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Abstract

In the present contribution, the aptitude of Stereoscopic Parti-
cle Image Velocimetry (SPIV) and of Direct Numerical Sim-
ulations (DNS) to investigate coherent structures of near wall
turbulence is evaluated. For this purpose, the general properties
and constraints of the two techniques are first reviewed. Then,
data obtained from stereo-PIV experiments in a boundary layer
and DNS in a channel flow are considered. Some statistics of
the velocity fields are computed, and the results obtained from
the two approaches compared.

Introduction

Near wall turbulence is a key point for the improvement of nu-
merical modeling and of primary importance for the aeronautics
and car industry. To understand such a complex phenomenon,
the study of simple canonical wall-bounded flows is of funda-
mental interest. Recently, new tools such as Particle Image Ve-
locimetry (PIV) and Direct Numerical Simulation (DNS) have
given access to quantitative spatial information in such flows.
The complementary use of experimental data and of numerical
data to investigate coherent structures of near wall turbulence is
certainly very promising. However, the two techniques are sub-
ject to specific constraints and shortcomings. As a consequence
some of the properties of PIV and DNS datasets (type of flow,
spatial resolution...) are quite different, and can influence the
results of a comparative analysis of the data.

Boundary layer flow vs Channel flow

The three canonical wall-bounded turbulent flows usually con-
sidered to investigate near-wall turbulence are boundary layer
flows, channel flows, and pipe flows. Whereas various exper-
imental studies have been dedicated to all three, the vast ma-
jority of DNS reported in the literature have been performed in
channel flows. The main reason is that the numerical boundary
conditions are straightforward to implement in channel flows:
no-slip boundary conditions are applied at the bottom wall and
at the top wall, and the homogeneity of the flow in both x and
z allows periodicity and hence, Fourier expansion to be used in
those directions. In the present contribution, the DNS dataset
comes from a simulation of a channel flow, whereas the exper-
imental one is a boundary layer flow. These two wall-bounded
flows present the following differences:

• the channel flow is homogeneous in the streamwise direc-
tion, while the boundary layer develops in the flow direc-
tion,

• in channel flows, there is a favorable pressure gradient,
whereas flat plate boundary layer flows have a zero pres-
sure gradient and,

• the boundary layer is subject to intermitency with the
outer flow.

Pope [7] indicates that their near wall behavior is fairly similar,
but that the so-called ”‘defect-law”’ of the outer region are dif-
ferent. Indeed, the deviation of the mean longitudinal velocity
profile from the log law in the outer region appears to be much
smaller for the channel than for the boundary layer. As far as
the impact on coherent structures is concerned, the population
of prograde and retrograde spanwise vortices for a boundary
layer and a channel flow have been experimentally investigated
by Wu et al [12]. The boundary layer and the channel gave sim-
ilar results, with the exception of the region y/δ> 0.45 where a
significantly larger fraction of retrograde vortices was found in
the channel flow, presumably under the influence of the upper
wall.

