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A resource theory of quantum coherence attempts to characterize the quantum coherence that
exists in a given quantum system. Many different approaches to a resource theory of coherence have
recently been proposed, with their differences lying primarily in the identification of “free” or “inco-
herent” operations. In this article we compare a number of these operational classes. In particular,
the recently introduced class of dephasing-covariant operations is analyzed, and we characterize
the Kraus operators of such maps. A number of new coherence measures are introduced based on
relative Rényi entropies, and we study incoherent state transformations under different operational
classes. In particular, we show that the incoherent Schmidt rank can be increased arbitrarily large
by certain non-coherence generating operations. The distinction between asymmetry-based versus
basis-dependent notions of coherence theory is clarified, and we further develop the resource theory
of N -asymmetry, where N is the group of all diagonal incoherent unitaries.

In quantum systems, the notion of coherence is ubiq-
uitous. For instance, the state |+〉 =

√
1/2(|0〉+ |1〉) can

be seen as a coherent superposition of the states |0〉 and
|1〉, while the state |0〉 can itself be seen as a coherent

superposition of |+〉 and |−〉 =
√

1/2(|0〉 − |1〉). Thus,
without further qualification, it is completely ambiguous
to say that one state has coherence while another does
not. One way to make such a statement meaningful in-
volves first identifying a fixed reference basis, and then
defining coherence with respect to this basis. More pre-
cisely, a basis for the system’s state space is specified
(called the incoherent basis), and then a given state is
deemed incoherent if it is diagonal in this basis.

Recently, researchers have used this distinction be-
tween coherent and incoherent states to construct re-
source theories of quantum coherence [1–10]. A gen-
eral quantum resource theory consists of a class of “free”
states along with a class of “free” or allowable opera-
tions [11]. The essential resource-theoretic condition is
that the set of free states is closed under the set of free
operations. Hence any state that is not free is a resource
since it cannot be obtained using the allowable opera-
tions. For quantum coherence, the free states are the
incoherent states I. As for the free or “incoherent” op-
erations, many different approaches have been proposed,
motivated by various degrees of physical and mathemat-
ical considerations.

The largest class of incoherent operations are the so-
called “maximal” incoherent operations (MIO) [1, 12],
and these consist of all completely positive (CP) maps
that act invariantly on I. A smaller set of operations
was introduced by Baumgratz et al. and simply goes by
the name “incoherent operations” (IO) [3]. Two other
proposed classes of operations are the strictly incoherent
operations (SIO) [7, 9] and the dephasing-covariant in-
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coherent operations (DIO) [13, 14]. Each of these opera-
tional classes are defined to reflect different measurement
scenarios. However, from a resource-theoretic perspec-
tive, they all lack physical consistency in terms of their
implementation: in order to perform a general MIO/IO/-
DIO/SIO map, coherence needs to be consumed on some
ancilla system [13]. The class of operations that maintain
implementation consistency was introduced in Ref. [13]
under the name of physical incoherent operations (PIO).
The relationship between these various incoherent oper-
ations is depicted in Fig. 1.

In conjunction with each of the operational classes,
one can define different measures of coherence. From
a resource-theoretic perspective, the crucial property of
these measures is that they are monotonic under the spec-
ified class of operations. To give the measures physical
meaning, one seeks to find some operational interpreta-
tion of the measure, thereby enabling the measure to
quantify some particular physical property or process.
A number of coherence measures have been proposed in
the literature such as the relative entropy of coherence
and the `1-norm of coherence [3], entanglement-induced
measrues of entanglement [15], distillable coherence and
coherence of formation [6, 7], and the robustness of co-
herence [16]. For a nice summary of different coherence
measures, see the recent review article [17]. In this pa-
per we introduce a general prescription for generating a
number of new “distance-based” measures of coherence.

Close parallels can be drawn between the resource the-
ory of coherence and the resource theories of asymmetry
[18–20]. In the latter, one identifies a particular unitary
group G, and the free states are those that are invariant
under the G-twirling operation ρ →

∫
G
dgU(g)ρU(g)†.

The free operations are those that commute with the uni-
tary action of the group and are called G-covariant. In
physical systems, it is natural to choose G as the group
of unitaries that commute with the time-translation op-
erator eitH , where H is the Hamiltonian of the system.
In this way, one can speak of “coherences” between the
eigenspaces of H, and a state is incoherent if it commutes
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FIG. 1: A heuristic comparison between the 5 incoherence
operations MIO/DIO/IO/SIO/PIO and TIO. The first 5 are
classes of CPTP maps defined on a system with a specified
incoherent basis. Maps from each of these classes act invari-
antly on the set of states diagonal in this basis. TIO is fun-
damentally different since the allowed operations in this class
depend on invariances of the generator H which may or may
not fix a single incoherent basis. In general, PIO will not be
a subset of TIO since the former includes all permutations
while the latter may not. On the other hand, TIO 6⊂ MIO
because TIO allows for decoherence-free subspaces.

with eitH for all time; states that do not commute pos-
sess asymmetry with respect to the unitary group. Thus
one obtains a type of coherence resource theory based on
this notion of asymmetry. The G-covariant operations
are free in this resource theory, and in Ref. [21] these
operations were also called translationally-invariant op-
erations (TIO).

Note that an asymmetry-based resource theory of
coherence is categorically distinct from PIO/SIO/IO/-
DIO/MIO resource theories since in general the set of
G-invariant states will not coincide with I. The resource
theories of PIO/SIO/IO/DIO/MIO are based on a basis-
dependent definition of coherence which consists of first
specifying an incoherent basis and then defining incoher-
ent states as being diagonal in this basis. In contrast,
the resource theory of TIO consists of first specifying a
symmetry and then defining incoherent states as those
possessing this symmetry. Consequently, the asymmetry
approach can lead to decoherence-free subspaces when
extending the symmetry to multiple systems, as we dis-
cuss in Section IV of this paper. A detailed discussion on
the distinction between TIO and the family of operations
PIO/SIO/IO/DIO/MIO can also be found in [14].

The purpose of this article is to provide a compara-
tive investigation into the resource theories of coherence
under different operational classes. This is an accompa-
nying paper to Ref. [13] and covers the detailed proofs
omitted from the latter. A summary of results and an
outline of the paper is as follows.

• In Section I we give a quantitative overview of
the operational classes PIO/DIO/IO/DIO/ MIO.
Besides characterizing the structure of maps be-
longing to these classes, we focus on the ability
of these maps to transform states. In particular,
we consider the question of pure state transforma-

tions using incoherent operations. We show that
the so-called majorization condition decides trans-
formation feasibility for the classes SIO and a spe-
cial subclass of IO that we denote by sIO. How-
ever, whether or not the majorization condition
also holds for IO remains an open problem and we
point out mistakes in recent proofs claiming it does
[22, 23]. By constructing an explicit family of trans-
formations, we show that the majorization condi-
tion can be violated by MIO - even stronger the
Schmidt rank can be increased by MIO (Theorem
14).
• For a general single-party state ρ, one can associate

a bipartite maximally correlated state ρ(mc) with
respect to a fixed incoherent basis according to

ρ =
∑
xy

cxy|x〉〈y| ⇔ ρ(mc) =
∑
xy

ccy|xx〉〈yy|. (1)

The question is then whether a transformation
ρ → σ using one of the incoherent operational
classes implies that the corresponding transforma-
tion ρ(mc) → σ(mc) is possible using LOCC. We
show that transforming states using PIO/SIO/sIO
indeed implies the ability to transform the corre-
sponding maximally correlated states using zero-
communication LOCC/one-way LOCC/ two-way
LOCC, respectively.
• In Section II we introduce a number of new inco-

herent monotones/measures for the various oper-
ational classes based. All of these measures are
unified within a very general framework for con-
structing incoherent measures. Two class of mea-
sures included in this framework are the relative
Rényi α-entropies of incoherence and the quantum
relative Rényi α-entropies of incoherence. Within
this class are the Robustness of Coherence and the
∆-Robustness of Coherence.
• In Section III we provide a comprehensive overview

of coherence in qubit systems. Necessary and suffi-
cient conditions are proven for the transformation
of qubit mixed states using SIO/IO/DIO/MIO, a
result first reported in [13]. We show that all mea-
sures of coherence for qubits can be expressed in
terms of the Robustness of Coherence and the ∆-
Robustness, and we provide such expressions for
the relative entropy of coherence, and the `-1 norm
of coherence.
• In Section IV we discuss in greater detail the rela-

tionship between coherence resource theories based
on asymmetry and those using a basis-dependent
definition of coherence. We develop the resource
theories of G-asymmetry and N -asymmetry, where
G is the group of all incoherent unitaries and N is
the group of all diagonal incoherent unitaries.
• Finally, Section V describes a number of open prob-

lems related to the coherence measures and incoher-
ent state transformations studied in this paper.
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Throughout the paper we assume that an incoherent
basis has been fixed and is taken as the computational
basis. We consider d-dimensional quantum systems, and
for bipartite systems the dimensions of the subsystems
will be denoted by dA and dB . The map which completely
dephases in the computational basis will be denoted by
∆, and its action is given by

ρ 7→ ∆(ρ) =

d∑
i=1

|i〉〈i|ρ|i〉〈i|. (2)

I. FIVE TYPES OF INCOHERENT
OPERATIONS

A. Physical Incoherent Operations (PIO)

The class of PIO is defined as the collection of opera-
tions so-obtained via actions on a primary and an ancil-
lary system that are non-coherence generating on both
systems [13]. Denoting the primary system by A and the
ancilla by B, a general PIO operation corresponds to per-
forming an incoherent unitary UAB on the input state ρA
and some fixed incoherent state ρ̂B , and then performing
a general incoherent projective measurement on system
B. The Kraus operators for a general completely positive
trace preserving map (CPTP) belonging to PIO can be
characterized by the following.

