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NASA Ames Research Center, Moffett Field, California 94035-1000

For a computational flow simulation tool to be useful in a design environment, it must be very robust and
efficient. To develop such a tool for incompressible flow applications, a number of different implicit schemes arc
compared for several two-dimensional flow problems in the current study. The schemes include Point-Jacobi
relaxation, Ganss-Seidel line relaxation, incomplete lower-upper decomposition, and the generalized minimum
residual method preconditianed with each of the three other schemes. The efficiency of the schemes b measured in
terms of the computing time required to obtain a steady-state solution for the laminar flow over a backward-facing
step, the flow over a NACA 4412 airfoil, and the flow over a three-element airfoil using overset grids. The flow
solver used in the study is the INS2D code that solves the incompressible Navier-Stokes equations using the method

of artificial compressibility and upwind differencing of the convective terms. The results show that the generalized
minimum residual method preconditioned with the incomplete lower-upper factorization outperforms all other
methods by at least a factor of 2.

Introduction

LTHOUGH computational fluid dynamics (CFD) now has a
lot to offer an engineer, there is still room for significant im-

provement. The efficiency and robustness of a flow solver are two

of its most important features if it is to be successfully applied as a
tool in the design process. This is especially tree of Navier-Stokes

methods, which require very fine resolution grids, particularly for

high-Reynolds-number flows. When engineers need to study a num-

ber of design parameters, they often need to obtain hundreds of
steady-state solutions to a particular problem. Use of optimization

methods in design may require numerous flowfield solutions. In

both these instances, a flow solver needs to produce solutions with-
out requiting the users to tune the input numerical parameters for

each computation that they run.

The goal of the current study is to determine an efficient algorithm
for obtaining steady-state solutions to the incompressible Navier-

Stokes solutions for two-dimensional flow problems, There is a wide

range of applicability of such a flow solver in engineering flow
analysis, including high-lift multi-element airfoil computations' and

propulsion flow analysis. 2 These investigations are being performed

for two-dimensional flows because these are cheaper--allowing the

investigation of many parameters, schemes, and flow problems---
and because a two-dimensional analysis tool can be quite valuable

in its own fight. This study will use the INS2D flow solver, 3.4 and
later the results can be utilized to improve the INS3D flow solver. 5

There are many different types of solution techniques for steady-

state incompressible Navier-Stokes computations, too numerous
to discuss in detail here. The INS2D and INS3D flow solvers by
default use an implicit Gauss-Seidel line-relaxation (LR) scheme.

This scheme has performed quite well for a large number of differ-
ent flow problems t-s but has been shown to have some convergence

problems for very fine meshes with multiple zones. For example,

some fine-resolution, multizone grids used in recent multi-element
airfoil calculations' have taken several thousand iterations to con-

verge, whereas most cases that are run with this flow solver converge
within 200 iterations.
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Recent work in iterative, Krylov-space matrix solvers 6'7 has

shown that some of these methods are applicable to CFD flow
solvers. In particular, the generalized minimal residual (GMRES)

method s is well suited to the matrix problems arising in implicit CFD

solvers. There are two distinct ways to implement GMRES in a flow
solver. One approach is to use GMRES to solve the linearized system

of equations resulting from the application of a time-marching type

of scheme, such as an implicit Euler scheme. The other formulation
is to use a nonlinear extension of GMRES to directly solve the dis-

crete form of the steady-state equations. The first approach has been

attempted by many authors; see Refs. 9-11 for recent examples. The
second approach was introduced by Wigton et al. ]2

The most important aspect of implementing GMRES is the pre-

conditioning of the system of equations. For implementation in a
CFD code, a good preconditioner is necessary for GMRES to con-

verge. The current work investigates the use of GMRES to solve the

iinearized system of equations in delta form in the INS2D code. The
code for the GMRES solver was obtained from the template soft-

ware available as a companion to Ref. 7. The GMRES method can be

easily implemented so that any existing solution process can be uti-

lized as a preconditioner. One commonly used preconditioner for the

GMRES method is an incomplete lower-upper (ILU) factorization
with zero additional fill. See Meijerink and van der Vorst t3 for a dis-
cussion of ILU methods. The ILU solution scheme was added as an

option to the INS2D code, along with a Point-Jacobi relaxation (PR)
scheme, to go along with the Gauss-Seidei line-relaxation scheme

already in the code. Presented in this paper are comparisons between

six different solution processes: the three aforementioned algorithms
run independently, and the GMRES method using these three algo-

rithms as preconditioners, denoted as GMRES +ILU, GMRES+PR,
and GMRES+LR.

