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ABSTRACT

A crucial step in image compression is the evaluation of its performance, and more precisely the available way
to measure the final quality of the compressed image. Usually, to measure performance, some measure of the
covariation between the subjective ratings and the degree of compression is performed between rated image
quality and algorithm. Nevertheless, local variations are not well taken into account.

We use the recently introduced Maximum Likelihood Difference Scaling (MLDS) method to quantify supra-
threshold perceptual differences between pairs of images and examine how perceived image quality estimated
through MLDS changes the compression rate is increased. This approach circumvents the limitations inherent
to subjective rating methods.

Keywords: Maximum-Likelihood difference scaling, quality assessment

1. INTRODUCTION

Lossy image compression techniques such as JPEG2000 allow high compression rates, but only at the cost of
some perceived degradation in image quality. Image quality is ultimately measured by how human observers
react to compressed/degraded images and many evaluation methods are based on eliciting ratings of perceived
image quality. One of the challenges induced by the use of such a compression method is the measure of the
resulting quality. The steps in an image quality assessment (IQA) algorithms typically consist of 1) performing
a color space transformation to obtain decorrelated color coordinates and 2) decomposing these new coordinates
into perceptual channels. An error is then estimated for each of these channels. The final quality score is obtained
by pooling these errors in the spatial and/or frequenty domain.

Formally, the main goal of IQA algorithms is to predict ratings as done by human beings. To quantify human
judgments, the Mean Opinion Score (MOS) is obtained from a set of human observer ratings with respect to a
normalized scale defined by the International Telecommunications Union (ITU).1

The typical summary of the agreement between rated image quality and algorithm is some measure of the
covariation between the subjective ratings and the degree of compression. Typical measures of covariation include
1) Pearson’s linear correlation coefficient (CC) between MOS and algorithm score after nonlinear regression, 2)
the root-mean-squared error (RMSE) between MOS and the algorithm score after nonlinear regression and 3) the
Spearman rank order correlation coefficient (SROCC). Ultimately, however, the interpretation of human ratings
is difficult. Suppose, for example, that the human observer rates two compressed images as 3 and 4 in image
quality and also rates two other images as 7 and 8, respectively. Although the difference in rating is the same
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for both pairs, we have no way to conclude whether the perceived increase in quality between the first pair of
images is equal to, greater than, or less than, the perceived increase in quality between the second pair. The
subjective ratings only allow us to order the images by quality.

In this paper, we evaluate the efficacy of recently-developed general-purpose image quality assessment (IQA)
algorithms for assessing the compression-quality tradeoff.

Charrier et al.2 recently applied a novel psychophysical method, Maximum Likelihood Difference Scaling
(MLDS)3, 4 that circumvents the limitations inherent to subjective rating methods. MLDS allows us to quantify
supra-threshold perceptual differences between pairs of images in order to evaluate the perceptual changes in
images as the compression rate is increased. The MLDS method is based on simple, forced-choice judgments and
requires remarkably few trials to obtain quantitative estimates of the effects of any degree of image compression.2

This paper is structured as follows. In Section 2, we present the MLDS method. Section 3 details the used
experimental setup. In section 4, obtained results are presented and discussed. Last Section concludes.

2. MAXIMUM LIKELIHOOD DIFFERENCE SCALING

MLDS can be used to estimate the effect of compression on perceived image quality for any choice of image
compression algorithm. In this section we explain the model of the observer’s judgments in the psychophysical
task on which MLDS is based.

An image series consist of a base image φ1 and compressed versions of the base image denoted φ2, . . . , φN

numbered in increasing order of compression. If image φi is compressed to a greater degree than image φj

we write φi < φj . For brevity we denote image in the series by their subscripts. The pair (i, j) will serve as
shorthand for (φi, φj).

On each trial, the observer views two pairs of stimuli (i, j) and (k, l)representing four different levels of
compression of the initial image (including possibly no compression). We refer to these two pairs as a quadruple
denoted {i, j; k, l}. He judges whether the perceptual difference between the first pair (a, b) is greater than that
between the second pair (c, d). Over the course of the experiment, the observer judges the differences of a subset
of all possible quadruples (pairs of pairs) for the N stimuli in the series φ1, ..., φN . (i.e., N compression levels).