Proposition 1 ([13]). A CPTP map Ê is a physically
incoherent operation if and only if it can be expressed as a
convex combination of maps each having Kraus operators
{Kj}rj=1 of the form

Kj = UjPj =
∑
x

eiθx |πj(x)〉〈x|Pj , (3)

where the Pj form an orthogonal and complete set of in-
coherent projectors on system A and πj are permutations.

1. State Transformations

Proposition 1 shows that there is very little freedom in
the allowable Kraus operators for a PIO map. The fol-
lowing lemma completely characterizes pure state trans-
formations by PIO.

Proposition 2. For any two state |ψ〉 and |φ〉, the trans-
formation |ψ〉 → |φ〉 is possible by PIO if and only if

|ψ〉 =

k∑
i=1

√
piUi|φ〉, (4)

where the Ui are incoherent isometries such that
PiUi|φ〉 = Ui|φ〉 for an orthogonal and complete set of
incoherent projectors {Pi}i.

Proof. Necessity of this condition follows from the form
of Kj as given in Eq. (3). Since Kj |ψ〉 ∝ |φ〉 for every j,
we must have 1√

pj
UjPj |ψ〉 = |φ〉. Thus,

1
√
pj
Pj |ψ〉 = U†j |φ〉 = PjU

†
j |φ〉.

Sufficiency of Eq. (4) can likewise be seen. Given the
form of Eq. (4), one performs the incoherent projection
{Pi}i on |ψ〉. Since PjUi|φ〉 = 0 for i 6= j, outcome Pj
renders the post-measurement state Uj |φ〉. The transfor-

mation is complete by applying U†j .

A generic state |ψ〉 will not have a decomposition given
by Eq. (4) for k > 1. Thus, most pure states cannot
be transformed into any other outside of their respective
incoherent unitary equivalence class. This situation is
highly reminiscent of multipartite entanglement in which
most pure states cannot be transformed to any another
other outside their respective LU equivalence class.

In the asymptotic setting of many copies, the power
of PIO is greatly improved. The following proposition
shows that PIO is just as powerful as Maximally Inco-
herent Operations (MIO) in terms of distilling maximally

coherent bits |+〉 =
√

1/2(|0〉+ |1〉) from many copies of
a pure state. The optimal distillation rate under MIO
is given by S[∆(ψ)], where S[ρ] = −tr[ρ log ρ] is the von
Neumann entropy [7].

Proposition 3 ([7]). For any ε > 0 and n sufficiently

large, the transformation |ψ〉⊗n →
ε
≈ |+〉⊗bnRc is possible

by PIO whenever R < S[∆(ψ)].

Proof. The proof for this is presented in Theorem 3 of
Ref. [7] where the authors consider distillation using
more general Incoherent Operations (IO). However, their
protocol consists of incoherent unitaries and projections,
and therefore it can be accomplished using PIO.

Rather surprisingly, the reverse transformation

|+〉⊗m →
ε
≈ |ψ〉⊗n is not possible for any coherent state

|ψ〉 that is not maximally coherent, i.e. if |ψ〉 is not of the

form 1√
d

∑d
x=1 e

iθx |x〉. As described in the main text, a

proof of this fact follows from communication complexity
results in LOCC entanglement transformations. The key
idea is that a PIO transformation ρ →

∑
j pjρj ⊗ |j〉〈j|

can be converted into a bipartite LOCC transformation

ρ(mc) →
∑
j pjρ

(mc)
j ⊗ |jj〉〈jj| with no communication,

where the correspondence between ρj and ρ
(mc)
j is given

by Eq. (1). Specifically, if {UjPj} is the PIO measure-
ment, then the corresponding LOCC protocol consists of
Alice locally measuring {UjPj}, Bob learning the out-
come of this measurement through the projective mea-
surement {Pj}, and then him applying the corresponding
Uj . Therefore, if |+〉〈+|⊗m →

∑
j pj |ψj〉〈ψj | ⊗ |j〉〈j| by

PIO with
∑
j pj |ψj〉〈ψj |

ε
≈ |ψ〉〈ψ|⊗n for arbitrarily small
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ε and m is sufficiently large, then it is possible to trans-
form sufficiently large copies of an EPR state arbitrarily
close to |ψ(mc)〉⊗n by local operations and no commu-
nication. However, as proven in Refs. [24, 25], for any
fixed n, there exists an ε-dependent lower bound on the
communication needed to perform such an entanglement
dilution, provided |ψ(mc)〉 is not maximally entangled or
a product state.

From this result we see that maximally coherent states
are the weakest among all pure states, in terms of their
ability to transform into other states. Under asymptotic
PIO, the entire hierarchy of coherent states gets turned
upside down.

B. Strictly Incoherent Operations (SIO)

The class of SIO is defined as the collection of oper-
ations so-obtained via actions on a primary and an an-
cillary system that are non-coherence generating on just
the primary system. Note the difference in description
between SIO and PIO as stated above. A precise defini-
tion of SIO is given in terms of Kraus operator represen-
tations as follows.

Definition 1 ([7, 9]). Let EA→B : L(HA) → L(HB)
be a CPTP map. Then, EA→B is said to be a Strictly
Incoherent Operation (SIO) if it can be represented by
Kraus operators {Mj} such that

∆
(
MjρM

†
j

)
= Mj∆(ρ)M†j ∀j, ∀ ρ . (5)

The following lemma characterizes the form of Kraus
operators belonging to an SIO CPTP map.

Lemma 4. Let EA→B : L(HA) → L(HB) be a CPTP
map. Then, EA→B is SIO if and only if it can be repre-
sented by Kraus operators {Mj} of the form

Mj =

dA∑
x=1

cjx|πj(x)〉〈x|. (6)

Proof. Sufficiency is obvious to check. Suppose now that
EA→B is SIO. Following same arguments of Lemma 12,
there must exist Kraus operators {Mj} with the proper-
ties that

∆
(
Mj |x〉〈x|M†j

)
= Mj |x〉〈x|M†j and (7)

∆
(
Mj |x〉〈x′|M†j

)
= 0 (8)

for all x′, x ∈ {1, ..., dA} with x′ 6= x. Eq. (7) implies
that

Mj =

dA∑
x=1

cj,x|fj(x)〉〈x|, (9)

where fj : {1, · · · , dA} → {1, · · · , dA}. Eq. (8) implies

that

〈y|Mj |x〉〈x′|M†j |y〉 = 0 ∀x, x′, y, (10)

which is equivalent to the condition that fj is one-to-one.
Thus, fj is a permutation πj and Mj takes the form of
Eq. (6).

1. Relating SIO to Maximally Correlated LOCC

The discussion after Proposition 3 describes how
every PIO operation can be translated into a zero-
communication LOCC protocol. A similar relationship
holds for SIO and one-way LOCC.

Proposition 5. Using the notation of Eq. (1), if ρ→ σ
by SIO, then there exists a bipartite LOCC transforma-
tion ρ(mc) → σ(mc).

Proof. Let {Mj} be a set of SIO Kraus operators so that
for state ρ =

∑
xy dxy|x〉〈y| the QC post-measurement

state is

σ =
∑
j

MjρM
†
j ⊗ |j〉〈j|

=
∑
x,y

cjxc
∗
jydxy|πj(x)〉〈πj(y)| ⊗ |j〉〈j|, (11)

where we have used Eq. (6). Then the transformation
ρ(mc) → σ(mc) can be accomplished by Alice perform-
ing the measurement {Mj}, announcing her result “j”
to Bob, and then Bob performing the local permutation
Πj : |x〉 → |πj(x)〉.