In the following sections, the features of the 1NS2D flow solver

are discussed, followed by a presentation of each of the implicit

methods used in this study. The next section presents the computed
results of each of these methods for three different flow problems:

laminar flow over a backward-facing step, turbulent flow over a
NACA 4412 airfoil, and turbulent flow over a three-element airfoil.

Flow Solver

The INS2D flow solver 3"4 solves the Reynolds-averaged incom-

pressible Navier-Stokes equations using the method of artificial

compressibility, _4 which adds a pseudotime derivative of pressure
p to the continuity equation, resulting in

Op
-- = -flY. V (i)
Or
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where r is the pseudotime, V is the velocity vector, and fl is the arti-

ficial compressibility constant. This relaxes the elliptic nature of the

equations and results in a hyperbolic-parabolic system. The solver
is capable of solving both steady-state and time-dependent flow

problems, although the current study is concerned only with steady-
state solutions. The INS2D code is a finite difference, structured-

grid flow solver. It is capable of handling multiple-zone grids using
either a patched multiblock (pointwise continuous) interface or an

overlaid chimera interface between zones. The boundary conditions

at the physical boundaries and at zonal boundaries are applied in an

implicit fashion during the solution process. A third-order, upwind-
differencing scheme based on the method of Roe _5 is used to dis-
cretize the convective terms, and the viscous terms are differenced

using second-order central differences. The system of equations is

integrated in pseudotime using an implicit Euler time discretization.

The resulting discrete system of equations has the form

Q"-J-Q" _R,+ l= (2)
Ar

where Q is the vector of dependent variables.(pressure, u- and
v-velocity components), Az is the time-step size in pseudotime,

the superscript n is the iteration number, and R is the residual, com-

posed of the discrete form of the convective and viscous terms. This

system is linearized about pseudotime-level n, resulting in

(_rr +'gR_'A R"e=-
where AQ = Q"+_ - Q'. This equation is iterated until a steady-
state solution is obtained at which time R" ,_ 0. In the current

implementation, the Jacobian of R on the left-hand side (LHS) of

Eq. (3) is formed using a residual based on first-order differencing

of the convective terms, whereas third-order differencing is used on
the right-hand side (RHS). In addition, approximate Jacobians of

flux differences from the upwind-differencing scheme are used, be-

cause exact Jacobians of these terms would require the formation
of a tensor (see Ref. 16 for more details), and it has been assumed

that the added computational costs would outweigh any benefit.

The first-order LHS is used to reduce the bandwidth of the resulting

LHS matrix, resulting in lower memory and computational require-

ments for the solution of Eq. (3). However, this use of approximate
Jacobians can also slow the convergence to a steady state.

For turbulent flow calculations, the current study uses the turbu-
lence model of Baldwin and Barth. tv This model requires the so-

lution of a single convective-diffusive partial-differential equation.

This equation is uncoupled from the mean-flow equations during
the solution process. The convective terms in the turbulence model

are discretized using a first-order upwind-differencing scheme. The
resulting discrete equation for the turbulence model has the same

form as Eq. (3), except Q now represents a single variable at each

grid point instead of three variables; the LHS of Eq. 3 is a banded

matrix composed of five diagonals, each containing scalar entries.
In all cases presented here, the turbulence model equation is solved

using the same implicit scheme as the mean-flow equations.

Implicit Schemes

If Eq. (3) was solved exactly at each time step, and if the LHS

of Eq. (3) was composed of the exact Jacobians, and an infinite

time step was used, this would be a Newton iteration. In this case,
quadratic convergence could be obtained if the Q" was close to

the exact solution. Since the LHS is composed of an approximate

Jacobian of the RHS. and since the turbulence model is uncoupled
from the mean-flow equations, the current solution procedure is

not a Newton iteration. Thus the goal is to obtain an approximate

solution to Eq. (3) in an efficient manner. Several methods are used
to attempt to do this. This discrete form of the matrix from the LHS

