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Abstract 

Background  To assess the impact of the new version of a deep learning (DL) spectral reconstruction on image qual‑
ity of virtual monoenergetic images (VMIs) for contrast-enhanced abdominal computed tomography in the rapid 
kV-switching platform.

Methods  Two phantoms were scanned with a rapid kV-switching CT using abdomen-pelvic CT examination param‑
eters at dose of 12.6 mGy. Images were reconstructed using two versions of DL spectral reconstruction algorithms 
(DLSR V1 and V2) for three reconstruction levels. The noise power spectrum (NSP) and task-based transfer function at 
50% (TTF50) were computed at 40/50/60/70 keV. A detectability index (d’) was calculated for enhanced lesions at low 
iodine concentrations: 2, 1, and 0.5 mg/mL.

Results  The noise magnitude was significantly lower with DLSR V2 compared to DLSR V1 for energy levels between 
40 and 60 keV by -36.5% ± 1.4% (mean ± standard deviation) for the standard level. The average NPS frequencies 
increased significantly with DLSR V2 by 23.7% ± 4.2% for the standard level. The highest difference in TTF50 was 
observed at the mild level with a significant increase of 61.7% ± 11.8% over 40−60 keV energy with DLSR V2. The d’ 
values were significantly higher for DLSR V2 versus DLSR V1.

Conclusions  The DLSR V2 improves image quality and detectability of low iodine concentrations in VMIs compared 
to DLSR V1. This suggests a great potential of DLSR V2 to reduce iodined contrast doses.
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Key points

•	 A deep learning (DL) image reconstruction algo-
rithm is available for rapid kV-switching computed 
tomography.

•	 This new DL spectral reconstruction increases lesion 
detectability on virtual monoenergetic images.

•	 This new DL spectral reconstruction may reduce the 
dose of iodinated contrast medium administered in 
patients.

*Correspondence:
Djamel Dabli
Djamel.dabli@chu-nimes.fr
1 Department of Medical Imaging, IMAGINE UR UM 103, Montpellier 
University, Nîmes University Hospital, Bd Prof Robert Debré, 30029 Nîmes 
Cedex 9, France
2 Saint-Eloi University Hospital, Montpellier, France

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41747-022-00314-9&domain=pdf
http://orcid.org/0000-0003-1003-1196


Page 2 of 11Dabli et al. European Radiology Experimental             (2023) 7:1 

Background
The proportion of computed tomography (CT) examina-
tions using contrast media is about 40% worldwide [1]. 
However, contrast medium administration may induce 
adverse events in some patients, such as acute kidney 
injury, particularly in patients with impaired renal func-
tion [2, 3]. Optimising the amount of iodined contrast 
media injected is therefore a challenge [4, 5].

The latest advances in CT technology offer great 
potential to improve image quality and thus reduce 
the radiation dose and the amount of contrast medium 
administered [6, 7]. Among these developments, dual-
energy CT (DECT) is of interest to optimise the amount 
of iodine injected [8–10]. Indeed, this technique offers a 
capacity to enhance the contrast of lesions using specific 
images such as virtual monoenergetic images (VMIs) 
[11–14] as compared to conventional CT images with 
single-energy (SECT). In addition, the use of iodine-spe-
cific images allows the radiologist to quantify the iodine 
concentration, which improves the characterisation of 
lesions in abdominal imaging [15–19]. To obtain this type 
of images, DECT is based on the acquisition of two x-ray 
spectra, low and high-energy. A material decomposition 
algorithm is then used to characterise different materi-
als based on low- and high-density base materials (e.g., 
water and iodine) [20]. Several DECT platforms have 
been developed with different acquisition and detection 
methods [21] and thus different spectral performances 
[22–25]. One of them, developed by Canon Medical Sys-
tems Corporation is based on the rapid kV-switching 
technique. The system switches from high (135 kVp) to 
low (80 kVp) with duration lower than 1 ms during acqui-
sition. The material decomposition occurs in the raw data 
and in the image domains [26].