Spatial dynamic range of the 2 techniques

The spatial dynamic range of the measurement technique is of
primary importance when it comes down to the study of coher-
ent structures. Indeed, these structures are present in a wide
range of size, that depends on the Reynolds number of the flow.
The spatial dynamic range of Particle Image Velocimetry has
been studied in great detail by Adrian [4], Soria [20] and Fou-
caut et al [3], and summarised in [1]. Briefly, the spatial dy-
namic range of PIV is limited at low wavenumbers by the size
of the camera CCD array, and at the high wavenumbers by
the Interrogation Window (IW) size as well as the noise of the
measurements. Even with an up-to-date PIV interrogation soft-
ware and careful experimental procedure, one can only hope
to reduce the IW size and the measurement noise by a limited
amount. The spatial dynamic range of the experiment is then
given by the size of the camera CCD array. A compromise of-
ten has to be made between the size of the field of view and the
spatial resolution. This have been confirmed by a literature sur-
vey in [1] on recent PIV experiments.
The problematic for DNS is somewhat different, as the success-
ful implementation of the simulation relies on the very fact that
all the relevant scales are resolved within the computational do-
main [11]. For instance, the vast majority of DNS of channel
flow make use of spectral methods in the streamwise and span-
wise directions, and therefore impose periodic boundary con-
ditions at the borders of the domain. For this approach to be
valid, the computational domain must be large enough so the
largest structures of the flow are not constraint by this domain.
A usual procedure consist in checking that the two points cor-
relations do decay to nearly zero within half of the domain. On
the other hand, the mesh has to be fine enough to resolve the
smallest scales of the flow, i.e. the Kolmogorov scale η. How-
ever, Moin [13] points out that this requirement is too stringent,
as the resolution should only be such that most of the dissipa-
tion is captured. The requirements also vary with the choice of
the numerical scheme : spectral methods have proved more ac-
curate and efficient. The minimal resolvable lengthscale usually
needs to be O(η). A direct consequence is that the mesh step in
the wall-normal direction is a function of the wall distance. To
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summarise, the spatial dynamic range of DNS is determined by
the range of scales to be resolved in the flow. Even with today’s
considerable supercomputer power, the DNS is still restricted to
low Reynolds number turbulent channel flow.
An interesting study can be found in Saikrishnan et al [19] on
the spatial resolution of the two techniques, with emphasis on
averaging effect of the interrogation window in the PIV tech-
nique. A set of dual-plane PIV data, a set of DNS data at simi-
lar Reynolds number conditions, and the same set of DNS data
but locally averaged to mimic the effect of the PIV interroga-
tion window and of the laser sheet thickness were compared.
The RMS values of the velocity components and vorticity were
quantified and the vortex core angle distribution studied for the
three datasets.

Constraints on the number of ‘independent’ realisations

The number of instantaneous velocity fields acquired and their
degree of correlation in time is of interest when a statistical
analysis of the data is to be undertaken: the higher the num-
ber of independent samples, the better the convergence of the
statistical quantities. This characteristic of the dataset is fixed
by the experimental and by the numerical constraints that ap-
ply on the technique. As far as the experiments are concerned,
the only limitation is given by the storage space and by the dif-
ficulty to maintain constant experimental conditions (tempera-
ture of the fluid...) over a long time. Nowadays PIV datasets
easily feature 2000 to 4000 velocity fields per experiment. On
the side of DNS, a more stringent constraint arises in the form
of limited computational power, coupled to the necessity to sat-
isfy the CFL condition for the time advancement of the sim-
ulation. This issue have been discussed in Moin and Mahesh
[13], and in Jimenez [15]. In brief, the CFL condition is derived
from numerical stability requirements and restricts the simula-
tion to small time steps dt, function of the mesh size and of the
local velocity of the flow. For turbulent wall-bounded flows,
the mesh is typically very fine in the near wall region, and a
small dt has to be used. Consequently, a high degree of correla-
tion exists between consecutive velocity fields, and the DNS is
usually computed over a limited physical time. The number of
available independent realisations is therefore typically several
order of magnitude higher for SPIV experiments than for DNS.
The practical implications of this feature for the computation of
statistics on the two datasets studied in the present contribution
will be further discussed in section 3.

Experimental and Numerical database

The database under consideration in the present contribution
consist of instantaneous velocity fields from stereo-PIV
measurements conducted in the LTRAC laboratory and of
Direct Numerical Simulations from Lille. This section gives
a presentation of those two datasets. In the following, x,y,z
and subscripts 1,2,3 refer respectively to the streamwise,
wall-normal and spanwise directions.

Experimental procedure

The experimental data consist of 3C-2D instantaneous velocity
fields measured in the turbulent boundary layer developing in
the LTRAC water-tunnel. An extensive description of the setup
can be found in Herpin et al [1] and [2]. The main points of the
experimental procedure will be briefly described.

The measurements are taken in a streamwise wall-normal plane
of a turbulent boundary layer at about Reθ = 2200 with 4
PCO 4000 cameras arranged in 2 stereo systems aligned in the
streamwise direction. A schematic of the setup is given in fig-
ure 1.

1 2
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Flow
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z y

object plane (laser sheet)

water-prismθ

water-air interface

Figure 1: Top-view of the PIV setup. Note that the coordinate
system is indicative only and does not represent the axes-origin.

The PCO 4000 cameras feature a large CCD array (4008 ∗
2672 pixels2) and thus provide a large spatial dynamic range
for the measurements. The originality of this experiment resides
in the careful matching of this unusually large spatial dynamic
range to the range of coherent structures present in the flow at
that Reynolds number. This matching is achieved through:

• an optimisation of the optical magnification of the setup
to resolve the small scales of turbulence.

