the different 
capabilities of a suite of heterogeneous resources, 
typically a resource management system (RMS) 
allocates the resources to the tasks and the tasks are 
ordered for execution on the resources. At a time 
interval in HC environment a number of tasks are 

received by RMS from different users. Different tasks 
have different requirements and different resources 
have different capabilities. Optimally scheduling is 
mapping a set of tasks to a set of resources to 
efficiently exploit the capabilities of such systems and 
is one of the key problems in HC environments. As 
mentioned in [9] optimal mapping tasks to machines 
in an HC suite is an NP-complete problem and 
therefore the use of meta-heuristics is one of the 
suitable approaches. The most popular of meta-
heuristic algorithms are genetic algorithm (GA), tabu 
search (TS), simulated annealing (SA), ant colony 
optimization (ACO) and particle swarm optimization 
(PSO). 

Ritchie and Levine [4] used a hybrid ant colony 
optimization, Yarkhan and Dongarra [5] used 
simulated annealing approach and Page and Naughton 
[3], used genetic algorithm for task scheduling in HC 
systems.  

The algorithmic flow in meta-heuristic algorithms 
starts with randomly generating population of 
individuals that are potential solutions. Then in a 
fixed number of iterations the algorithm tries to obtain 
optimal or near-optimal solutions using predefined 
operators (such as crossover and mutation in GA etc) 
and a fitness function that evaluates the optimality of 
solutions. Generating potential solutions at the 
beginning of the algorithm has an important effect in 
obtaining final solutions and if in this step of the 
algorithm bad solutions are generated randomly, then 
the algorithm provides bad solutions or local optimal 
solutions. To overcome the posed problem, we usually 
generate one or more individuals using well-known 
heuristics and others randomly in the initial step of the 
algorithm. These heuristics generate near-optimal 
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solutions and the meta-heuristic algorithm combines 
random solutions with them for obtaining better 
solutions. Using this method we can obtain better 
solutions using meta-heuristic algorithms. 

Existing scheduling heuristics can be divided into 
two classes [6]: on-line mode (immediate mode) and 
batch-mode heuristics. In the on-line mode, a task is 
mapped onto a host as soon as it arrives at the 
scheduler. In the batch mode, tasks are not mapped 
onto hosts immediately and they are collected into a 
set of tasks that is examined for mapping at 
prescheduled times called mapping events. The online 
mode heuristic is suitable for the low arrival rate, 
while batch-mode heuristics can achieve higher 
performance when the arrival rate of tasks is high 
because there will be a sufficient number of tasks to 
keep hosts busy between the mapping events, and 
scheduling is according to the resource requirement 
information of all tasks in the set [6]. In this paper, we 
considered batch-mode heuristics. 

Different criteria can be used for evaluating the 
efficiency of scheduling algorithms, the most 
important of which are makespan and flowtime. 
Makespan is the time when an HC system finishes the 
latest job and flowtime is the sum of finalization times 
of all the jobs. An optimal schedule will be the one 
that optimizes the flowtime and makespan.      

In this paper, we proposed an efficient heuristic 
called min-max. Also we investigate the efficacy of 
min-max and 5 popular heuristics for minimizing 
makespan and flowtime. These heuristics are min-
min, max-min, LJFR-SJFR, sufferage, and 
WorkQueue. These heuristics are popular, effective 
and are used in many studies. So far, some of works 
have been done for investigating number of these 
heuristics for minimizing makespan, yet no attempt 
has been made to minimize flowtime or both flowtime 
and makespan. Also the efficiency of these heuristics 
is investigated on simple benchmarks and the various 
characteristics of machines and tasks in HC 
environments are not considered. In this paper, we 
investigate the efficiency of these heuristics on HC 
environments with various characteristics of both 
machines and tasks. 

The remainder of this paper is organized in the 
following manner: Section 2 formulates the problem, 
in Section 3 we provide the definitions of heuristics, 
and Section 4 reports the experimental results.  Finally 
Section 5 concludes this work. 
 
2. Problem formulation 
 

An HC environment is composed of computing 
resources where these resources can be a single PC, a 
cluster of workstations or a supercomputer. Let 

},...,,{ 21 nTTTT =  denote the set of tasks that in a 
specific time interval is submitted to RMS. Assume 
the tasks are independent of each other (with no inter-
task data dependencies) and preemption is not allowed 
(they cannot change the resource they have been 
assigned to). Also assume at the time of receiving 
these tasks by RMS, m  machines 