In addition, deep learning (DL) image reconstruction 
algorithms were recently developed for conventional 
SECT [27–30] and more recently also for DECT platforms 
[26, 31, 32]. For the Canon Medical DECT platforms, a 
DL-based spectral reconstruction (DLSR) is available, 
based on the creation of deep learning views generated by 
the trained neural network for opposite and for the same 
energy views [31, 33]. These energy views are generated 
by transforming the views from one energy to the other 
[26, 31]. The measured views are completed by DL views 
at each energy to create a full sinogram for each kV. The 
spectral reconstruction was trained on complete sino-
grams obtained at each energy using different patient and 
phantom data (more details are provided in Supplemen-
tary material). This DLSR was shown to have the capacity 
to generate low-noise spectral images [26, 31].

The first version of DLSR developed by Canon Medical Sys-
tems Corporation in 2019 allowed one slice thickness recon-
struction of 0.5 mm and a body spectral kernel [31]. A new 

release of this algorithm was introduced in 2021, also allowing 
reconstruction with  slice thickness  of 0.5 mm. Between the 
first version of DLSR and the second, the neural network was 
trained with a large number of new datasets from patients and 
phantoms. This training with high quality and high quantity 
datasets led to the improvement of the algorithm performance 
and thus of the quality of the spectral images obtained. Several 
studies have assessed the performance of the first version of 
this DLSR [26, 31] and one study has compared its latest ver-
sion with four other DECT platforms equipped with iterative 
reconstruction algorithms [31]. However, to our knowledge, no 
study has yet compared the performance of the two versions 
of this DLSR and their potential for reducing the iodined con-
trast media doses. This comparison is important from a clinical 
point of view in order to assess the potential gain in image qual-
ity and improvement of lesion detection that can be expected 
from this version for contrast-enhanced abdominal CT exami-
nations. If an improvement of the image quality is observed on 
the phantom, a validation on patient will be necessary in a sec-
ond step.

Thus, the purpose of our study was to assess the 
impact of the new version of the DLSR on image quality 
at low energy levels of VMIs. A task-based image quality 
assessment (noise magnitude, noise texture, spatial reso-
lution, and detectability of low iodine concentration) 
was performed.

Methods
Phantoms
The 20-cm diameter American College of Radiology 
(ACR) Quality Assurance phantom (Gammex 464, Gam-
mex, Middleton, USA) was scanned to assess the image 
quality by measuring the noise power spectrum (NPS) 
and task-based transfer function (TTF). This phantom 
was placed in its elliptical ring (26 × 33 × 16 cm3) to sim-
ulate the abdomen (Fig. 1a). A multienergy CT phantom 
(Multi-Energy CT phantom, Sun Nuclear, Middleton, 
USA) associated with its elliptical body insert (30 × 40 
× 15 cm3) was also used to assess the contrast between 
iodine and solid water inserts (Fig. 1b).

CT scanners and scanning protocols
All acquisitions were performed on the Aquilion ONE 
PRISM Edition CT system (Canon Medical Systems, 
Otawara, Japan). Both phantoms were scanned three 
times with the DECT mode using the same clinical pro-
tocol for abdomino-pelvic examinations: a 80/135 kVp 
switching, a collimation of 80 × 0.5 mm, a rotation time 
of 1 s and a pitch value of 0.813. The tube current was 
set at 230 mA to obtain a CT volume dose index of 12.6 
mGy, close to the French national diagnostic reference 
level for abdomen and pelvis examinations fixed at 13 
mGy in France [34].
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Raw data were reconstructed using the two versions 
of the DLSR (DLSR V1 and DLSR V2), the “Body spec-
tral” reconstruction kernel, and using the three available 
DLSR levels: mild, standard, and strong. As the DLSR did 
not allow a 1-mm thick reconstruction, all raw data were 
reconstructed using the 0.5-mm slice thickness and a 0.5-
mm increment for both DLSR versions. The field of view 
used was 250 mm for the ACR phantom, and 420 mm for 
the multienergy CT phantom.

For each acquisition, VMIs were reconstructed using 
the Vitrea workstation (Canon Medical Informatics, 
Minnetonka, Minnesota, USA) at four low energy lev-
els (40, 50, 60, and 70 keV) used in clinical practice to 
improve the iodine contrast.

Assessment of iodine contrast on VMIs
For each DLSR level and for both DLSR versions, 
the HU values were measured in the central slice of 
the multienergy CT phantom. One circular region of 
interest (ROI) of 2-cm diameter was placed on the 
solid water insert and on three iodine inserts with an 
iodine concentration of 2, 1 and 0.5 mg/mL (Fig. 2a). 
For each insert, the mean HU value within each ROI 
was computed for the VMIs at 40, 50, 60, and 70 keV.