• a reduction of the noise with a rigorous experimental pro-
cedure.

• a suitable PIV interrogation based on the Soloff method
[6] and taking into account the inherent misalignment be-
tween the calibration plane and the laser sheet [5].

The resulting field of view and spatial resolution are [Sx;Sy] =
[2.6δ;0.75δ] and [l+x ; l+y ] = [10;10], with an interrogation win-
dow size of [IW +

x ; IW +
y ] = [14;14].

DNS code

The DNS data were generated using an in-house code from
Lille. The Reynolds number of the simulation is Reτ = 600.
The flow is simulated in a symetric (in z) half channel of size
[Sx;Sy;Sz] = [2.16667 ∗Π;2;Π] with a spatial discretization of
[Nx;Ny;Nz] = [832;257;384] points. The numerical methods
use finite difference in x, spectral Fourier expansion in z, and
Chebychev-collocation in y. The solution is periodized over
2Π in x, and periodic/symetric boundary conditions (equivalent
to ‘slipping’ walls’ conditions) are applied in z. The time
integration is realised using an implicit second-order backward
Euler differencing scheme.
Because of the outlet condition in x, the sub-domain situ-
ated at 2Π < x < 2.16667Π should be disregarded for the
analysis of the data. This is also the case for the domain at
z < 1

8 Π and z > Π
(
1− 1

8
)
, because of the slipping walls

boundary condition used in z. The useful computational
domain thus have a size of [Sx;Sy;Sz] = [2Π;2;6/8Π], with
[Nx;Ny;Nz] = [768;257;294] points.
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Comparison of the 2 datasets

The main characteristics of the two datasets are reported in
table 1. Note that in order to facilitate the comparison between
them, the DNS data are only studied over the half channel in y
(Ny = 128).

Reθ δ+ flow Ns dtacq ∗ U∞
Sx

SPIV 2000 1400 BL 3000 2.5
DNS 815 600 CF 50 0.1

x : [Sx, lx,Nx] y : [Sy, ly,Ny] z : [Sz, lz,Nz]

SPIV [2.6δ,10+,331] [0.75δ,10+,94] none
DNS [2Π,4.3+,768] [1,0.5+/8+,128] [ 6

8 Π,4.7+,294]

Table 1: Characteristics of SPIV and DNS dataset

As far as the nature of the 2 turbulent flows is concerned, the
measurements were taken in a zero-pressure gradient turbulent
boundary layer, whereas the DNS corresponds to a fully devel-
oped turbulent channel. The comparability of those two flows
have already been addressed in section 1. The Reynolds num-
ber is reported in two forms, via Reθ (in the boundary layer
convention) and δ+ (in the channel flow convention). Whether
δ+ or Reθ is considered, the DNS data are at significantly lower
Reynolds number than the SPIV ones (by approx a factor 2).
Besides, the ratio δ+/Reθ is checked for each type of flow. It is
found to fairly close, slightly higher for the channel flow (0.74
for the CF and 0.64 for the BL), and consistent with its depen-
dence upon the Reynolds number :

δ+

Reθ
= f (CF ) = f (Reθ) = a∗ 1

Re1/4
θ

The second point of interest is the spatial dynamic range of the
two datasets. As expected, both the size of the velocity field
and its spatial resolution are larger for the numerical data (see
section 1). However, owing to CCD size of the cameras under
use, the experimental spatial dynamic range remains in the
same order as the numerical one in the streamwise direction.
As far as the wall normal direction is concerned, the variable
mesh size of the DNS offers a resolution of the viscous and
buffer layers (the mesh spacing goes down to 0.5+ at the wall)
which remains unchallenged by the SPIV experiments. A
visual representation of the relative size of the two domains is
given in figure 2.

x

DNS computational box

SPIV field of view

y

z

Figure 2: Schematic showing the relative size of the SPIV field
of view and of the DNS computational domain

Finally, the number of realisations of the two datasets is of
importance for a statistical analysis of the data. One can
see that the number of sample Ns is much larger for the
experiments. The degree of independence of these different
realisations is conveniently reported in a non-dimensional
form with the parameter dtacq ∗ U∞