},...,,{ 21 mMMMM = are within the HC 
environment. In this paper scheduling is done at 
machine level and it is assumed that each machine 
uses First-Come, First-Served (FCFS) method for 
performing the received tasks. We assume that each 
machine in HC environment can estimate how much 
time is required to perform each task. In [2] Expected 
Time to Compute (ECT) matrix is used to estimate the 
required time for executing a task in a machine. An 
ETC matrix is an mn×  matrix in which n is the 
number of tasks and m is the number of machines. 
One row of the ETC matrix contains the estimated 
execution time for a given task on each machine. 
Similarly one column of the ETC matrix consists of 
the estimated execution time of a given machine for 
each task. Thus, for an arbitrary task jT  and an 

arbitrary machine iM , ),( ij MTETC is the estimated 

execution time of jT  on iM . In ETC model we take 

the usual assumption that we know the computing 
capacity of each resource, an estimation or prediction 
of the computational needs of each job, and the load of 
prior work of each resource. 
     Assume that jiC ,  }),...,2,1{},,...,2,1{( njmi ∈∈  is 

the completion time for performing jth task in ith 
machine and iW  }),...,2,1{( mi ∈ is the previous 
workload of iM , then Eq. (1) shows the time required 
for iM  to complete the tasks included in it. According 
to the aforementioned definition, makespan and 
flowtime can be estimated using Eq. (2) and Eq. (3) 
respectively. 
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As mentioned in the previous section, the goal of the 
scheduler in this paper is to minimize makespan and 
flowtime. 
3. Heuristic descriptions 
 
     This section provides the description of 5 popular 
heuristics for mapping tasks to available machines in 
HC environments. Then we propose an efficient 
heuristic called min-max. 
 
3.1. Min-min heuristic 
 

   Min-min heuristic uses minimum completion time 
(MCT) as a metric, meaning that the task which can 
be completed the earliest is given priority. This 
heuristic begins with the set U of all unmapped tasks. 
Then the set of minimum completion times, 

)),(_{min( ji MTtimecompletionM =  ,1( nifor ≤≤  

)}1 mj ≤≤ , is found. M consists of one entry for each 
unmapped task. Next, the task with the overall 
minimum completion time from M is selected and 
assigned to the corresponding machine and the 
workload of the selected machine will be updated. And 
finally the newly mapped task is removed from U and 
the process repeats until all tasks are mapped (i.e. U is 
empty) [2, 7].  

 
3.2. Max-min heuristic 
 

The Max-min heuristic is very similar to min-min 
and its metric is MCT too. It begins with the set U of 
all unmapped tasks. Then, the set of minimum 
completion times, )),(_{min( ji MTtimecompletionM =  

, ,1( nifor ≤≤  )}1 mj ≤≤ , is found. Next, the task 
with the overall maximum completion time from M is 
selected and assigned to the corresponding machine 
and the workload of the selected machine will be 
updated. And finally the newly mapped task is 
removed from U and the process repeats until all tasks 
are mapped [2, 7]. 
 
3.3. LJFR-SJFR Heuristic 
 

Longest Job to Fastest Resource- Shortest Job to 
Fastest Resource (LJFR-SJFR) [8] heuristic begins 
with the set U of all unmapped tasks. Then, the set of 
minimum completion times, 

)),(_{min( ji MTtimecompletionM =  ,1( nifor ≤≤  

)}1 mj ≤≤ , is found the same as min-min. Next, the 
task with the overall minimum completion time from 

M is considered as the shortest job in the fastest 
resource (SJFR). Also the task with the overall 
maximum completion time from M is considered as 
the longest job in the fastest resource (LJFR). At the 
beginning, this method assigns the m longest jobs to 
the m available fastest resources (LJFR) and then 
assigns the shortest task to the fastest resource and the 
longest task to the fastest resource alternatively. After 
each allocation, the workload of each machine will be 
updated.  
 
3.4. Sufferage Heuristic 
 

In this heuristic for each task, the minimum and 
second minimum completion time are found in the 
first step. The difference between these two values is 
defined as the sufferage value. In the second step, the 
task with the maximum sufferage value is assigned to 
the corresponding machine with minimum completion 
time. The Sufferage heuristic is based on the idea that 
better mappings can be generated by assigning a 
machine to a task that would “suffer” most in terms of 
expected completion time if that particular machine is 
not assigned to it [6]. 
 
3.5. WorkQueue Heuristic 
 
    This heuristic is a straightforward and adaptive 
scheduling algorithm for scheduling sets of 
independent tasks. In this method the heuristic selects 
a task randomly and assigns it to the machine as soon 
as it becomes available (in other word the machine 
with minimum workload). 
 
3.6. Proposed Heuristic 
 

This heuristic (called min-max) is composed of two 
steps for mapping each task and uses the minimum 
completion time in the first step and the minimum 
execution time in the second as metric. In the first 
step, this heuristic begins with the set U of all 
unmapped tasks. Then the set of minimum completion 
times, )),(_{min( ji MTtimecompletionM =  

,1( nifor ≤≤  )}1 mj ≤≤ , is found the same as min-
min heuristic. In the second step, the task whose 
minimum execution time (time for executing task on 
the fastest machine) divide by its execution time on 
the selected machine (in the first step), has the 
maximum value will be selected for mapping. The 
intuition behind this heuristic is that we select pair 
machines and tasks from the first step that the 



machine can executes its corresponding task 
effectively with a lower execution time in comparison 
with other machines. 