The contrast between the iodine and solid water inserts 
was calculated at each energy level for all DLSR levels 
and for both DLSR versions according to the following 
formula:

where, HUiodinecorresponds to the mean HU value of 
each iodine insert (0.5, 1.0, and 2.0 mg/mL) and HUsolid 

water to the solid water value.

Task‑based image quality assessment on VMIs
A task-based image quality assessment was performed 
using the ImQuest software (version 7.1, Duke University, 
USA) to assess the noise magnitude and texture using the 
NPS and the spatial resolution using the TTF [35, 36]. The 
detectability index (d′) was computed to assess the abil-
ity of the radiologist to detect enhanced lesions. All these 
metrics were calculated for three DLSR levels for the two 
versions, and for all VMI levels (40, 50, 60, and 70 keV).

Noise power spectrum
For each DLSR level and for both spectral versions, the NPS 
was computed on the uniform module of the ACR phan-
tom using 40 consecutive slices. Four square ROIs of 128 x 
128 pixels were placed in this uniform module (Fig. 2b) and 
the NPS was calculated following this formula:

(1)Contrast = HUiodine −HUsolid water

(2)
NPS2D fx, fy =

�x�y

LxLy

1

NROI

NROI

i=1

FFT 2D ROIi x, y − FIT i x, y
2

Fig. 1  Images of the phantoms used: a ACR CT 464 phantom. b Multienergy CT phantom. CT Computed tomography
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where Δx and Δy are the pixel sizes in the x- and y-direc-
tions; FFT is the Fast Fourier Transform; Lx and Ly are 
the lengths of the ROIs in the x- and y-directions; NROI 
is the number of ROIs; ROIi(x, y) is the mean pixel value 
measured for a ROI at the position (x, y) and FITi(x, y) 
is a second order polynomial fit of ROIi(x, y). The noise 
magnitude and the average spatial frequency (fav) were 
calculated to quantify the noise level and noise texture 
respectively. A fav at low spatial frequencies may indicate 
a blotchy noise appearance. The following formula was 
used to compute the fav values:

where f is the radial spatial frequency and NPS(f) is the 
radially re-binned/average 1D NPS [36].

Task‑based transfer function
The TTF was assessed using the acrylic insert of the ACR 
phantom (Fig.  2c) following the methodology reported by 

(3)fav =

∫

f .NPS(f )df
∫

NPS(f )df

Richard et  al. [37]. A circular ROI was placed around the 
insert and a circular-edge technique was used to measure 
the edge spread function, which was obtained by calculating 
the radius of each pixel from the centre of each pixel of the 
insert. The line spread function was obtained by derivation 
of the edge spread function. The TTF was then computed 
from the line spread function normalised Fourier transfor-
mation. It was computed using 20 consecutive slices.

Detectability index
Three task functions were defined to model the detec-
tion of enhanced lesions of 10 mm diameter with low 
iodine concentrations of 0.5, 1, and 2 mg/mL. The TTF 
results for the acrylic insert were used for each detection 
task combined with the NPS to calculate the detectability 
index (d′) using a non-prewhitening observer model with 
an eye filter [38]:

(4)

d
�2

NPWE
=

[
∬ |W (u, v)|2.TTF (u, v)2.E(u, v)2dudv

]2

∬ |W (u, v)|2.TTF (u, v)2.NPS(u, v)2.E(u, v)4dudv

Fig. 2  Regions of interest (ROIs) placement on the images. a ROI to measure the iodine contrast relative to solid water in the multienergy phantom. 
b ROI placed on the uniform module of the ACR phantom to compute the noise power spectrum (NPS). c. ROI placed on the acrylic insert of the 
ACR phantom to compute the task-based transfer function
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where u and v are the spatial frequencies in the x- and 
y-directions, E the eye filter that models the human vis-
ual system sensitivity to different spatial frequencies, and 
W(u,v) the task function defined as:

where h1(x, y) and h2(x, y) correspond to the object pre-
sent and the object absent hypotheses.

The contrast of each clinical task was measured directly 
on the iodine inserts of the multienergy CT phantom for 
each corresponding iodine concentration and for each 
energy level. The reading conditions used to obtain d’ 
were a 1.5 zoom factor, a viewing distance of 500 mm, a 
300-mm field of view and a 0.05-mm pixel size.