2. State Transformations

Using Proposition 5, we can completely classify pure
state transformations under SIO. The following is an ana-
log to Nielsen’s theorem for entanglement transforma-
tions of bipartite pure states [26]. Consider two states

|ψ〉 =

m∑
i=1

√
ψ↓i |i〉, |φ〉 =

n∑
i=1

√
φ↓i |i〉

where we have assumed without loss of generality that

the ψ↓i are non-negative and ordered such that ψ↓i ≥
ψ↓i+1, and likewise for the φ↓i . We say that |φ〉 majorizes

|ψ〉 (denoted by ~τ(ψ) ≺ ~τ(φ)) if
∑k
i=1 ψ

↓
i ≤

∑k
i=1 φ

↓
i for

all k = 1, · · · ,max{m,n}, where a sufficient number of
zeros are padded to the vector of shorter length so that
both summations can be taken over max{m,n} elements.

Lemma 6. The state transformation |ψ〉 → |φ〉 is possi-
ble by SIO iff ~τ(ψ) ≺ ~τ(φ).

Proof. Sufficency: Suppose that ~τ(ψ) ≺ ~τ(φ). Then
there exists a doubly stochastic matrix D such that
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~τ(ψ) = D~τ(φ) [27]. Birkhoff’s Theorem assures that
D =

∑
α pαΠα, where the pα form a probability distribu-

tion and the Πα are permutation matrices. Then define
the operators Mα :=

√
pαΠ†α • S, where the elements of

S are given by [[S]]ij =
√
φi/
√
ψj and “•” denotes the

Hadamard product. Recall that the Hadamard product
of two matrices A and B is the matrix A • B with ele-
ments [[A •B]]ij = [[A]]ij [[B]]ij . Note that each Mα has
the form of Eq. (6). By construction Mα|ψ〉 ∝ |φ〉 for
every α, and the relation ~τ(ψ) =

∑
α pαΠα~τ(φ) readily

implies that
∑
αM

†
αMα = I.

Necessity: Now suppose that |ψ〉 → |φ〉 by SIO. By
Prop. 5, this means that |ψ(mc)〉 → |φ(mc)〉 by bipar-
tite LOCC. However, a necessary condition for this is
that ~τ(ψ) ≺ ~τ(φ) [26].

By the same arguments, additional statements about
SIO pure-state transformations can be made that are
analogous to statements in bipartite LOCC. The follow-
ing are the coherence versions of the results presented in
[28] and [29] respectively.

Proposition 7. The multi-outcome transformation
|ψ〉 → {|φi〉, pi} is possible by SIO iff ~τ(ψ) ≺

∑
i pi~τ(φi).

Proposition 8. The maximum probability of converting
|ψ〉 → |φ〉 is given by

min
k∈{1,··· ,max{m,n}}

∑n
i=k ψ

↓
i∑n

i=k φ
↓
I

. (12)

With Lemma 6, the asymptotic transformation of pure
states becomes reversible under SIO. Indeed, the dilu-
tion protocol described in Ref. [7] relies on being able
to perform any pure state transformation provided the
majorization condition is satisfied. We thus have

Corollary 9 ([7]). For any ε > 0 and n sufficiently large,

the transformation |ψ〉⊗bnRc →
ε
≈ |ϕ〉⊗n is possible when-

ever R < S[∆(ψ)]/S[∆(ϕ)].

C. Incoherent Operations (IO)

The incoherent operations of Baumgratz et al. has re-
ceived a considerable amount of attention in the resource-
theoretic development of quantum coherence. Physically
these can be seen as generalized measurements performed
on a quantum system that are coherence non-generating
for each measurement outcome; however their physi-
cal implementation may require performing a coherence-
generating unitary across the primary system and the
ancillary system. Formally, their definition is given by
the following.

Definition 2 ([3]). Let EA→B : L(HA) → L(HB) be a
CPTP map. Then, EA→B is said to be an Incoherent Op-
eration (IO) if it can be represented by Kraus operators

{Mα} such that

∆
(
Mα|x〉〈x|M†α

)
= Mα|x〉〈x|M†α ∀x. (13)

From this definition, it is easy to see that an arbitrary
incoherent measurement has Kraus operators {Mα}α of
the form

Mα =

d∑
i=1

cα,i|fα(i)〉〈i| (14)

where fα : {1, · · · , d} → {1, · · · , d} and the completion
identity demands ∑

α such that
fα(i)=fα(j)

c∗α,icα,j = δij . (15)

Note that we could further decompose the sum as

∑
α such that
fα(i)=fα(j)

c∗α,icα,j =

d∑
k=1

∑
α such that

i,j∈f−1
α (k)

c∗α,icα,j = δij . (16)

Let us comment on the problem of transforming pure
states using Incoherent Operations. It has been reported
that the majorization condition characterizes pure-state
transformations under IO; i.e. that Lemma 6 can be
extended to IO [22, 23]. However, as we now discuss, the
proofs given in these references are not correct. It is still
an open question whether ~τ(ψ) ≺ ~τ(φ) is necessary for
an IO transformation |ψ〉 → |φ〉.

1. Mistakes in the Majorization Proofs

To explain the mistake made in Ref. [22], let us begin
by studying the action of an incoherent operator Mα on
a state |ψ〉 =

∑
i ψi|i〉. We have

Mα|ψ〉 =

d∑
k=1

 ∑
i∈f−1(k)

cα,iψi

 |k〉. (17)

What interests us are the diagonal elements of
∆
(∑

αMα|ψ〉〈ψ|M†α
)
. They have undergone the trans-

formation

(
|ψk|2

)
k
→

∑
α

 ∑
i∈f−1

α (k)

cα,iψi

 ∑
j∈f−1

α (k)

c∗α,jψ
∗
j


k

=

∑
α

 ∑
i,j∈f−1

α (k)

ψiψ
∗
j cα,ic

∗
α,j


k

=

∑
i,j

ψiψ
∗
j

∑
α such that

i,j∈f−1
α (k)

cα,ic
∗
α,j


k

. (18)
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In Ref. [22], the authors assume that for each value of k,
the cross terms vanish. In other words, the assumption
is that ∑

α such that

i,j∈f−1
α (k)

cα,ic
∗
α,j = δij

when, in fact, the full condition is given by Eq. (16).

To bring this out more explicitly, we adopt the notation
used in [22]. From the completion identity, Eq. 18 of [22]
gives∑

n

(δ1,i(2)δ1,i(3) + δ2,i(2)δ2,i(3))k
(n)
2 k

(n)
3 = 0. (19)

Note here the authors are assuming that the δj,i(l) do de-
pend on n, which is not true in general. Nevertheless, let
us momentarily continue with the argument with δj,i(l)
being independent of n. Because the measurement is in-
coherent, we have that

δ1,i(2)δ1,i(3) 6= 0 ⇒ δ2,i(2)δ2,i(3) = 0

δ2,i(2)δ2,i(3) 6= 0 ⇒ δ1,i(2)δ1,i(3) = 0. (20)

This means that Eq. (19) implies∑
n

δ1,i(2)δ1,i(3)k
(n)
2 k

(n)
3 =

∑
n

δ2,i(2)δ2,i(3)k
(n)
2 k

(n)
3 = 0.

(21)
Therefore, when computing

∑
n | · |2 in their Eq. 21, the

LHS of the second equation becomes∑
n

|δ2,i(2)k
(n)
2 ψ2 + δ2,i(3)k

(n)
3 ψ3|2

= δ2,i(2)ψ
2
2 + δ2,i(3)ψ

2
3

+ ψ2ψ3

∑
n

δ2,i(2)δ2,i(3)(k
(n)
2 k

(n)
3 + k

(n)
3 k

(n)
2 )

= δ2,i(2)ψ
2
2 + δ2,i(3)ψ

2
3 , (22)

where we use Eq. (21). But now let us consider the most
general IO measurement by allowing δj,i(l) to depend on

n. That is, we make the replacement δj,i(j) → δ
(n)
j,i(j).

Then Eq. (19) becomes∑
n

(δ
(n)
1,i(2)δ

(n)
1,i(3) + δ

(n)
2,i(2)δ

(n)
2,i(3))k

(n)
2 k

(n)
3 = 0. (23)

However, we no longer have Eq. (21) because of
the dependence on n. In other words, in general

∑
n δ2,i(2)δ2,i(3)k

(n)
2 k

(n)
3 6= 0. Therefore,∑

n

|δ(n)
2,i(2)k

(n)
2 ψ2 + δ

(n)
2,i(3)k

(n)
3 ψ3|2

=
∑
n

δ
(n)
2,i(2)|k

(n)
2 |2ψ2

2 +
∑
n

δ
(n)
2,i(3)|k

(n)
3 |2ψ2

3

+ ψ2ψ3

∑
n

δ
(n)
2,i(2)δ

(n)
2,i(3)(k

(n)
2 k

(n)
3 + k

(n)
3 k

(n)
2 ). (24)

The cross-term no longer vanishes.
An alternative proof for the majorization condition

was presented in Ref. [23]. The proof technique used
is similar to the proof of Lemma 6 in which the incoher-
ent transformation is mapped to a bipartite LOCC pure
state transformation. However, the LOCC measurement
described in that paper is not trace-preserving, and it is
not clear how this can be remedied [30].