The goal of MLDS is to assign numerical scale values (ψ1, ψ2, . . . , ψN ) that can be used to predict how the
observer orders the pairs in each quadruple. We refer to these values as a difference scale. In principle, we wish
to assign these scale values so that the perceived difference between the images of the pair (φi, φj) is judged
greater than perceived difference between the images of the pair (φk, φl)if and only if,

‖ψi − ψj‖ > ‖ψk − ψl‖. (1)

However, if the differences ‖ψi − ψj‖ and ‖ψk − ψl‖ are close it is unlikely that human observers would
be so reliable in judgment as to satisfy the criterion just given in Eq. 1. To take into account this judgment
variation, Maloney and Yang3 proposed a model of difference judgment that allows the observer to exhibit
some stochastic variation in judgment. We next describe their model. Let Lij = ‖ψi − ψj‖ be the length of the
interval (ai, a, j). The proposed decision model is an equal-variance Gaussian signal detection model,5 where the
signal is the difference in the lengths of the intervals,

δ(i, j; k, l) = Lij − Lkl = ‖ψi − ψj‖ − ‖ψk − ψl‖ (2)

The signal δ is contaminated by Gaussian error ǫ with mean 0 and standard deviation σ to form the judgment
variable

∆(i, j; k, l) = δ(i, j; k, l) + ǫ. (3)

Maloney and Yang assumed that the observer, given the quadruple (i, j; k, l), selects the pair (i, j) precisely
when ∆(i, j; k, l) > 0. The resulting model of the observer allows for stochastic variation in judgment. When
the magnitude of δ(i, j; k, l) is small is small relative to the Gaussian standard deviation, σ, the observer,
presented with the same stimuli, can give different responses. The degree of inconsistency predicted depends of
the magnitude of δ(i, j; k, l) relative to σ and this dependence can be used to test the model itself.3, 4
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(a) imga (b) imgb (c) imgc (d) imgd (e) imge

(f) imgf (g) imgg (h) imgh (i) imgi (j) imgj

(k) imgk (l) imgl (m) imgm (n) imgn (o) imgo

Figure 1. The 15 images used in the experiments are shown, with mnemonic labels. For each image, we estimated a
difference scale based on each observer’s judgments, a total of 450 difference scales.

Let Rt be the observers response to the tth quadruple (it, jt; kt, lt) in the experiment, t = 1, . . . , n. Rt is
coded as follows: Rt = 0 if the difference of the first pair is judged to be larger, and Rt = 1 otherwise. We select
the parameters Ψ = (ψ1, ψ2, . . . , ψN) and σ to maximize the likelihood:

L(Ψ, σ; X) =
n

∏

t=1

[

Φ

(

δt

σ

)1−Rt
(

1 − Φ

(

δt

σ

))Rt

]

(4)

where δt is given by Eq. 2 applied to the tth quadruple (it, jt; kt, lt), Φ represents the cumulative Gaussian

distribution function, and Rt is the t th; t = 1, n.

We estimated difference scales for each observer’s data for each image, using MLDS as described above. We
employed multiple starting points to minimize the possibility of encountering local minima. All computations
were carried out in the statistical language R using the optim function. We have integrated the functions
necessary to perform these fits using either approach in an R package (MLDS) available from the Comprehensive
R Archive Network (CRAN, accessible from http://www.rproject.org/).

If we add a constant c to all the values on the difference scale (ψ1, ψ2, . . . , ψN ) that maximizes likelihood,
the resulting difference scale also maximizes likelihood. If we multiply all the values on the maximum likelihood
difference scale (ψ1, ψ2, . . . , ψN ) by a positive constant a > 0 the resulting difference scale also maximizes
likelihood once we scale σ by a. Therefore, without loss of generality, we can fix the end points of the maximum
likelihood difference scale to be ψ1 = 0 and ψN = 1. We report all our results in this normalized format.

3. EXPERIMENTAL SETUP

3.1 Apparatus

Thirty observers participated to the psychophysical tests. All observers had normal color vision (Ishihara test)
and normal or corrected-to-normal acuity (Snellen test).