Statistical analysis
Data are given as means and standard deviations. All 
quantitative data were compared between DLSR V1 and 
DLSR V2 using the Wilcoxon test for appeared samples. 
A p-value lower than 0.05 was considered significant.

Results
Assessment of iodine contrast values on VMIs
For the DLSR V1, the measured contrast between iodine 
and solid water inserts (Table 1) decreased when the energy 
level increased for all DLSR levels and all iodine concentra-
tions. The greatest difference in contrast values as func-
tion of the DLSR levels were observed with 0.5 mg/mL 
iodine at 50 and 60 keV, and a non-significant difference of 
16.0% ± 6.1% (mean ± standard deviation) (p = 0.224) was 
observed between the standard and mild levels for 50 keV.

For the DLSR V2, the contrast values decreased when 
the energy levels increased. The highest difference as 

(5)W =
∣

∣F
{

h1
(

x, y
)

− h2
(

x, y
)}∣

∣

function of the DLSR level but not statistically significant 
was observed with 0.5 mg/mL iodine at 50 keV between 
the standard and mild levels (18.2% ± 2.4%).

The differences between the contrast values of DLSR 
V1 and DLSR V2 for iodine concentrations of 1 and 2 
mg/mL were not significant (lower by 10%) for all energy 
and DLSR levels (p = 0.653). The greatest differences 
were obtained for 0.5 mg/mL with significant differ-
ences of more than 10% for all energy and DLSR levels 
(p ≤ 0.012). A tendency to lower contrast values with the 
DLSR V2 was observed at 1 and 0.5 mg/mL iodine con-
centrations, and the opposite pattern at 2 mg/mL.

Noise power spectrum
Noise magnitude
The noise magnitude (Table 2) decreased significantly from 
40 to 70 keV by a mean of 87.8% ± 0.4% for DLSR V1 and 

Table 1  Contrast values of the iodine insert obtained for the low energy levels on virtual monoenergetic images (VMIs) and with the 
three reconstruction levels of both versions of the deep learning spectral reconstruction (DLSR V1 and DLSR V2)

Data are given as means ± standard deviations

Iodine concentration Energy level DLSR V1 DLSR V2

Mild Standard Strong Mild Standard Strong

2 mg/mL 40 keV 138 ± 4.0 142 ± 2.5 143 ± 3.0 148 ± 5.1 149 ± 3.6 155 ± 5.0

50 keV 97 ± 1.9 101 ± 2.0 96 ± 2.8 98 ± 2.2 102 ± 4.0 98 ± 3.5

60 keV 69 ± 1.7 67 ± 1.0 67 ± 1.5 70 ± 1.9 68 ± 2.8 70 ± 3.1

70 keV 46 ± 1.2 45 ± 0.8 44 ± 1.0. 49 ± 1.1 48 ± 1.0 48 ± 1.4

1 mg/mL 40 keV 83 ± 5.0 89 ± 8.0 86 ± 4.5 80 ± 4.5 81 ± 6.4 80 ± 5.1

50 keV 54 ± 2.8 53 ± 7.0 51 ± 4.1 52 ± 3.2 49 ± 3.3 48 ± 3.8

60 keV 35 ± 1.6 38 ± 5.0 35 ± 2.8 34 ± 2.0 35 ± 2.4 33 ± 2.9

70 keV 22 ± 1.0 24 ± 3.7 23 ± 1.0 23 ± 1.8 22 ± 1.2 26 ± 1.5

 0.5 mg/mL 40 keV 42 ± 4.6 43 ± 4.7 41 ± 1.8 40 ± 6.0 39 ± 4.3 37 ± 3.3

50 keV 25 ± 1.5 29 ± 3.4 24 ± 1.5 22 ± 2.0 26 ± 2.2 21 ± 2.1

60 keV 20 ± 1.0 23 ± 1.8 21 ± 1.2 18 ± 1.4 20 ± 1.6 19 ± 1.8

70 keV 15 ± 1.3 14 ± 1.1 17 ± 0.8 13 ± 1.8 12 ± 1.2 15 ± 1.0

Table 2  Noise magnitude obtained for the low energy levels on 
virtual monoenergetic images (VMIs) and three reconstruction levels 
of both versions of deep learning spectral reconstruction (DLSR)