2. Majorization for a Special Subclass of IO

At the present, it remains unknown whether or not
the majorization criterion dictates the feasibility of pure-
state transformations by IO. However, we can introduce
yet another class of operations more general than SIO
for which majorization precisely captures pure-state con-
vertibility.

Definition 3. Let EA→B : L(HA)→ L(HB) be a CPTP
map. Then, EA→B is said to be a special Incoherent Op-
eration (sIO) if it can be represented by Kraus operators
{Mα} each having the form

Mα =
∑
x

cαxΠα|f(x)〉〈x|, (25)

where f : {1, · · · , d} → {1, · · · , d} and Πα is a permuta-
tion. Note that SIO ⊂ sIO ⊂ IO.

We first show that the statement of Proposition 5 can
be extended to sIO operations. However, the correspond-
ing LOCC transformation now uses two-way classical
communication.

Proposition 10. If ρ → σ by sIO, then there exists a
bipartite two-way LOCC transformation ρ(mc) → σ(mc).

Proof. Suppose that ρ → σ =
∑
αMαρM

†
α ⊗ |α〉〈α| for

sIO Kraus operators {Mα} given by Eq. (25). Let S ⊂
{1, · · · , d} denote the range of f , κs = |f−1(s)| for s ∈ S,
and κ =

∏
s∈S κs. For each s ∈ S, let {|s, js〉 : js =

0, · · · , |f−1(s)|−1} be a relabeling of the kets |x〉 with x ∈
f−1(s). Next we want to define a generalized Hadamard
basis with respect to the |s, js〉:{

|s̃, ks〉 :=

κs−1∑
js=0

ei2πjsks/κs |s, js〉
}
ks=0,··· ,κs−1

.
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Finally, for every sequence ~k = (k1, k2, · · · , k|S|) with
ks ∈ {0, · · · , κs − 1}, define the operator

N~k =
1√
κ

|S|∑
s=1

|s〉〈s̃, ks|. (26)

It can be seen that
∑
~kN

†
~k
N~k = I. The LOCC protocol

then consists of Bob first performing the measurement
{N~k}~k. The state transformation corresponding to out-

come ~k = (ks)
|S|
s=1 is

ρ(mc) =
∑
xy

dxy|xx〉〈yy|

=
∑
ss′

∑
js,js′

dsjs,s′js′ |s, js〉〈s
′, js′ |A ⊗ |s, js〉〈s′, js′ |B

→∝
∑
ss′

∑
js,js′

dsjs,s′js′ e
i2π(js−js′ )ks/κs

× |s, js〉〈s′, js′ |A ⊗ |s〉〈s′|B . (27)

Bob then announces his outcome ~k = (ks)
|S|
s=1 to Alice

who subsequently performs the unitary

U~k =
∑
s

∑
js

e−i2πjsks/κs |s, js〉〈s, js|. (28)

At this stage, Alice and Bob share the state

ρ̂(mc) =
∑
xy

dx,y|x〉〈y|A ⊗ |f(x)〉〈f(y)|B , (29)

regardless of Bob’s outcome ~k. Alice now locally per-
forms the sIO measurement {Mα}. She announces her
result to Bob who then performs the conditional permu-
tation Πα on his system. Thus, the resulting QC state
is

σ(mc) =∑
xy

dx,ycα,xc
∗
α,y

× (Πα ⊗Πα)|f(x)f(x)〉〈f(y)f(y)|A1B1
(Πα ⊗Πα)

⊗ |αα〉〈αα|A2B2
. (30)

Corollary 11. The state transformation |ψ〉 → |φ〉 is
possible by sIO iff ~τ(ψ) ≺ ~τ(φ).

D. Dephasing-Covariant Incoherent Operations
(DIO)

We next introduce a new class of operations that gen-
eralizes SIO. Notice that SIO is defined in terms of the
Kraus operators of a generalized measurement and their
covariance with the completely dephasing channel. But

what if one looks more generally at CPTP maps and not
just specific Kraus operator representations? DIO repre-
sents the class of all CPTP maps that possess covariance
with the completely dephasing channel.

Definition 4. Let EA→B : L(HA)→ L(HB) be a CPTP
map. Then, EA→B is said to be a Dephasing-Covariant
Incoherent operation (DIO) if

[∆, EA→B ] = 0 (31)

which is equivalent to

∆
(
EA→B(ρ)

)
= EA→B (∆(ρ)) ∀ ρ . (32)

The following provides an alternative characterization
of DIO maps that is computationally convenient.

Lemma 12. Let EA→B : L(HA) → L(HB) be a CPTP
map. Then, EA→B is DIO if and only if for all x′, x ∈
{1, ..., dA} with x′ 6= x:

EA→B(|x〉〈x|) ∈ I and (33)

∆
(
EA→B(|x〉〈x′|)

)
= 0 . (34)

Proof. The first condition in the equation above ensures
that EA→B is a MIO. Therefore this is a necessary con-
dition. The second condition is also necessary since

∆
(
EA→B(|x〉〈x′|)

)
=

EA→B (∆(|x〉〈x′|)) = EA→B (0) = 0

Now, to see that these two conditions are sufficient,
note that any density matrix ρ acting on HA can be de-
composed as

ρ = ∆(ρ) + Z (35)

where Z is an Hermitian matrix with zeros on the diag-
onal. We therefore have

∆
(
EA→B(ρ)

)
= ∆

(
EA→B(∆(ρ))

)
+ ∆

(
EA→B(Z)

)
= EA→B(∆(ρ)) + ∆

(
EA→B(Z)

)
= EA→B(∆(ρ)) (36)

where the second equality follows from (33), and the third
equality follows from (34). Hence, EA→B is DIO iff (33)
and (34) holds.

Note that if we denote by

vy|x ≡


〈y|M1|x〉
〈y|M2|x〉

...
〈y|Mm|x〉

 ∈ Cm , (37)

we get the following corollary:

Corollary 13. Using the notation of (37), a CPTP map
EA→B : L(HA) → L(HB) is a DIO if and only if there
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exists conditional probabilities ry|x such that

v†y′|xvy|x = ry|xδyy′ (38)

v†y|xvy|x′ = ry|xδxx′ . (39)

Consider now the equation σ = E(ρ) where E is DIO.
We therefore have

σyy′ =
∑
x,x′

ρxx′〈y|E(|x〉〈x′|)|y′〉 (40)

In the notations above, this is equivalent to

σyy′ =
∑
x,x′

ρxx′v
†
y′|x′vy|x (41)

The diagonal terms have the form

σyy =
∑
x

ry|xρxx . (42)

E. Maximal Incoherent Operations (MIO)

We reach the final class of operations in our overview.
These are simply the class of CPTP maps that act invari-
antly on the set of incoherent states. It is not difficult to
see that this can be equivalently defined as follows.

Definition 5 ([1, 12]). Let EA→B : L(HA) → L(HB)
be a CPTP map. Then EA→B is a Maximal Incoherent
Operation (MIO) if

∆ ◦ EA→B ◦∆ = EA→B ◦∆ . (43)

Let EA→B : L(HA)→ L(HB) be a CPTP map with an
operator sum representation {Mj}mj=1, and letM denotes

the set of MIOs. Then from the definition above, EA→B ∈
M if and only if

m∑
j=1

〈y|Mj |x〉〈x|M†j |y
′〉 = 0 (44)

for all x ∈ {1, ..., dA} and y 6= y′ with y, y′ ∈ {1, ..., dB}.
Using the notation of (37) we get that then EA→B ∈ M
if and only if there exists dAdB vectors vy|x ∈ Cm, and
conditional probability distribution ry|x (i.e. ry|x ≥ 0
and

∑
y ry|x = 1) such that

v†y′|xvy|x = ry|xδyy′ (45)

dB∑
y=1

v†y|xvy|x′ = δxx′ , (46)

where the first equation follows from (44) and the second

from
∑
jM

†
jMj = I.