We computed 15 image series using the base images shown in Fig. 1. These images portray a variety of
scenes and differ in distribution of spatial and chromatic detail.
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Figure 2. Example of a single trial during the ordering test. The subject sees an image at the nine trial compression rates.
The stimuli are ramdomly arranged on 3 lines. The subject was asked to order the quality of all images from the best to
the worst quality.

We first tested whether observers could correctly order images in descending order of quality. If they cannot
do so, allowing for possible difficulty in discriminating adjacent images in the scale, there is no difference scale
that can account for their performance.

During this initial test, observers had to first select the highest quality image, then the second highest, etc.
A sample trial is shown in Fig. 2. During the test,each time an image is selected by clicking on it, the selected
image disappears and the number of the rank order is shown. If the observer decided to cancel his choice, he
just has to click on the rank order number. The corresponding image is shown and the rank order number
disappears. In addition, he can deselect more than one image, depending on the selected number. for example,
if the observer has already classified six images, the observer can deselect any image numbered from 1 to 6. If
he deselects image numbered 3, all images from 3 to 6 will be automatically deselected.

During the second psychophysical task, the observer saw a quadruple of images drawn from a single image
series. These four images were arranged as two pairs (i, j) and (k, l) on a computer display. On half the trials,
the first pair was displayed on the upper half of the display screen, the second on the lower, and on the remaining
trials the first pair was displayed on the lower, the second on the upper. For the convenience of the observer, the
less compressed of the two images in each pair was always on the left. The observer then must judge which pair
(upper or lower) )exhibited the larger change or difference in quality. A sample trial is shown in Figure 3. Over
the course of the experiment, the observer judged several hundred quadruples. These judgments can be used to
construct a numerical difference scale that captures the effect of additional compression on image quality.

We applied MLDS to evaluate the image quality of the 15 trial original images, each compressed with
JPEG2000 to nine different levels: {0.1000, 0.3057, 0.5627, 0.7684, 0.9741, 1.1798, 1.3854, 1.5912} bpp plus the
original image. We obtained difference scales for each subject and image.

In order to compare MLDS values with scores obtained from an IQA algorithm, we computed the score
provided by the IQA algorithm between consecutive pairs of compressed images and cumulated these paired
scores across the series. The MLDS values were obtained by first recording the judgments of human observers in
a psychophysical experiment in which they classified between which pair of 2 pairs of images was the perceived
difference greatest. The scale values that best predicted their judgments were estimated by a maximum likelihood
procedure3, 4

To perform the comparison, a prior-normalization process of the obtained objective quality scores is needed
to be able to fit those values the MLDS ones.
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Figure 3. Example of a single trial in MLDS. the subject sees an image at four different compression rates. The stimuli
are arranged as two pairs (i, j) and (k, l). In each pair, the second stimulus is more compressed. The subject was asked
to judge whether the decrease in quality in going from i to j is greater than the decrease in going from k to l. In this
example, most observers would judge that the upper pair exhibits the larger change.

3.2 the IQA algorithm

The MS-SSIM index, is a multiscale extension of the SSIM IQA algorithm. The MS-SSIM index proposed by
Wang,Simoncelli and Bovik6 contains three factors: 1) a luminance distortion, 2) a contrast distortion and 3)
a structure comparison. The philosophy of this measure lies in the representation of an image by a vector within
an image space. Thus, any image distortion can be interpreted as adding a distortion vector to the reference
image vector. In this space, the two vectors that represent luminance and contrast changes span a plane that is
adapted to the reference image vector. The image distortion corresponding to a rotation of such a plane by an
angle can be interpreted as the structural change.

The luminance comparison is defined as

l(I, J) =
2µIµJ + C1

µ2
I + µ2

J + C1

(5)

where µI and µJ respectively represent the mean intensity of the image I and J , and C1 is a constant avoiding
instability when µ2

I + µ2
J ≈ 0. According to the Weber’s law, the magnitude of a just-noticeable luminance

change δL is proportional to the background luminance L. In that case, µI = αµJ , where α represents the ratio
of the luminance of the distorted signal relative to the reference one. The luminance comparison can be now
defined as

l(I, J) =
2αµ2

I + C1

(1 + α2)µ2
I + C1

(6)

The contrast distortion measure is defined in a similar form:

cd(I, J) =
2σIσJ + C2

σ2
I + σ2

J + C2

(7)

where C2 is a non negative constant, and σI (resp. σJ ) represents the standard deviation .