Data are given as mean ± standard deviation

DLSR version Energy level Reconstruction level

Mild Standard Strong

DLSR V1 40 keV 100.2 ± 0.40 86.6 ± 0.35 65.6 ± 0.31

50 keV 52.4 ± 0.32 45.3 ± 0.22 34.3 ± 0.28

60 keV 24.3 ± 0.09 21.0 ± 0.13 15.5 ± 0.19

70 keV 12.5 ± 0.10 10.6 ± 0.08 7.7 ± 0.12

DLSR V2 40 keV 68.5 ± 0.20 55.1 ± 0.27 44.6 ± 0.41

50 keV 34.3 ± 0.10 28.1 ± 0.14 22.7 ± 0.21

60 keV 16.6 ± 0.04 13.6 ± 0.07 10.9 ± 0.10

70 keV 13.1 ± 0.04 10.6 ± 0.05 8.1 ± 0.08
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80.0% ± 1.0% in DLSR V2, for all reconstruction levels. For 
DLSR V1, the noise magnitude values decreased signifi-
cantly when the DLSR levels increased from mild to strong 
level. The noise magnitude decreased similarly for all energy 
levels, by -14.3% ± 1.0% between the mild and standard lev-
els, by -36.5% ± 2.0% between the mild and strong levels. 
A similar pattern was observed with DLSR V2, with mean 
decreases of -18.1% ± 1.5% and -36.0% ± 2.4% respectively. 
For all DLSR levels, the noise magnitude was significantly 
(p ≤ 0.004) lower with DLSR V2 compared to DLSR V1 
between 40 and 60 keV. The decrease was similar for these 
energy levels by a mean of -32.6% ± 1.7%, -36.5% ± 1.4% 
and 31.8% ± 2.1% for the mild, standard and strong levels, 
respectively. The noise magnitude values were similar for 
the two DLSR versions with a no significant difference from 
0.0% to 5.2% at 70 keV and p-values from 0.250 to 1.000.

Noise texture
The average NPS spatial frequency (fav) as function of 
energy levels for both DLSR versions and all DLSR lev-
els are depicted in Fig.  3. For DLSR V1, the fav values 
were similar between 40 and 50 keV for all DLSR levels 
(mean difference of -3.4% ± 0.4%; p = 0.501). It tended to 
decrease from 50 to 60 keV by -8.4% ± 3.1% for all DLSR 
levels. This decrease was not statistically significant (p 

= 0.250). The fav values were similar between 60 and 
70 keV for the mild and standard levels (mean differ-
ence of 4.12% ± 0.6%; p = 0.250) and tended to increase 
for strong level (6.4% ± 0.8%) but not significantly (p 
= 0.205). For DLSR V2, the fav values decreased sig-
nificantly from 40 to 60 keV for all DLSR levels in simi-
lar proportion (mean decrease of -26.7% ± 3.4%; p = 
0.004). Between 60 and 70 keV, fav values were similar for 
mild and standard levels (3.4% ± 0.3%; p = 0.270) and 
increased slightly for strong level (6.0% ± 0.6%) without 
statistical significance (p = 0.250). The fav values were 
significantly higher with DLSR V2 than with DLSR V1 (p 
≤ 0.035), particularly at low energy levels. For 40 and 50 
keV, the fav values increased by 39.6% ± 5.8% (mild level), 
23.7% ± 4.2% (standard level), and 37.2% ± 7.2% (strong 
level) with DLSR V2 compared with DLSR V1.

Task‑based transfer function
The TTF values at 50% (TTF50) as function of the 
energy level and of the reconstruction level, for both 
DLSR versions are depicted in Fig.  4. For DLSR V1, 
the TTF50 values tended to decrease from 0.30 ± 0.01 
mm-1 to 0.28 ± 0.01 mm-1 (p = 0.250) between 40 and 
70 keV at the mild level and from 0.29 ± 0.01 mm-1 to 
0.25 ± 0.01 mm-1 (p = 0.250) at the standard level. At 

Fig. 3  Average noise spectrum frequencies (fav) as for three levels of the deep learning spectral reconstruction (DLSR) versions (DLSR V1 and DLSR 
V2). a Mild level. b Standard level. c Strong level

Fig. 4  Task-based transfer function at 50% (TTF50) as function of the energy levels for three levels of deep learning spectral reconstruction (DLSR) 
versions (DLSR V1 and DLSR V2). a Mild level. b Standard level. c Strong level
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the strong level, the TTF50 tended to increase between 
40 and 50 keV, then decreased from 0.23 ± 0.01 mm-1 
to 0.21 ± 0.01 mm-1 between 50 and 70 keV (p = 
0.250). All of these differences were not statistically 
significant (p ≥ 0.250).