of Eq. (3) is a pentadiagonal banded matrix, where each entry on

the diagonal consists of 3 x 3 blocks. Equation (3) can be written as

[D. 0 ..... O.A,B.C,O ..... O, EIAQ=--R" (4)

where A, B, C, D, and E are the block diagonals. In the implemen-

tation of all of the implicit schemes, the code first computes and

stores all of the terms in Eq. (4) and then proceeds with the solution

procedure. This storage requires 48N words, where N is the total

number of grid points. In the following, a subscript i refers to a

single grid-point index when one can consider all of the grid points
in a single vector of length N. The subscripts j and k are indices in

the two computational-space directions _ and rl, respectively. When

the data are stored in a single index vector, it is done so that j is the
fastest changing (inner) index.

ILU Factorization

In the ILU formulation, the matrix on the LHS of Eq. (4) is

replaced with the following factors:

[D, 0 ..... O, A, B'][B']-I[B', C, O..... O, El

c:= [B;]-tC,

E:= [e:l-iE,

Multiplying these factors together, one sees that a matrix of the same

structure as the original LHS is obtained, except that them are addi-
tional diagonals of nonzero entries created just above the D diagonal

and just below the E diagonal. These new entries are ignored in the

approximation. This is known as ILU with zero additional fill, or

ILU (0). See Ref. 12 for details on implementing ILU schemes with
additional fill.

The ILU solver requires some significant initialization work,

namely, the computation and storage of the B' diagonal. This re-

quires 9N extra storage locations. When used as a preconditioner,
this is done once at the beginning of the GMRES solution process

and used repeatedly during the GMRES iteration cycle. This new

set of factors gives an easy system to solve. The solution process

can be vectorized by setting up an inner loop operating on all points
on a diagonal line defined by j + k = constant.

Point Relaxation

The PR algorithm iteratively solves a block diagonal system

formed by multiplying all of the nonmain block diagonals by the

current estimate for A Q and moving this to the RHS. This is done
for each point, sweeping sequentially through the mesh. A forward

sweep is composed of

[B]AQ t+ l = -R" - [ D, 0 ..... O, A]AQ _+l

-[C, 0 ..... O, E]AQ _

and a backward sweep is performed by solving

[B]AQ j+l = -R" - [D, O ..... O, A]AQ t

-[C, 0 ..... O, E]AQ I+

In the current computations, a forward sweep plus a backward sweep
counts as one sweep, denoted as PR(1). The solution process is ini-

tialized by setting AQ to zero. Then, a lower-upper (LU) factor-

ization of the B block is formed. Thus the number of operations

to solve this equation is minimized during the repeated sweeping
process. This process can be vectorized by setting up an inner loop

to compute AQ for all points on a diagonal line through the mesh

given by j + k = constant.

Line Relaxation

The LR process is similar to the PR method, except that more
terms are kept on the LHS and a block tridiagonal system of equa-

tions is solved for an entire grid line at once. The algorithm is
implemented so that either computational direction can be selected

to be the sweep direction. For solving lines of constant k, a forward

sweep is composed of

[a, B, C]AQ I + l = -R" - [D]AQ t+ l -- [E]AQ t

and a backward sweep is performed by solving

[A, B, C]AQ t+l = -R _ - [D]AQ I - [E]AQ I+_
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A forward plus a backward sweep counts as two sweeps and is de-
noted by LR(2). This process is also initialized by setting AQ to

zero. Then, an LU factorization of the tridiagonal system is formed

to minimize the number of operations during the sweeping pro-

cess. The sweeping process is recursive and cannot be vectorized. It
should be noted that the LR and PR schemes each require the same

number of operations per point per sweep, because whereas the PR

only has to solve a block diagonal system instead of a block tridiag-
onal system, it has additional block vector multiply operations for
the additional RHS terms. The PR scheme will run faster on a vector

computer because it can be vectorized. In practice, the PR routine

runs about twice as fast as the LR routine on a Cray C-90 computer.

In both the PR and LR algorithms, zonal boundary conditions are
enforced during the sweeping process. Typically, multiple sweeps

are performed at each iteration. When computing a multiple zone

grid, all zones are swept once before moving onto a second sweep.
After each zone is swept, this new A Qt + _is passed to all other zones

that use this zone for their boundary conditions. In this fashion,

information is propagated across zonal boundaries implicitly.