The structure comparison is performed after luminance subtraction and contrast normalization. The structure
comparison function is defined as:

s(I, J) =
2σI,J + C3

σ2
Iσ2

J + C3

(8)

where σIJ = 1
N−1

∑N
i=1(Ii − µi)(Ji − µJ ), and C3 is a small constant. s(I, J) can take negative values which is

interpreted as local image structure inversion.
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Finally the MS-SSIM measure is given by:

MS-SSIM(I, J) = [lM (I, J)]αM

M
∏

i=1

[cdi(I, J))]βi [si(I, J))]γi (9)

where, the contrast comparison and the structure comparison are computed at the ith scale, and denoted as
cdi(I, J) and si(I, J), respectively; the luminance comparison lM (I, J) is computed only at scale M. The three
exponents αM , βi and γi are used to adjust the relative importance of different components. M = 5 corresponds
to the maximum scale, while i = 1 corresponds to the original resolution of the image. In,6 the authors have
defined αM = 1 and β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, and
β5 = γ5 = 0.1333.

4. RESULTS AND DISCUSSION

The obtained results (Fig. 4) show that MS-SSIM captures perceptual changes in images with increasing com-
pression rates very well. Yet, even if MS-SSIM globally yields high correlations with the judgment of human
observers, sometimes this IQA algorithm fails to accurately predict perceptual changes in images as the com-
pression rate is increased for particular images.

In order to investigate these local failures, the same procedure that was used to compare the scores obtained
from the IQA algorithm and MLDS values is used for each one of the three factors embedded within the MS-
SSIM index. The results are shown in Fig. 5, where the first row of each subimage corresponds to the luminance
comparison values lM (I, J), the second row correponds to the contrast comparison values

∏M

i=1 cdi(I, J), and

the last row represents the structure comparison values
∏M

i=1 si(I, J). At first glance, one can remark that the
third factor is not as well correlated with MLDS, especially at the beginning of the scale. In addition, the same
kind of curve is noticeable with MS-SSIM. Thus, structure comparison

∏M

i=1 si(I, J) is of great influence on the
MS-SSIM values, as it has been suggested by.7

To reach the best fitting as possible, one has to reduce the influence of this third parameter. This is performed
in two ways: 1) investigation of the influence of the decomposition level M and 2) the addition of a weight term
to this third parameter.

As the third parameter is initially computed using M = 5 levels, we first investigate the influence of that
decomposition level: how M influences the curve of this third factor. To measure this influence, we compute the
structure comparison factor for levels from 1 to 5. The obtained results are shown in Fig. 6, where the black
points and the blue curve respectively represent the MLDS and the third factor values.

Generally, the blue curve best fits MLDS when the decomposition level increases. In addition, one can observe
that either M = 4 or M = 5 gives the best global results.

Yet, for each decomposition level, one can observe a severe lack of good fit at the beginning of each scale, for
each trial image. This lack of fitting is obviously observed for low decomposition level values (M = 2, M = 3).
The higher the decomposition level, the less the lack of fitting is.

In order to counterbalance this lack of fitting, one investigate a weighting rule that could be applied to the
third parameter. As this weight is mainly dedicated to better fit the beginning of the associated curve to the
MLDS values, this weight can be interpreted as a parameter slope κ. In that case, Eq. 9 would be reformulated
as follows

MS-SSIM(I, J) = [lM (I, J)]
αM

M
∏

i=1

[cdi(I, J))]
βi

[

M
∏

i=1

[si(I, J))]
γi

]κ

. (10)

with 0 ≤ κ ≤ 1.