For DLSR V2, the TTF50 values also tended to decrease 
from 0.51 ± 0.01 to 0.44 ± 0.01 mm-1 (p = 0.157) with 
the mild level and from 0.35 ± 0.01 mm-1 to 0.30 ± 0.01 
mm-1 with the standard level (p = 0.281). At the strong 
level, the TTF50 values were similar between 40 and 60 
keV (p = 0.222) and a tendency to increase was observed 
from 0.27 ± 0.01 mm-1 to 0.30 ± 0.01 mm-1 (p = 0.250) 
between 60 and 70 keV. All of these differences were not 
statistically significant (p = 0.157).

For all DLSR and energy levels, the TTF50 values 
increased between DLSR V1 and DLSR V2, with differ-
ent rates. The greatest difference was observed at the 
mild level, with a mean significant increase of 61.7% ± 
11.8% over energy from 40 to 60 keV (p = 0.004) and of 
60.1% ± 4.1% over energy from 60 to 70 keV (p = 0.031). 
At these same keV, a significant increase of 24.5% ± 3.9% 

(p = 0.009) and 42.5% ± 0.5% (p = 0.031), respectively, 
was observed at the strong level and of 10.5% ± 0.3% (p 
= 0.004) and of 24.4% ± 5.1% (p = 0.031) respectively, for 
the standard level.

Detectability indexes
The d’ values obtained for the three simulated contrast-
enhanced lesions are depicted on Fig. 5 as function of the 
energy level, DLSR level and DLSR version.

For DLSR V1, the highest d’ value was obtained at 70 
keV for all DLSR levels and all iodine concentrations. For 
all DLSR levels, d’ increased significantly between 40 and 
70 keV by 80.6% ± 9.3% (p ≤ 0.001) at the 0.5-mg/mL 
iodine concentration, by 84.1% ± 9.7% (p ≤ 0.001) at 1 
mg/mL and by 124.4% ± 12.3% at 2 mg/mL (p ≤ 0.001). 
The d’ values increased significantly (p ≤ 0.001) as the 
DLSR levels increased for all energy levels, particularly 
at 0.5 mg/mL with the strong level where d’ increased by 
30.8% ± 10.7% compared to the mild level.

For DLSR V2, d’ peaked at 60 keV for all DLSR levels and 
iodine concentrations. It increased significantly (p ≤ 0.001) 

Fig. 5  Detectability index as function of the energy levels for three levels of deep learning spectral reconstruction (DLSR) versions (DLSR V1 and 
DLSR V2) and three iodine concentrations. a Mild level, 2 mg/mL iodine. b Standard level, 2 mg/mL iodine. c Strong level, 2 mg/mL iodine. d Mild 
level, 1 mg/mL iodine. e Standard level, 1 mg/mL iodine. f Strong level, 1 mg/mL iodine. g Mild level, 0.5 mg/mL iodine. h Standard level, 0.5 mg/mL 
iodine. i Strong level, 0.5 mg/mL iodine
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between 40 and 60 keV by a mean of 27.8% ± 12.7%, 17.7% 
± 2.8%, 22.2% ± 2.9% for the 0.5, 1 and 2 mg/mL iodine 
concentrations, respectively. The d’ values increased signifi-
cantly (p ≤ 0.001) also along with the DLSR level; a mean 
increase of 16.6% ± 11.6% was observed at 0.5 mg/mL 
iodine concentration with the strong level compared to the 
mild level.

The d’ values obtained with DLSR V2 were significantly 
higher (p ≤ 0.001) than with DLSR V1 for all reconstruc-
tion and energy levels. This increase was higher with 
the strong level and decreased when the energy level 
increased and when the iodine concentration decreased.