Sx
, where dtacq is the time

separating two consecutive velocity fields. A value of 1 means
that the separation time is equal to the time it takes to the flow
in the free-stream (or in the centerline of the channel) to move
by a distance equal to the extent of the field of view (or of
the computational box). The lower dtacq ∗ U∞

Sx
, the higher the

degree of correlation, and therefore the slower the convergence
of the statistics. As expected from the difference in constraints
between the two techniques (see section 1), the SPIV realisa-
tions appear thus quite independent (dtacq ∗ U∞

Sx
=2.5) whereas

the numerical data are very correlated in time (dtacq ∗ U∞
Sx

=0.1).

Other DNS datasets

The characteristics of two other DNS datasets from Del Alamo
[8] and Moser et al [9] are also reported in table 2. They are
mentionned for reference only, and will not be analysed in the
present contribution.

origin δ+ x : [Sx, lx] z : [Sz, lz]
[9] 590 [2Π,9.7+] [Π,4.8+]
[8] 550 [8Π,13+] [4Π,6.7+]
[8] 950 [8Π,11+] [3Π,5.7+]
[8] 1900 [Π,12+] [Π/2,5.8+]

Table 2: Characteristics of other DNS dataset

Interestingly enough, the case Moser-590 [9] and DelAlamo-
550 [8] are performed at similar Reynolds number to the Lille
DNS dataset, and thus can provide two good references to our
DNS dataset. Moreover, it is worth mentioning that the com-
putational box and spatial resolution of Moser-590 [9] match
well with our DNS dataset, except for the spatial resolution in
x that is 2 times finer in our simulation, as a finite difference
numerical scheme is used. Jimenez-950, in contrast, provide a
significantly larger domain, allowing for a study of the influ-
ence of size of the velocity field. The Reynolds number of our
SPIV experiments falls in between the ones of Jimenez-950 and
Jimenez-1900.

Results

This section presents some statistics computed from the SPIV
and the DNS.

Averaging procedure employed for the statistics

As was evidenced in the previous section, the data obtained
from the experiments and from the numerical simulations are
of different nature, and as a result the averaging procedure em-
ployed to compute statistics on both datasets is different.
Strictly speaking, an average on a quantity must be computed
over a number of independent realisations. This number be-
ing rather restricted (due to limitation in storage space, CFL
conditions...), a usual practice to increase the convergence of
the statistics consist in averaging also over the homogeneous
directions and over the time. This kind of average is not as
efficient because the samples present a degree of correlation be-
tween themselves. Cousteix[17] derived, for a temporal station-
ary signal a(t), a theoretical relationship to express the time Ta
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required for a temporal average aT to converge to the statisti-
cal average ā within a given uncertainty R2, as a function of an
integral time scale Σa(representing the degree of correlation of
a(t) over time) and of the turbulence intensity ā′2:

R2 = 2
a′2

ā2
Σa

Ta
with R2 =

(
aT −a

)2

ā2

Quite logically, the longer Σa and the higher ā′2, the more time
it takes for aT to converge to ā. The same analysis apply to the
spatial average along the homogeneous directions. It shows that
the spatial and temporal average are of limited efficiency for the
convergence of the turbulent quantities.

The following averaging procedure was adopted for the 2
datasets :

• DNS dataset : the time average is realised on 2 velocity
fields from two time steps only. The simulation times of
the two velocity fields are chosen such that the flow has
completed one full passage of the computational box in
the meanwhile, and the fields are thus quite independent
from each other. The homogeneity of the channel flow
in both x (Nx = 768) and z(Nz = 294) is used to average
along those directions as well.

• SPIV dataset : the samples being uncorrelated in time,
the quantities are naturally ensemble averaged (484 ve-
locity fields used for the present contribution). As far as
the streamwise direction is concerned, the flow being a
boundary layer, it is not homogeneous in this direction.
However, because of the finite extent of the field of view
(165mm) with respect to the development length of the
boundary layer (3500mm), the development of the bound-
ary layer over the field of view is neglected and the quan-
tities will also be averaged on that direction (Nx = 331
points) in this contribution.