1. Pure state transformations

Consider a MIO CPTP maps that converts |ψ〉 =∑
x

√
px|x〉 to |φ〉 =

∑
y

√
qy|y〉. In this case, we have

|φ〉〈φ| = E(|ψ〉〈ψ|), where E is MIO. Then, there must ex-
ists coefficients cj such that

∑m
j=1 |cj |2 = 1 and Mj |ψ〉 =

cj |φ〉. Denoting c ≡ (cj)j ∈ Cm gives

√
qyc =

∑
x

√
pxvy|x ∀ y . (47)

Consider now the simpler case of dA = 2. We will also
assume that qy > 0 and dB ≥ 3. The case dB = 2
is a specially case of the qubit mixed state transforma-
tion to be discussed later. Denote by ry ≡ ry|0 and
ty ≡ ry|1 the two probability distributions, and denote
also vy|0 ≡ vy and vy|1 ≡ uy. With these notations,
conditions (45), (46), (47) take the form:

v†yvy′ = ryδyy′ , u†yuy′ = tyδyy′

dB∑
y=1

v†yuy = 0 ,
√
qyc =

√
p0vy +

√
p1uy (48)

The last equation can be written as:

√
p1uy =

√
qyc−

√
p0vy (49)

Hence, we must have

p1tyδyy′ = p1u
†
yuy′ =

√
qyqy′ + p0ryδyy′ −

√
p0

(√
qyc
†vy′ +

√
qy′v

†
yc
)

(50)

where we have used the normalization of c and the or-
thogonality of {vy} and of {uy}. Therefore, after di-
viding both sides of the equation by

√
qyqy′ (which is

non-zero) we get

1 =
√
p0

(
c†vy′√
qy′

+
v†yc√
qy

)
∀ y 6= y′ (51)

and for y = y′

p1ty = qy + p0ry −
√
p0qy

(
c†vy + v†yc

)
(52)

From (51) we get that

√
p0

v†yc√
qy
≡ a (53)

where a is some complex number independent of y satis-
fying a+ ā = 1. Substituting this into (52) we get

p1ty = qy + p0ry − qy (54)
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This equation holds iff

p0 = p1 =
1

2
, and ty = ry . (55)

With these choices, the first equation of (48) gives

0 =

dB∑
y=1

v†yuy =

dB∑
y=1

v†y
(√

2qyc− vy
)

(56)

which is equivalent to

1 =

dB∑
y=1

√
2qyv

†
yc = 2a . (57)

We therefore conclude that

v†yc =

√
qy
2
. (58)

Since qy > 0 we get that vy 6= 0 for all y and therefore
ry > 0 for all y. Together with the orthogonality relation

of vy, this implies that the set of vectors
{

1√
ry

vy

}
is

orthonormal. Therefore, the number of Kraus operators
m (which is the dimension of vy|x) must be at least dB .
Hence, the equation above gives:

dB∑
y=1

qy
2ry

=

dB∑
y=1

c†vyv
†
yc

ry
≤ c†c = 1 .

A simple calculation shows that
∑
y qy/ry obtains its

minimum value when

ry =

√
qy∑dB

y′=1

√
qy′

. (59)

Therefore, we get,

1 ≥
dB∑
y=1

qy
2ry
≥ 1

2

(
dB∑
y=1

√
qy

)2

(60)

We therefore arrive at the following theorem.

Theorem 14. Let |ψ〉 =
√
p0|0〉 +

√
p1|1〉 and |φ〉 =∑dB

y=1

√
qy|y〉, where qy > 0 and dB > 2. Then, |ψ〉 can

be converted to |φ〉 if and only if p0 = p1 = 1/2 and

dB∑
y=1

√
qy ≤

√
2 . (61)

Proof. The necessity of this condition follows from the
arguments above. To prove sufficiency, take m = dB + 1
and vy =

√
ryey, where {ey} is the standard basis of

Cm, and ry is given in (59). To be consistent with 58 we

define for j = 1, ..., dB

cj =

√
qj√

2
∑dB
y=1

√
qy

(62)

and for j = dB + 1 we define

cdB+1 =

√√√√1−
dB+1∑
j=1

c2j . (63)

Note that the term inside the sum is positive due to (61).
Finally, we define for y = 1, ..., dB

uy =
√

2qyc− vy (64)

With these choices, all the conditions in (48) are satisfied.
This completes the proof.

Example 1. Consider the following two states:

|+〉 =

√
1

2
|0〉+

√
1

2
|1〉 (65)

and

|ψ〉 :=

√
8

9
|0〉+

√
1

18
|1〉+

√
1

18
|2〉 . (66)

We show that the transformation |+〉 → |ψ〉 is achievable
by maximally incoherent operations. Indeed, consider

FIG. 2: Comparison of Sα(|+〉) = 1 (the blue line) and
Sα(|ψ〉) (the yellow line) as a function of α. For 0 ≤ α < 1/2,
Sα(|ψ〉) > Sα(|+〉), and for α > 1/2, Sα(|ψ〉) < Sα(|+〉).
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the following three Kraus operators:

M1 =

√
2

3
√

3

3 1
0 1
0 1

 (67)

M2 =
1

3
√

6

0 4
3 −2
0 1

 (68)

M2 =
1

3
√

6

0 4
0 1
3 −2

 (69)

It is strightforward to check that
∑3
j=1M

†
jMj = I2

where I2 is the 2× 2 identity matrix. Furthermore, note
that

Mj |+〉 ∝ 4|0〉+ |1〉+ |2〉 ∝ |ψ〉 ∀ j = 1, 2, 3 (70)

To see that it is a maximal incoherent operation, note
that

3∑
j=1

Mj |0〉〈0|M†j =

3∑
j=1

Mj |1〉〈1|M†j =
1

6

4 0 0
0 1 0
0 0 1

 .

(71)

In Fig. 2 we plot the Renyi entropies of these two
states. From the graph it is clear that Sα(|ψ〉) >
Sα(|+〉) = 1 for α ∈ [0, 1/2). Therefore, this example also
demonstrate that all the Renyi entropies with α ∈ [0, 1/2)
are not monotones and therefore are not measures of co-
herence. Furthermore, it provides an independant proof

that the Renyi divergences Dα and D
(q)
α do not satisfy

the data processing inequality in the α-ranges (2,∞] and
[0, 1/2), respectively.

II. NEW FAMILY OF MONOTONES

In this section, we provide a general framework for con-
structing distance-based coherence monotones and dis-
cuss specific examples. Our main distinction will be func-
tions that behave monotonically under MIO and those
that behave monotonically under DIO.

Theorem 15. Let D(ρ‖σ) be a contractive function; i.e.
D(E(ρ)‖E(σ)) ≤ D(ρ‖σ) if E is a CPTP map. Let Aρ be
a set of density matrices acting on Cd. Note that the set
Aρ can depend of the state ρ. If E(Aρ) ⊆ AE(ρ) for all
free operations E, then then the two functions

CRA (ρ) = min
σ∈Aρ

D(ρ‖σ)

CLA(ρ) = min
σ∈Aρ

D(σ‖ρ) (72)

are monotonic under the set of free operations.

Proof.

CRA (E(ρ)) = min
τ∈AE(ρ)

D(E(ρ)‖τ)

≤ min
τ∈E(Aρ)

D(E(ρ)‖τ)

= min
σ∈Aρ

D(E(ρ)‖E(σ))

≤ min
σ∈Aρ

D(ρ‖σ) = CRA (ρ) (73)

Similar arguments prove that CLA is also a monotone.

A. MIO Monotones

As a simple application of Theorem 15 take Aρ = I.
the set of incoherent diagonal states. In this case, Aρ is
independent of ρ so we get trivially that

E(Aρ) = E(I) ⊆ I = AE(ρ) (74)

for any DIO (or MIO) E . Moreover, in this case,

CRA (ρ) = min
σ∈I

D(ρ‖σ) (75)

which reduces to the the well-known relatively entropy
of coherence [3] when take D(ρ‖σ) to be the relative
entropy. However, note that under PIO,SIO,IO,DIO or
MIO

CLA(ρ) = min
σ∈I

D(σ‖ρ) (76)

is also a monotone.