GMRE, S Method

The GMRES procedure of Sand and Schultz 8 is an iterative pro-

cedure for solving the linear system of equations of the form

Mx-b=O

or, in the left preconditioned form,

PMx - Pb = 0

where P is the preconditioner that is an approximation to M -1 . The
preconditioned matrix PM will have a smaller spectral radius than
M. resulting in faster convergence for the GMRES procedure. A

GMRES procedure using k search directions, known as GMRES(k),

tbrms an approximation to the solution vector x given by

xk =xo+ yjv_ +...+ y_vk

where x,_ is an initial guess to the solution x. The vi are orthonormal
vectors formed from the process

ro = PMxo - Pb, vl = ro/llr()ll

Iterate: for j = 1.2 ..... k:

hi.j = (PMvj, vi), i=1,2 ..... j

w/+ t = PMv_ - ht.jvl - h2.jv2 ..... hi, iv )

h;_-t._ = IIwj+tll

vj+l = wj.t/llw_÷j!l

The y, coefficients are computed so that the norm of the residual

IlMxt - bll is minimized. An estimate of this norm is available

during each iteration of the solution process as a function of the hi.j
variables, The process requires approximately (4 + k)'3"N words

of memory to apply to the mean-flow equations; therefore, it is not

practical to use large values of k. Because of this memory usage,
in the current work k is limited to no more than k = 10. A restart

capability of the GMRES algorithm allows the iteration process to

continue beyond k = 10 in this case. This is done simply by setting

x_ = x,_ and restarting from the beginning. Ira total of 30 GMRES
search directions is specified to the code, then two restarts are used.

This is designated as GMRES(30).
The GMRES algorithm is implemented here so that the iterations

can be stopped based on either of two criteria. The first is simply

to specify the maximum number of search directions to be used.

The second is to specify a tolerance for the error. One advantage of
the GMRES process is that an accurate estimate of the norm of the

residual is computed as part of the solution process. Using numerical
tests, it was found that it was generally more efficient (in terms of

obtaining a converged steady-state flow solution) to specify a set

number of search directions tot GMRES than it was to specify a
tolerance for the norm of the residual.

Because the preconditioner must be utilized once for each GM-

RES search direction, it needs to be relatively cheap. Thus, when

the PR and LR schemes are used as a preconditioner for GMRES,
only two sweeps of the relaxation process are used.

Computed Results

Each of the different methods has been tested for three different

geometries: laminar flow over a backward-facing step, turbulent
flow over a NACA 4412 airfoil, and turbulent flow over a three-

element airfoil. For each geometry and each method, calculations

were run to determine an optimal time-step size, an optimal value

for _, and an optimal number of relaxation sweeps or GMRES

search directions. These calculations determined the best possible

performance of each method for a particular case; then the most
efficient run of each method was used to determined the best method

for each case. Most cases ran best using an infinite time step, which
is implemented by setting Ar = 10 _2, so that 1/At is on the order

of machine zero. In some cases, this large time step resulted in an

instability, and the time step was reduced. In other cases, a large

time step remained stable, but a smaller time step resulted in better

efficiency. Testing different time-step sizes usually involved running
with Ar = 1012, 10.0, 1.0, and 0.1. To test different values of _,

cases were run using values of 0.1, 1,5, I 0, 20, 50, 100, and 200. See

Ref. 5 for an example showing the effect of ,8 on the convergence.
In each comparison, the maximum divergence of velocity is plot-

ted vs computing time, given in central processing unit (CPU) sec.

onds on a Cray C-90 computer. In addition, symbols are overlaid

on the plotting line at every 50 iterations, indicating the number of
iterations required by each method. Most cases are run until the

divergence of velocity reaches machine zero. In general, a useful

steady-state solution has been obtained long before this value is
reached; usually this requires only that the maximum nondimen-

sional divergence of velocity be reduced to approximately l0 -2.

Finally, for each computational test case, a table summarizing the
convergence characteristics for each scheme is presented. The fol-

lowing parameters are given in these tables: the value of _ and A_
used in the run; the amplification factor, or average factor by which
the residual is reduced at each iteration; the computing time used

per point per iteration, given in microseconds; and the computing

time in milliseconds used to converge the solution divided by the

number of grid points. To generate these numbers, the solution was

considered converged when the maximum nondimensional diver-
gence of velocity dropped below 10 -3. Although the amplification

factor and computing time per point per iteration are useful char-
acteristics of an algorithm, they do not give a true measure of the

efficiency; the last column in these tables is the best measure of the

overall performance of the algorithm.