 
4. Comparison and Experimental results 
 

We compared the performance of the above 
heuristics for minimizing makespan and flowtime. We 
used the benchmark proposed in [2]. The simulation 
model in [2] is based on expected time to compute 
(ETC) matrix for 512 jobs and 16 machines. The 
instances of the benchmark are classified into 12 
different types of ETC matrices according to the three 
following metrics: job heterogeneity, machine 
heterogeneity, and consistency. In ETC matrix, the 
amount of variance among the execution times of 
tasks for a given machine is defined as task 
heterogeneity. Machine heterogeneity represents the 
variation that is possible among the execution times 
for a given task across all the machines. Also an ETC 
matrix is said to be consistent whenever a 
machine jM  executes any task iT  faster than 

machine kM ; in this case, machine jM  executes all 

tasks faster than machine kM . In contrast, 
inconsistent matrices characterize the situation where 
machine jM  may be faster than machine kM  for 

some tasks and slower for others. Partially-consistent 
matrices are inconsistent matrices that include a 
consistent sub-matrix of a predefined size [2].  
Instances consist of 512 jobs and 16 machines and are 

labeled as u-yy-zz-x as follow: 
• u means uniform distribution used in generating 

the matrices. 
• yy indicates the heterogeneity of the jobs; hi means 

high and lo means low. 
• zz represents the heterogeneity of the nodes; hi 

means high and lo means low. 
• x shows the type of inconsistency; c means 

consistent, i means inconsistent, and p means 
partially-consistent. 

The obtained makespan and flowtime using mentioned 
heuristics are compared in tables 1 and 2 respectively. 
The results are obtained as an average of five 
simulations. In these tables, the first column indicates 
the instance name, and the second, third, fourth, fifth 
and sixth columns indicate the makespan and 
flowtime of workQueue, max-min, LJFR-SJFR, 
Sufferage, min-min and min-max heuristics.  
Figures 1 and 2 show the comparison of statistical 

results using different heuristics for mean makespan 

and flowtime for the 12 considered cases. As it is 
evident from the figures, min-max, the proposed 
heuristic, can minimize the makespan better than 
others in most cases. Also min-min heuristic can 
minimize flowtime better than others. 
 
5. Conclusions 
 

Scheduling in HC environments is an NP-complete 
problem. Therefore, using meta-heuristic algorithms is 
a suitable approach in order to cope with its difficulty 
in practice. In meta-heuristic algorithms, the use of 
one or more heuristics for generating individuals is an 
appropriate method that can improve the final 
solutions. In this paper we compare 6 heuristics for 
scheduling in HC environments. The goal of the 
scheduler in this paper is minimizing makespan and 
flowtime. The experimental results show that min-min 
heuristic can obtain the best results for minimizing 
flowtime and the proposed heuristic can obtain the 
best results for minimizing makespan too. These 
results indicate that using min-max heuristic for 
generating initial individuals in meta-heuristic 
algorithms is a suitable selection. 

 

 
Figure 1. Comparison results between 

heuristics on makespan 
 

 
Figure 2. Comparison results between 

heuristics on flowtime 



Table 1. Comparison of statistical results on makespan (Seconds) 
Instance WorkQueue Max-Min LJFR-SJFR Sufferage Min-Min Min-Max 
u-lo-lo-c 7332 6753 6563 5461 5468 5310 
u-lo-lo-p 8258 5947 5179 3433 3599 3327 
u-lo-lo-i 9099 4998 4251 2577 2734 2523 
u-lo-hi-c 473353 400222 391715 333413 279651 273467 
u-lo-hi-p 647404 314048 279713 163846 157307 146953 
u-lo-hi-i 836701 232419 209076 121738 113944 102543 
u-hi-lo-c 203180 203684 202010 170663 164490 164134 
u-hi-lo-p 251980 169782 155969 105661 106322 103321 
u-hi-lo-i 283553 153992 138256 77753 82936 77873 
u-hi-hi-c 13717654 11637786 11305465 9228550 8145395 7878374 
u-hi-hi-p 18977807 9097358 8027802 4922677 4701249 4368071 
u-hi-hi-i 23286178 7016532 6623221 3366693 3573987 2989993 

 
Table 2. Comparison of statistical results on flowtime (Seconds) 

Instance WorkQueue Max-Min LJFR-SJFR Sufferage Min-Min Min-Max 
u-lo-lo-c 108843 108014 102810 86643 80354 84717 
u-lo-lo-p 127639 95091 81861 54075 51399 52935 
u-lo-lo-i 140764 79882 66812 40235 39605 39679 
u-lo-hi-c 7235486 6400684 6078313 5271246 3918515 4357089 
u-lo-hi-p 10028494 5017831 4383010 2568300 2118116 2323396 
u-lo-hi-i 12422991 3710963 3303836 1641220 1577886 1589574 
u-hi-lo-c 3043653 3257403 3153607 2693264 2480404 2613333 
u-hi-lo-p 3776731 2714227 2461337 1657537 1565877 1640408 
u-hi-lo-i 4382650 2462485 2181042 1230495 1214038 1205625 
u-hi-hi-c 203118678 185988129 173379857 145482572 115162284 125659590 
u-hi-hi-p 282014637 145337260 126917002 76238739 63516912 69472441 
u-hi-hi-i 352446704 112145666 104660439 47237165 45696141 46118709 
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