1. Relative Rényi α-monotones

Beyond the relative Shannon entropy, one can consider
the more general relative Rényi entropies. For α ∈ [0,∞]
the relative Renyi entropy is defined by

Dα(ρ‖σ) :=
1

α− 1
log Tr(ρασ1−α) . (77)

This quantity is contractive (or equivalently satisfies the
data processing inequality) for all α ∈ [0, 2]. We will
therefore be interested here only in this range of α. Define
the α-Coherence monotone by (0 ≤ α ≤ 2):

Cα(ρ) := min
σ∈I

Dα(ρ‖σ) (78)

We can compute this monotone explicitly, and part of
the following work overlaps with independent work con-
ducted by Rastegin in Ref. [31]. Let σ =

∑
x qx|x〉〈x| be

some free state. Then,

Cα(ρ) := min
{qx}

1

α− 1
log
∑
x

q1−α
x 〈x|ρα|x〉 (79)
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Denote,

rx ≡
(〈x|ρα|x〉)1/α

r
where r ≡

∑
x

(〈x|ρα|x〉)1/α
(80)

By definition,
∑
x rx = 1 and rx ≥ 0. Therefore,

Cα(ρ) =
α

α− 1
log r + min

{qx}

1

α− 1
log
∑
x

q1−α
x rαx

=
α

α− 1
log r + min

{qx}
Dα({rx}‖{qx})

=
α

α− 1
log r , (81)

where Dα({rx}‖{qx}) is the classical Renyi-divergence.
We therefore conclude that for α ∈ [0, 2] the quantities

Cα(ρ) =
α

α− 1
log
∑
x

(〈x|ρα|x〉)1/α
. (82)

are coherence monotones. Note that in the limit α → 1
we get Cα(ρ) → Crel(ρ). Furthermore, in terms of the
completely dephasing map ∆(ρ) :=

∑
x〈x|ρ|x〉 |x〉〈x|, we

have

Cα(ρ) =
α

α− 1
log Tr

[
(∆(ρα))

1/α
]

=
1

α− 1
log Tr

[
‖∆(ρα)‖1/α

]
. (83)

Cα(ρ) can also be written in terms of the eigenvalues of
ρ as follows. Suppose the spectrum decomposition of ρ
is given by

ρ =

n∑
y=1

λy|vy〉〈vy| (84)

where λy are the eigenvalues of ρ, with correspond-
ing eigenvectors |vy〉. Denote by D the n × n doubly-
stochastic matrix whose elements are Dxy ≡ |〈x|vy〉|2.
Then, Eq. (83) takes the form

Cα(ρ) =
α

α− 1
log
∑
x

(∑
y

Dxyλ
α
y

)1/α

. (85)

Note that for a pure state ρ = |ψ〉〈ψ| we have

Cα(ψ) =
α

α− 1
log
∑
j

p
1/α
j = S1/α(p) (86)

where S1/α is the Rényi entropy with parameter 1/α ∈
[1/2,∞].

Example 2. Consider α = 2 in (83). Then, this monotone
has a particular simple expression. Denoting by ρxy the

components of ρ we get:

Cα=2(ρ) = 2 log
∑
x

√
〈x|ρ2|x〉 = 2 log

∑
x

(∑
y

|ρxy|2
)1/2

(87)
We now apply this to the qubit case where

ρ =

(
p r
r 1− p

)
(88)

Then,

Cα=2(ρ) = 2 log
(√

p2 + r2 +
√

(1− p)2 + r2
)

(89)

2. Quantum Relative Rényi α-monotones

For α ∈ [1/2,∞] the quantum relative Renyi entropy
is given by

D(q)
α (ρ‖σ) :=

1

α− 1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
. (90)

Define the quantum α-Coherence monotone by:

C(q)
α (ρ) := min

σ∈I
D(q)
α (ρ‖σ) (91)

The minimization in this case is harder to perform. How-
ever, for a pure state ρ = |ψ〉〈ψ| we have

D(q)
α (ρ‖σ) =

1

α− 1
log Tr

[(
σ

1−α
2α |ψ〉〈ψ|σ

1−α
2α

)α]
=

α

α− 1
log〈ψ|σ

1−α
α |ψ〉

which is very similar to the expression we get for the
relative Renyi entropy. We therefore conclude that for
pure states:

C(q)
α (ψ) =

2α− 1

α− 1
log

∑
j

p
α

2α−1

j

 . (92)

Denoting γ ≡ α
2α−1 we can rewrite the expression above

as:

C(q)
α (ψ) =

1

1− γ
log

∑
j

pγj

 ≡ Sγ(p) . (93)

Note that the range of γ is also [1/2,∞]. Also, the
other two parameter quantum divergences introduced
in [32] lead to the same Rényi entropies for pure states.
Therefore, one may be tempted to conjecture that the
transformation

|ψ〉 → |φ〉 (94)
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is possible by MIO if and only if

Sα(p) ≥ Sα(q) ∀ α ∈ [1/2,∞] , (95)

where the probability vectors p and q corresponds to
|ψ〉 and |φ〉, respectively. However, note that the re-
quirements p0 = p1 = 1

2 in Theorem 14 shows that this
conjecture is false. That is, the above equation is neces-
sary but not sufficient for the existence of a MIO from
|ψ〉 → |φ〉.

Example 3. Consider the case α = ∞ in (90). In this

case, D
(q)
α , is known to be equal to the max relative en-

tropy given by

D(q)
∞ (ρ‖σ) = log min{λ : ρ ≤ λσ} (96)

The corresponding monotone is therefore

C(q)
∞ (ρ) = log min

{
Tr(σ) : ρ ≤ σ ;

σ

Tr(σ)
∈ I
}

(97)

To calculate this expression, observe that it can be rewrit-
ten as

C(q)
∞ (ρ) = log min {Tr(σ) : ρ ≤ ∆(σ) ; σ ≥ 0} (98)

Next, we recall the dual formulation in linear program-
ming (see, e.g. Renes’ paper on sub-relative-majorization
[23], as well as recent work by Piani et al. [16]). Consider
the following setting of linear programming. Let V1 and
V2 be two (inner product) vector spaces with two cones
K1 ⊂ V1 and K2 ⊂ V2. Consider two vectors v1 ∈ V1

and v2 ∈ V2, and a linear map T : V1 → V2. Then, the
primal form:

max
x∈K1

v2−T (x)∈K2

〈v1, x〉1 (99)

The dual form involve T ∗ : V2 → V1:

min
y∈K2

T ∗(y)−v1∈K1

〈v2, y〉2 (100)

Applying this to our formulation, take V1 = V2 = Hn the
vector space of n × n Hermitian matrices. Take K1 =
K2 = Hn,+ be the cone of positive semi-definite matrices
in Hn. Take T = ∆ which is self-adjoint. Finally, take
v2 = I, v1 = ρ, y = σ, x = τ . With this choices the dual
is our original expression for C∞ and the primal is the
following expression

C(q)
∞ (ρ) = log max {Tr(ρτ) : ∆(τ) ≤ I ; τ ≥ 0} (101)

= log max {Tr(ρτ) : ∆(τ) = I ; τ ≥ 0} (102)

Note that for j 6= k, |τjk| ≤ 1. Otherwise, if |τjk| > 1, one
can find θ ∈ [0, 2π] such that for |ψ〉 = |j〉 + eiθ|k〉, the
expectation value 〈ψ|τ |ψ〉 < 0. We therefore conclude

that

Tr(ρτ) = 1 +
∑
j 6=k

ρjkτkj ≤ 1 +
∑
j 6=k

|ρjk|

= 1 + C`1(ρ), (103)

where

C`1(ρ) =
∑
j 6=k

|ρjk| (104)

is the so called `1 coherence measure [3]. This bound can
be saturated in the case where ρ is real with non-negative
off-diagonal terms, in which case we take τ = |ψ〉〈ψ| with
|ψ〉 =

∑
x |x〉.

Note the relation between C
(q)
∞ and the Robustness of

Coherence CR, which is defined as

CR(ρ) = min
t≥0

{
t
∣∣∣ ρ+ tσ

1 + t
∈ I, σ ≥ 0

}
. (105)

Letting σ̂ = ρ+ tσ so that t = Tr[σ̂]− 1, we can rewrite
this as

CR(ρ) = min
σ̂

{
Tr[σ̂]− 1

∣∣∣ σ̂

Tr[σ̂]
∈ I, σ̂ ≥ ρ

}
. (106)

Putting everything together, we obtain

Proposition 16.

C(q)
∞ (ρ) = log[1 + CR(ρ)]. (107)

Moreover, CR(ρ) = C`1(ρ) for pure states, qubit mixed
states, and any state ρ with non-negative real matrix el-
ements when expressed in the incoherent basis.

It is still an open problem whether C`1 is a MIO mono-
tone in general, although it is a known monotone under
IO [3].

B. DIO Monotones

Next we turn to DIO operations and consider DIO op-
erations derived from Theorem 15. Take Aρ = {∆(ρ)}
which contains only a single state. Note that under DIO
E we have

E(Aρ) = {E(∆(ρ))} = {∆(E(ρ))} = AE(ρ) . (108)

Therefore, both the functions

CRA (ρ) = D(ρ‖∆(ρ)) , CLA(ρ) = D(∆(ρ)‖ρ) (109)

are monotones. If we take D(ρ, σ) = ‖ρ− σ‖, where ‖ · ‖
is the trace norm, we get

CRA (ρ) = CLA(ρ) = ‖ρ−∆(ρ)‖ , (110)

which is a function only of the off-diagonal terms.
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If we choose D as in (77) then we get the following
monotones:

CRα (ρ) =
1

α− 1
log Tr

[
ρα (∆(ρ))

1−α
]

CLα (ρ) =
1

α− 1
log Tr

[
(∆(ρ))

α
ρ1−α] (111)

For a pure state ρ = |ψ〉〈ψ| with |ψ〉 =
∑
x

√
px|x〉 we

have

CRα (ρ) =
1

α− 1
log〈ψ| (∆(ρ))

1−α |ψ〉

=
1

α− 1
log
∑
x

p2−α
x ≡ 1

1− γ
log
∑
x

pγx = Sγ(ρ) .