Discussion
To the best of our knowledge, this study is the first to 
compare the performance of two versions of a DLSR 
algorithm used in a rapid kV-switching dual-energy plat-
form developed by Canon Medical Systems. The noise 
magnitude and characteristics, spatial resolution, and 
detectability in VMIs of three contrast-enhanced lesions 
at low iodine concentrations were compared. One of the 
main findings was that the last version of DLSR (V2) pre-
sented a lower noise magnitude for energy levels above 
70 keV, with an improved noise texture and spatial reso-
lution for all energy and reconstruction levels. In addi-
tion, the detectability index was significantly higher with 
DLSR V2 for all iodine concentrations tested (2.0, 1.0 and 
0.5 mg/mL).

The iodine contrast outcomes showed that the differ-
ence between iodine contrasts obtained with DLSR V1 
and DLSR 2 was significantly higher at 0.5 mg/mL than 
at 1 and 2 mg/mL iodine. Indeed, the contrast values with 
the 1 and 2 mg/mL iodine inserts were similar between 
the two versions. The contrast values of the 0.5 iodine 
inserts measured with DLSR V1 was significantly lower 
than with DLSR V2. These results suggest that DLSR 
versions have an impact on contrast values at very low 
iodine concentrations. However, the impact of this con-
trast on the detectability at low iodine concentrations is 
limited because it also depends on the noise and spatial 
resolution.

The noise magnitude increased when the energy level 
decreased with both DLSR versions, in line with the 
results of different DECT platforms reported in previ-
ous studies [9, 23, 31]. It may be explained by the higher 
attenuation reported at low energy levels. The higher 
contribution of the photoelectric effect at low energy 
levels decreases the signal-to-noise ratio on the basis 
material images. This is related to the introduction of 
anti-correlated noise [39] during material decomposition 
used to generate VMIs. In both versions, the noise mag-
nitude decreased as the DLSR level increased. However, 
the noise magnitude was significantly lower with DLSR 

V2 compared to DLSR V1 for energy levels between 
40 and 60 keV, and it was similar at 70 keV. This result 
is of major clinical interest because the recommended 
energy levels for abdominal imaging are specifically those 
between 40 and 60 keV [40]. However, the use of these 
low energy levels is often limited by the higher noise in 
keeping with our findings on reported noise magnitude. 
The improved noise magnitude obtained with DLSR V2 
at low energy levels increases the potential for use of 
these recommended levels.

Our results also showed that the fav values shifted 
towards lower frequencies as the DLSR level increased 
for both versions and shifted towards higher frequencies 
when using DLSR V2 compared to DLSR V1 for a given 
reconstruction level. Greffier et  al [41] obtained simi-
lar results with a SECT between the two versions of the 
Advance Intelligent Clear-IQ Engine deep learning image 
reconstruction algorithm (V8 and V10). As for the SECT 
algorithm, the noise texture in our study changed accord-
ing to the DLSR level used in both versions; indeed, the 
DLSR V2 version showed a reduced smoothing effect on 
the images than DLSR V1. The modification of the image 
texture between DLSR V1 and DLSR V2 was significant 
for all energy and reconstruction levels particularly at the 
mild and strong levels compared to the standard level. 
The DLSR V2 thus allows reducing noise while improv-
ing noise texture for energy levels between 40 and 60 keV. 
This increases the possibility of using these energy levels 
without adversely affecting the diagnostic quality.

Our results showed that the TTF50 values tended 
to decrease for both versions when the energy level 
increased from 40 to 60 keV but not significantly and 
were similar between 60 and 70 keV for the mild and 
standard levels. Similar results were obtained by Greffier 
et al [31] at the standard level with DLSR V2 and a dose 
level of 10 mGy. A different pattern was observed with 
the strong level, where the TTF50 obtained with DLSR V1 
tended to increase from 40 to 50 keV, then to decrease 
from 50 to 60 keV and to increase beyond. With DLSR 
V2 at the strong level, the TTF50 values were similar 
between 40 and 60 keV and increased significantly at 70 
keV. These results could be explained by the strong noise 
reduction at the strong level affecting the low frequencies 
of the signal representing the details of the image that 
may be considered as noise and thus may be removed. In 
all cases, the TTF50 values obtained with DLSR V2 were 
significantly higher than with DLSR V1 and for all recon-
struction levels, implying an improvement of the spatial 
resolution in clinical practice with the new DLSR version, 
particularly for the mild level.