The validity of this averaging along x for the SPIV dataset has
been checked by comparing mean velocity profiles obtained by
averaging over the 484 samples and over an increasing num-
ber of points in x (Nxaverage = 20,40,100,200,331). The result
is shown in figure 3. The same friction velocity was used to
non-dimensionalize all the profiles, and was computed with the
Clauser method on the case Nxaverage = 331.

Nxaverage = 331
Nxaverage = 200
Nxaverage = 100
Nxaverage = 040
Nxaverage = 020

y+

U
+

1000100101

30

25

20

15

10

5

0

Figure 3: Test on the homogeneity of the boundary layer flow
over the streamwise extent of the field of view

For Nxaverage ≥ 40, the mean velocity do not appear to depend
anymore on the number of points used along x to compute the

mean profile. A small departure between the Nxaverage = 20
profile and the others can be noted in the buffer region. This
can be attributed to a lack of convergence of the statistics in
this region. As the peaks of rms are known to occur within that
region, this is consistent with the theoretical development by
Cousteix[17].
Finally, the profiles presented in this section are averaged over
(Ns*Nx*Nz=2*768*294=)451584 points for the DNS and over
(Ns*Nx=484*331=)160204 points for the SPIV. Note this over-
all number is smaller for the SPIV data, but that the proportion
of uncorrelated points being higher, the statistics on the SPIV
actually converge faster with the number of points used.

Mean Velocity Profile

The longitudinal mean velocity profiles are shown in figure 4,
in wall units. The 2 profiles show an excellent collapse in the
log region, and in the higher part of the buffer layer (y+ ≥ 20),
and in the lower part of the wake (y+ ≤ 350). Below y+ = 20,
the SPIV profile is classically biased toward higher velocities
due to a lack of spatial resolution (the interrogation window
size in wall units is 14+). This bias remain relatively low
compared to other studies that can be found in the literature. On
a different note, the DNS profile shows an excellent resolution
of the very near wall region. This is made possible thanks to an
adaptative mesh size in the wall normal direction (see previous
section) : the viscous sublayer and the buffer layer are resolved
using 30 points in y. The departure in the outer region between
the SPIV and the DNS can be accounted for by the difference
in Reynolds number, or alternatively by the difference in the
nature of the two flows (boundary layer/channel flow). In this
plot, the friction velocity uτ used to non-dimensionnalize the
profiles have been computed in both case with the Clauser
method. Since the DNS dataset show an excellent resolution
down to the wall, uτDNS can also be computed through an
estimation of the slope dU

dy at the wall. This method present the
advantage of being free from the choice of numerical values
for the universal constants K and C used in the log region for
the Clauser method. It leads to a value of uτlin = 0.04884m/s
against a value of uτlog = 0.04956m/s for the Clauser method
with the typical values K=0.41 and C=5. The difference is
only of the order of 1.5% and falls into the experimental
measurement error on the velocity. It shows a very good
agrrement between the 2 methods.

log law
DNS Reθ = 800
PIV Reθ = 2200

y+

U
+

100001000100101

30

25

20

15

10

5

0

Figure 4: Mean longitudinal Velocity profile in wall units
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Spectral analysis

Spectral analysis is a tool of special interest for the analysis of
turbulence which is, in essence, a multi-scale phenomenon. The
spectral tensor Φi j(k) represents the Reynolds stress density in
the wave number space. Because of practical limitations on
the measurements techniques, most of the experimental works
have focused their interest on one-dimensionnal spectra Ei j(kl)
where l =1,2 or 3. It is defined to be twice the Fourier transform
of the double spatial correlation Ri j(rl):

Ei j(kl) =
1
Π

Z ∞

−∞
Ri j(rl)e−ikl rl drl

Perry et al [14] derived similarity laws for one-dimensional
spectra obtained from hot-wire anemometry, in the framework
of the attached-eddy hypothesis. For a probe positioned at a
height y, they identified three regions in the wave-number space
where E11 can be non-dimensionalised with an appropriate
scaling. These regions are shown in figure 5:

E11(k1y)
U2

τ
= g2(k1y)

k1

outer scaling Kolmogorov scaling

inner scaling
overlap IIoverlap I

E11(k1δ)
U2

τ
= g1(k1δ) E11(k1η)

v2 = g3(k1η)

Figure 5: Different wavenumber ranges of the E11 spectra

From the assumption that there exist an overlap between the
”‘outer-flow”’scaling and the ”‘inner-flow”’ scaling (overlap I),
and between the ”‘inner-flow”’ scaling and the ”‘Kolmogorov”’
scaling (overlap II), two power laws can be derived for the spec-
tra. In inner scaling it reads:

E11(k1y)
U2

τ
=

A1

k1y

E11(k1y)
U2

τ
=

A2

(k1y)5/3

These regions appear as lines of slope -1 and -5/3 on log-log
spectra plot in inner scaling. Region of overlap II is sometimes
also called the inertial subrange.