(112)

where we denoted γ ≡ 2−α. Since the CRα is a DIO mono-
tone for α ∈ [0, 2], together with the fact that DIO⊂MIO,
we have that all Rényi entropies are DIO monotones.
This is in contrast with the set of MIO for which Sγ is a
monotone only for γ ≥ 1/2.

1. ∆-Robustness of Coherence

To obtain another DIO monotone, take

Aρ ={
(1 + t)∆(ρ)− ρ

t

∣∣∣ t > 0 ; (1 + t)∆(ρ)− ρ ≥ 0

}
(113)

In this case, it is straightforward to check that E(Aρ) ⊆
AE(ρ) for all E ∈ DIO. We consider the quantum Rényi

relative entropy C
(q)
∆,α(ρ) := minσ∈Aρ D

(q)(ρ||σ). Then in

the limit α → ∞, we obtain analogs to Eqns. (96) and
(98):

C
(q)
∆,∞(ρ)

= log min

{
Tr(σ)

∣∣∣ ρ ≤ σ ;
σ

Tr(σ)
∈ Aρ

}
= min
t,λ>0

{
λ
∣∣∣ ρ ≤ λ (1 + t)∆(ρ)− ρ

t
; (1 + t)∆(ρ) ≥ ρ

}
= min
t,λ>0

{
λ
∣∣∣ t+ λ

λ
ρ ≤ (1 + t)∆(ρ) ; (1 + t)∆(ρ) ≥ ρ

}
= min
t,λ>0

{
λ
∣∣∣ t+ λ

λ
ρ ≤ (1 + t)∆(ρ)

}
, (114)

where the last equality follows from the fact that t+λ
λ ≥

1. Note that 0 ≤ λ (1+t)∆(ρ)−ρ
t − ρ, which means that

0 ≤ (λ− 1)∆(ρ); thus, λ ≥ 1. Then the minimum above

can be written as

min
t,λ>0

{
λ :

t+ λ

1 + t
ρ ≤ λ∆(ρ)

}
(115)

But since t+λ
1+t > 1 we must have ρ ≤ λ∆(ρ). On the

otherhand, taking the limit t→∞ in the above minimum
gives ρ ≤ λ∆(ρ). We therefore conclude that the above
minimum is equal to

min
λ>0
{λ : ρ ≤ λ∆(ρ)} (116)

or equivalently

1 + min
t>0
{t : ρ ≤ (1 + t)∆(ρ)} . (117)

Finally, note that t ≥ 0 satisfies ρ ≤ (1 + t)∆(ρ) iff there
exists a matrix σ such that (i) ρ+tσ

1+t ∈ I, (ii) σ ≥ 0, and

(iii) ∆(σ) = ∆(ρ). Therefore we have the ∆ analog of
Prop. 16:

C
(q)
∆,∞(ρ) = log[1 + C∆,R(ρ)], (118)

where C∆,R(ρ) is a quantity we shall call the ∆-
Robustness of Coherence:

C∆,R(ρ) :=

min

{
t ≥ 0

∣∣∣ ρ+ tσ

1 + t
∈ I , σ ≥ 0 , ∆(σ) = ∆(ρ)

}
.

(119)

By construction, C∆,R is a DIO monotone.

Example 4. Consider the qubit state

ρ =

(
p r
r 1− p

)
(120)

Then, the matrix σ must have the form

σ =

(
p − rt
− rt 1− p

)
, (121)

to ensure that ρ+ tσ is diagonal and ∆(σ) = ∆(ρ). Now,
the condition σ ≥ 0 gives a lower bound on t. We there-
fore conclude that for 0 < p < 1

CR(ρ) =
r√

p(1− p)
(122)

and otherwise, for p = 0 or p = 1, CR(ρ) = 0.

The form of σ above can be generalized to any dimen-
tion. That is, for ρ = ∆(ρ) + Z, σ must have the form

σ = ∆(ρ)− 1

t
Z (123)

Hence, CR(ρ) equals the minimum values of t ≥ 0 such
that σ above is positive semidefinite. Note that the pos-
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itivity of σ is equivalent to the positivity of

t∆(ρ)−Z = t∆(ρ)−(ρ−∆(ρ)) = (1+ t)∆(ρ)−ρ (124)

We therefore arrive at the following expression for CR:

C∆,R(ρ) = min
{
t ≥ 0

∣∣∣ (1 + t)∆(ρ)− ρ ≥ 0
}

= max

{
〈φ|ρ|φ〉
〈φ|∆(ρ)|φ〉

∣∣∣ |φ〉 ∈ Cd , 〈φ|φ〉 = 1

}
(125)

Theorem 17. Consider the linear map

Φt(ρ) ≡ (1 + t)∆(ρ)− ρ . (126)

The following are equivalent:
(1) Φt(ρ) is positive
(2) Φt(ρ) is completely positive
(3) The parmeter t ≥ d− 1

Proof. The Choi matrix

I ⊗ Φt(|ψ+〉〈ψ+|)

=
∑
j,k

|j〉〈k| ⊗ Φt(|j〉〈k|)

=
∑
j

|j〉〈j| ⊗ Φt(|j〉〈j|) +
∑
j 6=k

|j〉〈k| ⊗ Φt(|j〉〈k|)

= t
∑
j

|j〉〈j| ⊗ |j〉〈j| −
∑
j 6=k

|j〉〈k| ⊗ |j〉〈k|

= (1 + t)
∑
j

|j〉〈j| ⊗ |j〉〈j| − |ψ+〉〈ψ+|

Finally, note that the last term is positive if and only if
1 + t ≥ d. This complete the proof that (2) and (3) are
equivalent. It is therefore left to show that (1) implies
(3). To see it, note that

Φt(|+〉〈+|) =
1 + t

d
I − |+〉〈+| (127)

where |+〉 ≡ 1√
d

∑
j |j〉. Since we assume that Φt is pos-

itive, it follows that 1 + t ≥ d.

Corollary 18. The function

RD(ρ) := log (1 + CR(ρ)) (128)

which we call logarithmic robustness of dephasing is a
faithful measure of coherence (i.e. RD(ρ) = 0 iff ∆(ρ) =
ρ) satisfying

0 ≤ RD(ρ) ≤ log d (129)

Conjecture 19. RD is additive. It is true for pure states
(see below), unknown for mixed states.

Lemma 20. For a pure state |ψ〉 =
∑n
x=1

√
px|x〉, with

n ≤ d and px > 0,

CR(|ψ〉) = n− 1 . (130)

Proof. Let |φ〉 =
∑n
x=1

√
qxe

iθx |x〉 then

〈ψ|ρ|ψ〉
〈ψ|∆(ρ)|ψ〉

=

∑
x 6=x′

√
pxqxpx′qx′e

i(θx−θx′ )∑
x pxqx

≤
∑
x 6=x′

√
pxqxpx′qx′∑
x pxqx

= u†Au (131)

where u is a unit vector in Cn with components

ux ≡
√
pxqx√∑n

x′=1 px′qx′
(132)

and A is the n× n matrix

A =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 . (133)

Hence, by taking θx = 0 and

qx =
1

px

/ n∑
x′=1

1

px′
(134)

we get that u = 1√
n

(1, ..., 1)T corresponds to the maximal

eigenvalue of A; i.e. for this choice u†Au = n − 1. This
completes the proof.

III. QUBIT COHERENCE

In this section we focus exclusively on maps whose in-
put/output space consists of single qubit density matri-
ces. We will say that a qubit state ρ is in standard form
when expressed as

ρ =

(
p r
r 1− p

)
p ≥ 1/2, r ≥ 0 (135)

in the incoherent basis. Any state ρ can always be
transformed into standard form by an incoherent uni-
tary transformation, and thus each state can be uniquely
parametrized by the tuple (p, r) with p ≥ 1/2, r ≥ 0.

A. Channels: IO-MIO Equivalence

The main result we prove here is that every MIO chan-
nel E has a Kraus operator implementation that belongs
to IO.
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Theorem 21. IO=MIO for CPTP maps E : B(C2) →
B(C2).