Backward-Facing Step
The laminar flow over a backward-facing step was computed for

an expansion ratio of I to 1.94. The Reynolds number, based on the
downstream height and the average inflow velocity, was 8 x 102.

Figure 1 shows a close view of the grid near the step and the specified

inflow velocity vectors. The inflow was 2 step heights upstream
of the step, and the outflow boundary was placed 50 step heights

downstream of the step. A single-zone H grid with dimensions of

160 × 61 was used. The grid points inside the step were blanked out,

and the no-slip boundary conditions for the step faces were applied
to internal grid points. This flow problem has been used previously
as a validation case 3 for the INS2D flow solver. These previous

results showed good agreement with the experimental results of
Armaly et al. Is The Reynolds number 8 x 102 case was the highest

Reynolds number run in this previous study and was the slowest to

converge.
For the backward-facing step flow, the only schemes that did not

run best with an infinite time step were the ILU scheme, which
was unstable for Ar > 1.0, and GMRES+LR, which was more

Fig. 1 Grid and inflow veloc-
ity vectors for the backward.
facing step flow.
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Fig. 2 Convergence for the backward.facing step flow.

efficient with A¢ = 100. Figure 2 shows the convergence for each
scheme for a different number of sweeps/search directions. The LR
scheme is best when using only 10 sweeps; the efficiency of the PR
scheme is nearly constant as long as it is using at least 10 sweeps.
The GMRES schemes are most efficient using either 5 or 10 search
directions. For all of these schemes, it can be seen that when more
sweeps/search directions are used they converge in fewer iterations,
but the penalty of extra computing time per iteration causes this ap-
proach to be less efficient. Figure 3 shows the best convergence plot
for each method for the backward-facing step flow; a summary of
the convergence properties is shown in Table 1. Figure 3 and the last

column of Table I show that GMRES+1LU converges faster than all
other methods; the PR method is not far behind. The GMRES+LR
scheme is less efficient than the LR scheme alone, even though it
converges in significantly fewer iterations. The LR scheme shows
the lowest amplification factor, but at nearly double the cost per
iteration as the GMRES+ILU method and thus requires more time
to converge.

NACA 4412 Airfoil

The flow over a NACA 4412 airfoil at a Reynolds number of

1.5 x 106 and an angle of attack of 13.87 deg was computed using
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Table I Convergence for backward-facing step

Microseconds/ Milliseconds/

Scheme /7 Ar A,F. poinffiteration point

LR(10) 0.1 1012 0.818 40.1 2.17

PR(10) 0.5 I012 0.912 16.7 1.69

ILU 0.1 1 0.994 9.9 23.00

GMRES(5)+LR 0.1 100 0.788 61.4 2.70

GMRES(10)+PR 0.1 10 j2 0.850 32.9 1.97

GMRES(10)+ILU 0.1 1012 0.826 21.1 1.14

Table 3 Convergence for NACA 4412 grid 2

Microseconds/ Milliseconds/

Scheme _8 Ar A.F. point/iteration point

LR(10) 50 10 J2 0.888 25.2 3.68

PR(20) 50 10 tz 0.914 26.6 5.13
ILU 10 0.1 0.990 6.7 12.00

GMRES(5)+LR 5 10 t2 0.827 40.5 3.77

GMRES(10)+PR 50 1.0 0.865 37.4 4.48

GMRES(10)+ILU 5 10 [2 0.780 19.6 1.45

Table 2 Convergence for NACA 4412 grid 1

Microseconds/ Milliseconds/

Scheme ,6 A r A.F. point/iteration point

LR(5) 10 I012 0.862 17.8 1.98

PR(20) 10 10 t2 0.785 34.8 2.31
ILU 20 10 z2 0.959 9.1 3.55

GMRES(10)+LR 5 10 t2 0.680 73.8 3.17

GMRES(i 0)+PR 5 10 t2 0.682 49.3 2.12

GMRES(10)+ILU 5 10 ]2 0.676 27.2 1.14

10 a

,_ lO:
e-

l0

Fig. 3

1_ a ....