Perry et al [14] indicate that the same analysis can be carried
on the w motions and yields to similar results (existence of 2
regions of overlap). On the other hand, the v motions are not
expected to exhibit an outer-flow scaling law, and as a result
only one region of overlap (of slope -5/3) should exist in the
E22(k1) spectra.

The one-dimensionnal spectra E11(k1), E22(k1) and E33(k1) of
the SPIV and the DNS dataset were computed in the logarithmic
region at y+ = 100. They are shown on figure 6, 7 and 8 with
an inner scaling. The lines of slope -1 and -5/3 are plotted as
well for reference.
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E11(k1y)
u2

τ

λDNS
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Figure 6: Longitudinal spectra of u at y+ = 100, with an inner
scaling
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Figure 7: Longitudinal spectra of v at y+ = 100, with an inner
scaling
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Figure 8: Longitudinal spectra of w at y+ = 100, with an inner
scaling
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On top of each graph, the extent of the wavenumber domain
resolved in each dataset is shown with three lengthscales repre-
sentative of different type of motions in the flow:

• the boundary layer thickness δ, for the large-scale, energy
containing motions,

• the Taylor micro-scale λ1, λ2 and λ3 for the small and
dissipative vortices, and

• the Kolmogorov lengthscale η, for the smallest isotropic
eddies of the flow.

The Taylor micro-scales λ1, λ2 and λ3 were evaluated for each
dataset from the second derivative at ∆x = 0 to the longitudinal
double spatial autocorrelations R11(∆x), R22(∆x), R33(∆x).
The Kolmogorov scale was evaluated from the classical
assumption that the dissipation d balance the production
p =−ūv ∂U

∂y in the turbulent wall region.

From the inspection of these spectral wavenumber domains
shown on top of figures 6, 7 and 8, a few general comments
on the SPIV and on the DNS spectra can readily be made. First
of all, one can see that, due to the difference in Reynolds num-
ber between the two dataset, the range of flow scales (from δ
down to η) is wider for the SPIV dataset than for the DNS one.
Then, thanks to the choice of an inner scaling for the wavenum-
bers, the non-dimensional Taylor micro-scale wavenumber is
however the same for both dataset. Finally, the spatial dynamic
range of the SPIV clearly filters out the Kolmogorov scales.

The study of each one-dimensional spectrum brings additional
informations.
The spectra on the u motions E11(k1) is first considered. One
can see that the SPIV and the DNS spectra show a good agree-
ment on most of the wavenumber domain, except in the very
high wavenumber region where the PIV spectra lift up from the
DNS one. The two datasets show an excellent collapse in the
inertial subrange. The expected slope of -5/3 is recovered. The
Taylor scale of the SPIV dataset, which is a good representative
of the dissipative motions, falls into that range.
At higher wavenumbers, in the so-called Kolmogorov range,
the PIV spectra lift up from the DNS one. This artefact is due to
the combined effects of the measurement noise and of the aver-
aging of the velocity field over the Interrogation Window(IW)
[3]. According to the Nyquist criterion, no frequency higher
than half the one given by the interrogation window size can be
resolved on the SPIV dataset. Indeed, one can see that the de-
parture of the experimental spectra from the numerical one oc-
curs at a lower wavenumber (of the order of 1/2 of the Nyquist
wavenumber), under the additional effect of noise.
At lower wavenumbers, the DNS spectra match well with the -1
slope. The SPIV one, however, do not clearly exhibit such a re-
gion. This can be due to the limited size of the field of view with
respect to the extent of the computational box, and in compari-
son with the very long extent of the uniform regions of positive
and negative u’ reported in the literature [16].