To find the best slope parameter value κ, three measure of the covariation between MLDS and the weighted
MS-SSIM values are performed: Pearson’s linear correlation coefficient (CC) between MLDS and algorithm score
after nonlinear regression, 2) the Kendall rank order correlation coefficient (KROCC) between MLDS and the
algorithm score and 3) the Spearman rank order correlation coefficient (SROCC). Fig. 7 presents the obtained
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Figure 4. Obtained results for all trial images. The black points and the blue curve respectively represent the MLDS and
the MS-SSIM values.
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Figure 5. Obtained results for all trial images. The black points and the blue curve respectively represent the MLDS
and each of the three MS-SSIM factors values. The first row of each subimage corresponds to the luminance comparison
values lM (I, J), the second row corresponds to the contrast comparison values

∏

M

i=1
cdi(I, J), and the last row represents

the structure comparison values
∏

M

i=1
si(I, J)

results, where the blue line represents the correlation coefficients computed between MLDS the original MS-
SSIM algorithm score, and the red line corresponds to the correlation coefficients computed between MLDS the
weighted MS-SSIM algorithm score. From Fig. 7(b) and Fig. 7(c), the maximum correlation values correspond
to a weight κ = 0.14.

From initial MS-SSIM IQA algorithm (Eq. 9), we saw that the three initial exponents are equal αi = βi = γi

and
∑M

i=1 = 1. Using such coefficients allows us to reach a high degree of correlation between MOS and the
IQA metric.6 In that case, the MS-SSIM is considered as globally excellent (but not perfect since correlation
coefficients values differ from 1) to predict quality scores. In fact, that could be interpreted in two ways. The
first one consists of considering an exact prediction global failure; in that case, all predicted scores are very close
to the actual scores but a small residual error exists for all scores. The second way consists of a quasi exact
prediction of actual values (residual errors are very small) except for local failures. Considering Fig. 4, the
situation seems to be the second one, where a local failure is highlighted at the beginning of the scale.

When using a value of κ that differs from 1, one observes that, for the structure comparison factor the
local failure at the beginning of the scale tends to disappear whereas the global curve aspect remains. Fig. 8)
illustrates that point of view, where the blue line corresponds to the initial structure comparison attribute, and
the green line corresponds to the structure comparison attribute with a weight κ = 0.14.

This shows that to improve the correlation of the MS-SSIM IQA algorithm scores and MLDS, all implied
coefficients (αi, βi, γi) do not have to be identical (as initially suggested).

The MLDS allows us to find that, even if MS-SSIM the IQA algorithm shows a high correlation degree with
MLDS, it suffers from local failures. These local failures are mainly due to the structure comparison factor that
is of great influence on the predicted scores. These local failures could be corrected by changing the coefficients
γi.
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(a) Structure comparison (Eq. 8) computed with a decomposition level M=2

(b) Structure comparison (Eq. 8) computed with a decomposition level M=3

(c) Structure comparison (Eq. 8) computed with a decomposition level M=4

(d) Structure comparison (Eq. 8) computed with a decomposition level M=5

Figure 6. The structure comparison feature values (Eq. 8) as used to compute the MS-SSIM values, for different decom-
position levels. The black points and the blue curve respectively represent the MLDS and the third factor values used to
compute MS-SSIM.
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(a) Pearson correlation coefficient (b) Kendall correlation coefficient

(c) Spearman correlation coefficient

Figure 7. Obtained results for the three commonly used correlation coefficient: Pearson, Kendall and Spearman. The
red line and the blue line respectively represent the computed correlation coefficient between MLDS and the original
MS-SSIM values and between MLDS and weighted MS-SSIM.

Figure 8. The structure comparison factor for all images. The blue line corresponds to the initial structure comparison
attribute, and the green line corresponds to the structure comparison attribute with a weight κ = 0.14
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5. CONCLUSION

In this paper, we have used a novel psychophysical method, Maximum Likelihood Difference Scaling (MLDS) to
circumvent the limitations inherent to subjective rating methods. Indeed, to measure the performance of any
IQA algorithm, one usually uses some correlation coefficients. Yet, in such case, it is impossible to understand
to what a failure is due (a global or a local problem). Using MLDS, one are able to know the type of failure :
global or local.

Applying this method to MS-SSIM IQA technique, one shows that it suffers from local failures especially due
to its third factor that greatly influences the predicted values. These local failures can be reduced using different
values for the three (αi, βi, γi) exponents.
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