0 25 50 75 100 125

CPU seconds

Summary of convergence for the backward-facing step flow.

Fig. 4 119 × 31 grid around
the NACA 4412 airfoil.

four grids of varying refinement. The dimensions of these grids

are 119 x 31,237 x 61,473 x 121 and 945 x 241. These will

be referred to as grids 1, 2, 3, and 4, respectively. Grids 1, 2, and

3 were generated by removing every other point in each direction

from the succeeding finer grid. The normal spacing on the finest grid

was set to 5 x 10 -6 chords. Figure 4 shows the airfoil configuration

with grid 1. This configuration has been studied experimentally

by Coles and Wadcock) 9 Previous computations with the INS2D

code 2° showed good agreement with the experimental data. At this

angle of attack, the airfoil is near stall conditions and has a small

amount of separation occurring at the trailing edge.

In the computations using grid 1, all of the methods ran with a time

step of 10t2. It was found that the LR scheme was most efficient using

five sweeps. The PR runs converged well for 10, 20, and 40 sweeps,

with 20 being the best. The GMRES schemes showed a loss in effi-

ciency when using more than 10 search directions. Figure 5 plots the

best convergence of each method. This figure shows similar trends

to the backward-facing step problem: GMRES+ILU outperformed
all other methods. Table 2 shows that all of the GMRES methods
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had remarkably low amplification factors, below 0.7, for this case.

All methods had higher cost per point per iteration for this case

because the smaller dimensions led to shorter vector lengths. The

cost per point to converge for the GMRES+ILU was the same as

the laminar backward-facing step flow.

The results for grid level 2 are shown in Fig. 6 and in Table 3.

For this grid, the GMRES+ILU approach outperforms all of the

other methods by at least a factor of 2. In all cases, the amplification

factor and the cost per point have increased with the increase in

grid density.

Based on the results thus far, it is apparent that LR and PR are

too expensive to be used as effective preconditioners for GMRES. It

was also found that the ILU scheme alone cannot handle finer grid

cases, as evidenced by the decay of the ILU amplification factor to

0.99 for the previous case. Thus, for the remainder of test cases in

this study, these three approaches have been eliminated. The results

of the three remaining methods for the grid 3 case are shown in

Fig. 7 and Table 4. All three methods ran best using a time step of

1.0. Again, the GMRES+ILU computations outperform the LR and

PR runs by over a factor of 2.

Computations for grid level 4 showed that only the GMRES+ILU

scheme would converge for this problem. The results of this run are
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Table 4 Convergence for NACA 4412 grid 3

Microseconds/ Milliseconds/

Scheme fl A r A.E point/iteration point

LR(10) 100 1.0 0.953 23.2 8.79
PR(40) 5 1.0 0.929 51.3 12.56

GMRES(10)+ILU 5 1.0 0.917 18.7 3.91

Table 5 Convergence for NACA 4412 grid 4

Microseconds/ Milliseconds/

Scheme ,8 Ar A.E point/iteration point

GMRES(10)+ILU 5 1.0 0.961 23.1 11.2
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shown in Fig. 8 and Table 5. Examining the trend of the convergence

rate over all four grid levels shows that all methods suffered an

increase in the amplification factor with increasing density. The

effect of this is shown in Fig. 9, which plots the CPU time required

to reach convergence per point vs the grid level for all of the airfoil

computations. Even the most robust method, GMRES+ILU, saw an

order-of-magnitude increase in this CPU cost from the coarsest grid

to the finest grid. All of the methods required a reduction in the time-

step size as the grid levels increased. Increasing the fl parameter

tended to be a stabilizing influence; the LR and PR methods tended

to require larger 3 for the finer grids. One apparent contradiction

to this is the use of 15 = 5 for the PR grid 3 case. In fact, the PR

convergence for grid 3 did not vary greatly with _5; values from 5

to 100 all converged slowly. The/5 = 5 case was slightly better

than the 15 = 100 run. One distinct advantage of the GMRES+ILU

method is that it has optimum convergence with the same value of

for all of the grid levels.

Table 6 Convergence for three-element arifoil

Microseconds/ Milliseconds/

Scheme /_ Ar A.E point/iteration point

LR(10) 100 1.0a 0.990 22.6 49.7

PR(20) 10 1.0 0.927 52.8 14.7

GMR(10)+ILU I0 l0 _2 0.892 29.2 5.37

a&r reduced by a factor of 0.5 every 250 iterations.
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Fig. 10 Grid around the
three-element airfoil.