The spectra E33(k1) (fig.8 ) and E22(k1) (fig.7) can now be
analysed. Both of them present the same overall behaviour as
E11(k1) : very good collapse of the SPIV spectra on the DNS
one from low to moderate-high wavenumbers, and then a lift-up
of the SPIV spectra from the DNS one under the effect of the
averaging over the IW and noise. The slope -5/3 is recovered on
E33 and E22 in the inertial subrange on both dataset. On a dif-
ferent note from the E11 spectrum, a region of slope -1 is clearly
visible on the E33 and E22 SPIV spectra. It is probably due to
the reduced longitudinal extent of the large v and w motions

in comparison to the large u-motions, so that the extent of the
SPIV field of view is actually adequate to capture them. Note
that the existence of such a region on the E22 spectrum comes
in contradiction to the theoretical development from Perry et al
[14] summarised earlier in this section. As far as the DNS spec-
tra are concerned, some spurious oscillations at low wavenum-
ber on the E22(k1) and E33(k1) DNS spectra are visible. These
oscillations denote a lack of convergence of the DNS spectra in
this region.

Another remark may concern the peel-off of the SPIV spectra
under the effect of noise and of the interrogation window. This
phenomenon seems to occur at slightly different wavenumbers
on E11, E22, and E33 : kc(E33)≤ kc(E11)≤ kc(E22). The inter-
rogation window size being fixed, the only explanation is that
this difference in the behavior of E11, E22, and E33 comes from
different levels of noise ε on u,v, and w. Subsequently, one
would get : εw ≥ εu ≥ εv. Given the configuration of the Stereo-
PIV setup detailed in section 2, u and v are the two in-plane
components, and w is the out-of-plane component reconstructed
mainly from differences on u measured by the two stereo cam-
eras. The relative levels of noise on u,v, and w deduced from
the E11, E22, and E33 spectra are consistent with the character-
isation of the accuracy of stereoscopic PIV systems in Willert
[18]. He established that the error on the out-of-plane compo-
nent is 1

tan(θ) larger than the one on the in-plane components,
θ being the stereoscopic viewing angle. Besides, he found that
the two in-plane components present slightly different level of
noise : the component corresponding to the direction of the im-
age stretching (due to the stereo viewing angle) was found to be
less accurate.

All the above analysis have been carried on at y+ = 100, in
the logarithmic region. One may wonder if the SPIV and the
DNS spectra exhibit the same behavior in other regions of the
boundary layer, especially in the buffer region and in the outer
region where the mean longitudinal velocity profiles revealed
some slight differences between the SPIV and the DNS datasets.
The E11(k1) spectra were computed at y+ = 40, y/δ = 0.2 and
y/δ = 0.5. They are plotted in inner scaling in figure 9 (for
the SPIV) and in figure 10 (for the DNS). A smooth have been
applied to the spectra to preserve the clarity of the graphs.

On the whole, the SPIV spectra exhibit similar behavior at every
wall normal positions : the slope of -5/3 is recovered in the
inertial subrange, and a lift-up of the spectra is observed at high
wavenumbers. A few trends of the spectra with varying wall
distances can be noticed : the extent of the inertial subrange
seems to increase with the wall-normal distance. Besides, the
SPIV spectra at higher wall-normal positions seems to follow
better the spectra obtained from DNS : the lift-up of the spectra
under the effect of noise is more abrupt and occurs at higher
wavenumbers relatively to the interrogation window size. This
trend may indicates an increase in the size of the small vortices
away from the wall.
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Figure 9: Longitudinal spectra of u at various wall distances
with an inner scaling computed on the SPIV dataset
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Figure 10: Longitudinal spectra of u at various wall distances
with an inner scaling computed on the DNS dataset

Conclusions

Velocity fields obtained from Stereoscopic Particle Image Ve-
locimetry in a turbulent boundary layer and from Direct Nu-
merical Simulations in a fully developed turbulent channel flow
have been compared. In spite of differences (especially in spa-
tial dynamic range) inherited from the working principle speci-
ficities of each technique, a spectral analysis has evidenced that
the two datasets present similar behavior over a wide range of
wavenumbers including the inertial subrange. The effect of the
measurement noise on the SPIV velocity spectra has been as-
sessed, and is found to be consistent with previous characteri-
sations of the Stereo-PIV technique accuracy.
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