The improvement of noise magnitude, noise texture, 
and spatial resolution with DLSR V2 led to a higher 
detectability index for the three simulated enhanced 
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lesions despite a slight decrease in contrast with DLSR V2 
at 0.5 mg/mL iodine concentration. However, improve-
ment of the detectability index is dependent on the 
energy levels and the iodine concentrations. The great-
est improvement for V2 was obtained for energy levels of 
40 to 60 keV whereas the lower improvement was noted 
at 70 keV for the three iodine concentrations. Then, the 
improvement in detectability at 70 keV was probably 
related to the higher TTF50 and fav values obtained with 
DLSR V2. Our results also showed that the detectability 
indexes for DLSR V1 peaked at 70 keV, equivalent to a 
SECT at 120 kVp, for all iodine concentrations at 60 keV 
with DLSR V2.

These findings imply that the new V2 version of DLSR 
can improve the detectability of low-enhanced lesions using 
a lower energy level with a standard radiation dose level 
equivalent to the national diagnostic reference level. This 
result is of major interest to reduce the amount of iodine 
used in patients with acute kidney injuries [3, 42, 43].

Our results showed a strong potential of the new ver-
sion of DLSR to reduce the amount of iodine injected to 
the patients when using the 60 keV energy level. Indeed, 
several studies reported low iodine concentrations (lower 
than 5 mg/mL) measured for abdominal lesions [13–19]. 
The detection of these lesions is challenging, requiring 
higher iodine concentrations and/or radiation doses. 
This potential can be improved using the DLSR V2 at the 
strong level. Indeed, this reconstruction level produced 
less noise than the mild and standard levels but its use in 
clinical practice with DLSR V1 is limited by the radiologi-
cal image perception and smoothing as reported for the 
SECT in a previous study [44].

This improvement in iodine detectability on VMIs 
implies an improvement in the visualisation and deline-
ation of iodine-enhanced lesions in various abdominal 
clinical applications [40]. For liver lesions, it improves 
the detection of hypovascular liver lesions and the diag-
nostic confidence for hepatic metastases [40]. It may 
also improve the depiction of intrahepatic veins at low 
contrast conditions [45]. For pancreas applications, the 
increase of vascular and parenchymal enhancement 
using DLSR V2 could increase the detection of small 
lesions (< 2 cm) which are challenging due to subopti-
mal contrast conditions [46]. For kidney applications, 
Patel et  al [47] reported a better renal lesion demarca-
tion using VMIs at low keV. The DLSR V2 could improve 
this demarcation even at low iodine contrast conditions. 
The DLSR V2 could bring an added value also for study-
ing the bowel by improving the focal hypoenhance-
ment using VMIs at low keV for early detection of bowel 
ischemia [40] or to assess small bowel lesions in Crohn’s 
disease [48] and gastrointestinal stromal tumours as 
reported by Martin et al [49].

The increase of the fav values with DLSR V2 offers the 
possibility to use the strong level to increase the detect-
ability of lesions with low iodine concentration and to 
maximise the potential iodine reduction. For example, 
the fav value at 60 keV with DLSR V2 was close to that 
obtained with DLSR V1 at the standard level. It would 
therefore be possible to consider replacing the default 
standard level setting in DLSR V1 by the strong level in 
version V2, without major modification in image texture. 
Finally, these results on phantoms need to be confirmed 
by a study on patients.

This study has some limitations. First, we explored 
only one dose level and one phantom size. However, 
the dose level was chosen to correspond to the stand-
ard level used in clinical applications for most patients. 
Second, we used a single reconstruction kernel and 
only one slice thickness, as explained earlier. Third, we 
used a phantom that, by its very nature, does not take 
into account the patient movements during CT scan-
ning. We assessed only one DECT platform because 
the DLSR algorithm was not available on other Canon 
DECT platforms. Also, these results were not compared 
to other reconstruction methods because these meth-
ods are not available on this platform (Aquilion ONE 
PRISM). Finally, the size of the samples compared for 
some results is small, limiting the power of the statis-
tical analysis which may explain why some differences 
resulted to be not significant.

In conclusion, the new version of DLSR reduces the 
noise magnitude, improves noise texture, increases 
spatial resolution, and detectability of low iodine con-
centration in VMIs. These findings suggest a great 
potential of the new version of DLSR for reducing the 
amount of injected iodine to the patients at the stand-
ard radiation dose.
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