Three-Element Airfoil

The flow over a three-element airfoil was computed at an angle of

attack of 8.0 deg and a Reynolds number of 9 x 106. This geometry

has recently become a standard test case for multielement airfoil

flows. This geometry is a McDonnell Douglas airfoil and has been

tested extensively at the NASA Langley low-turbulence pressure

tunnel (LTPT). _* The configuration consists of a leading-edge slat

deflected 30 deg and a trailing-edge flap deflected 30 deg. This

geometry has been used as a test case for the INS2D flow solver for

a number of turbulence model and grid resolution studies.* The grid

and flow conditions of the current problem were some of the most

difficult cases to converge in the previous study.

Figure 10 shows the grids used for the three-element airfoil. For

clarity, only every other grid line in each direction is shown. A total

of 68,000 grid points and six zones were used: a 121 x 41 C grid

around the slat (top of Fig. I0); a 321 x 101 C grid around the main

element (near field shown in middle of Fig. 10); a 141 x 51 C grid

around the flap (top of Fig. 10); a 41 x 31 H grid in the wake of

the flap (bottom of Fig. 10); a 131 x 61 H grid extending from the

main elements' flap cove to the downstream far field (bottom of

Fig. 10); and a 141 x 101 embedded grid above the flap, used to

help resolve the merging wake in this region (middle of Fig. 10). The

normal wall spacing for all grids is 2 x 10 -6 chords. The overlaid

chimera scheme allows individual grids to be generated for each

airfoil element. When the grid for one element intersects another

airfoil element, a hole is cut to remove grid points lying inside the

element. This creates a hole boundary. The fringe-point variables

on the hole boundaries are updated by interpolating the value of
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the dependent variables from interior points of neighboring grids.

Similarly, the variables on the outer boundaries of all but the main-

element grid are updated using interpolation of dependent variables

from neighboring grids.

The LR and PR computations for this configuration required a re-

duction in the time step to A • = 1.0 to remain stable; GMRES+ILU

ran with a time step of 1012. The LR computations were extremely

slow to converge and were found to benefit from a further decrease

in the time step during the calculations, and so the LR time step was

decreased by a factor of 2 every 250 iterations. The PR computations
did not suffer from the same problems. It was found that the PR com-

putations converged best using 20 sweeps. The GMRES+ILU com-

putations performed best with 10 search directions. The best perfor-

mance of each method is plotted in Fig. 11 and shown in Table 6. It

can be seen that the GMRES+ILU method outperformed the other

two; it converges about nine times faster than the LR scheme and

about three times faster than the PR computations.

Conclusion

Several implicit schemes have been implemented into the INS2D

code and tested for the ftow over a backward-facing step, a NACA

airfoil, and a three-element airfoil. The results indicate that when

running on a single processor the GMRES method preconditioned

with ILU factorization outperforms line relaxation and point relax-

ation and that the latter two methods are not efficient precondition-

ers for GMRES. The GMRES+ILU method has provided between

a factor of 2 and 9 improvement in CPU costs over previously pub-

lished results of the INS2D code. In addition, the point-relaxation

scheme performed remarkably well for the three-element airfoil

problem. Extensive tests have indicated that GMRES is most ef-

ficient when using 10 search directions; if more search directions

are used, the computation will converge in fewer iterations, but at

a greater cost. The GMRES+ILU algorithm also remained more

stable than the LR or PR methods; it ran with larger time steps and

did not require an increase in the value of the artificial compress-

ibility constant _ for the finger grids used in the NACA 4412 airfoil

calculations.

The GMRES+ILU algorithm has been shown to work quite
well for a two-dimensional flow solver. The success with this al-

gorithm has also been observed recently by others. 6'9-it In partic-

ular, Venkatakrishnan and Mavriplis 1_ performed a similar study

of implicit solvers for an unstructured flow code; they found their
GMRES+ILU worked best. As it was utilized here, the GMRES

algorithm would be very memory intensive for a three-dimensional

flow solver. Future work will concentrate on utilizing a matrix-free

method of the GMRES algorithm. The most important part of this

work will be determining an effective preconditioner that will not

require significant amounts of memory.
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