Proof. Consider an arbitrary MIO CPTP map E with
Kraus operator representation {Mj}tj=0. We want to
prove that E has another Kraus operator representation
with each operator having one of the forms given in Eq.
(141). Since E is MIO, we have

m−1∑
j=0

〈y|Mj |x〉〈x|M†j |y ⊕ 1〉 = 0 ∀x, y ∈ {0, 1}. (136)

Our goal is to find another Kraus operator representation

{M̃j}t̃j=0 of the channel E such that

〈y|M̃j |x〉〈x|M̃†j |y ⊕ 1〉 = 0 ∀x, y ∈ {0, 1},∀j. (137)

We describe iteratively how this can always be done. In

the following recall that Kraus operators {M̃j}t̃j=0 gener-

ate the same channel E iff M̃j =
∑m−1
k=0 ujkMk for some

unitary matrix ujk.

1. Take x = 0. Find two distinct values
(j, j′) such that 〈0|Mj |x〉〈x|M†j |1〉 6= 0 and

〈0|Mj′ |x〉〈x|M†j′ |1〉 6= 0; relabel and denote these

by (j, j′) = (0, 1). If two distinct values cannot
be found, then by Eq. (136) we must have that

〈0|Mj |x〉〈x|M†j |1〉 = 0 for all j, and in which case

set M̃j = Mj for all j and proceed to step 4. Oth-
erwise, proceed to step 2.

2. Consider an m×m unitary matrix whose only non-
trivial action consists of a 2 × 2 block ( u00 u01

u10 u11
).

Then a different Kraus operator representation for
E is realized by the elements M̃i = ui0M0 + ui1M1

for i = 0, 1 and M̃i = Mi for i = 2, · · · ,m− 1. The
unitary matrix is chosen such that (u00, u01) is the
normalized vector of (−〈0|M1|x〉, 〈0|M0|x〉). With
this choice, we have

〈0|M̃0|x〉 = u00〈0|M0|x〉+ u01〈0|M1|x〉 = 0. (138)

3. Repeat step 1. with the updated set of Kraus op-
erators {M̃0, M̃1, M̃i}m−1

i=2 .
4. At this step in the procedure, we have a Kraus

representation {M̃j}m−1
j=0 for E such that either

〈0|M̃j |x〉 = 0 or 〈1|M̃j |x〉 = 0 for all j.
5. Repeat the previous steps except with choosing x =

1. In the end, we obtain an ensemble satisfying Eq.
(137). This completes the procedure.

B. Transformations: SIO-DIO-IO-MIO Equivalence

We now proceed to show that in terms of a single in-
coherent transformation ρ→ σ, MIO is just as powerful
as SIO. Since SIO is both a subset of IO and DIO it

follows that SIO=OI=DIO=MIO on qubits. As demon-
strated above, the Robustness of Coherence and the ∆-
Robustness of Coherence for qubits can be computed ex-
plicitly:

CR(ρ) = 2r

C∆,R(ρ) =
r√

p(1− p)
. (139)

In general CR is a MIO monotone while C∆,R is DIO
monotone. However, we will now show that C∆,R is also
a MIO monotone for qubits.

Theorem 22. C∆,R is monotonic under MIO channels
E : B(C2)→ B(C2).

Proof. By Theorem 21, it suffices to prove that C∆,R is
an IO monotone. For qubits, any CP map E that belongs
to IO can always be expressed as

σ = E(ρ) =
∑
α

JαρJ
†
α +

∑
β

KβρK
†
β

+
∑
γ

LγρL
†
γ +

∑
δ

MδρM
†
δ , (140)

where the Kraus operators {Jα,Kβ , Lγ ,Mδ}α,β,γ,δ have
the general form

Jα = jα0|0〉〈0|+ jα1|1〉〈1|
Kβ = kβ0|1〉〈0|+ kβ1|0〉〈1|
Lγ = lγ0|0〉〈0|+ lγ1|0〉〈1|
Mδ = mδ0|1〉〈0|+mδ1|1〉〈1|. (141)

Crucially, these operators share the following relation-
ships with ∆:

∆
(
JαρJ

†
α

)
= Jα∆ (ρ) J†α

∆
(
KβρK

†
β

)
= Kβ∆ (ρ) J†β

∆
(
LγρL

†
γ

)
= LγρL

†
γ

∆
(
MδρM

†
δ

)
= MδρM

†
δ (142)

for all ρ. Suppose now that t ≥ 0 satisfies (1 + t)∆(ρ)−
ρ ≥ 0. Then for an IO channel E we have

(1 + t)∆[E(ρ)]− E(ρ) = tω +
∑
α

Jα[(1 + t)∆(ρ)− ρ]J†α

+
∑
β

Kβ [(1 + t)∆(ρ)− ρ]K†β ,

where

ω = t

(∑
γ

LγρL
†
γ +

∑
δ

MδρM
†
δ

)
≥ 0.

By the assumption (1 + t)∆(ρ)− ρ ≥ 0 we likewise have
(1 + t)∆[E(ρ)] − E(ρ) ≥ 0. From the definition of C∆,R,
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it therefore follows that

C∆,R(ρ) ≥ C∆,R(E(ρ)). (143)

Next, we prove that monotonicity of C∆,R(ρ) is also
sufficient for an SIO (and therefore also MIO) transfor-
mation.

Lemma 23. Let ρ and σ have standard-form
parametrizations (p, r) and (q, t) respectively. Then
ρ can be transformed into σ by SIO if and only if

CR(ρ) ≥ CR(σ) and C∆,R(ρ) ≥ C∆,R(σ). (144)

Proof. We will describe a channel E consisting exclusively
of Kraus operators having the form Jα and Kβ as given in
Eq. (137). The transformation will consist of two steps
ρ→ σmax → σ, where σmax has parameters (q, tmax(q))
with

tmax(q) =

{
r if p ≥ q
r
√

q(1−q)
p(1−p) if q ≥ p.

(145)

The channel attaining tmax is given by ρ 7→ σmax =
JρJ† +KρK†, where

j2
0 =

{
p+q−1
2p−1 if p ≥ q
q
p
p+q−1
2q−1 if q ≥ p

j2
1 =

{
p−q
2p−1 if p ≥ q
1−q
1−p

p+q−1
2q−1 if q ≥ p

k2
0 = 1− j2

0

k2
1 = 1− j2

1 . (146)

Finally, the transformation σmax → σ can be seen as SIO
feasible by noting that any t < tmax(q) can be reached
for a fixed value of q by applying a dephasing channel

ρ = J1ρJ
†
1 + J2ρJ

†
2 where J1 =

(
cos θ 0

0 sin θ

)
and J2 =(

sin θ 0
0 cos θ

)
, for some appropriately chosen θ.

Combining Theorem 22 with Lemma 23, we therefore
obtain the main result:

Theorem 24. For qubit states ρ and σ, the transforma-
tion ρ→ σ is possible by either DIO, IO, or MIO if and
only if both CR(ρ) ≥ CR(σ) and C∆,R(ρ) ≥ C∆,R(σ).

C. Coherence Measures

For qubit states, a number of coherence measures have
been proposed and evaluated, in direct analogy to entan-
glement measures in two-qubit systems. For instance, the
so-called coherence of formation and concurrence of co-
herence [6, 7] have been proposed, and both can be shown
as being equivalent to the `1-norm: C`1(ρ) = 2r [6, 33].

Distinct from these is the relative entropy of coherence,
which was known before under the name G-Asymmetry
(see [34] and references therein), which takes the form

Crel(ρ) = S(∆(ρ))− S(ρ). (147)

All measures in qubit systems can be seen as arising from
the two robustness measures CR and C∆,R according to

C`1(ρ) = CR(ρ)

Crel(ρ) = f

(
CR(ρ)

C∆,R(ρ)

)
− f

(
CR(ρ)

C∆,R(ρ)

√
1− C∆,R(ρ)2

)
,

(148)

where f(x) = h
(

1
2 [1−

√
1− x2]

)
and h(x) = −x log x −

(1− x) log(1− x).

IV. COHERENCE THEORIES BASED ON
ASYMMETRY

A. Translation Invariant Operations (TIO)

Let us now comment further on asymmetry-based re-
source theories of coherence. For a general compact
group G′, a G′-asymmetry resource theory identifies its
free states as those that are invariant under G′-twirling

G(ρ) =

∫
G′
dgU(g)ρU(g)†,

where U : G′ → H is the representation of G′ on the
Hilbert space H and dg the Haar measure. The free op-
erations are G′-covariant:

E [U(g)ρU(g)†] = U(t)[E(ρ)]U(g)†

for all g ∈ G′ and all ρ. A coherence resource the-
ory based on asymmetry then identifies incoherent states
(resp. operations) with the free states (resp. opera-
tions) defined with respect to the particular symmetry.
For instance, if H is some observable, say the Hamil-
tonian, one can consider the unitary group of transla-
tions {e−itH : t ∈ R}. A state ρ is said to be incoher-
ent if it commutes with every element of the group; i.e.
e−itHρeitH = ρ for all t. The class of translation invari-
ant operations (TIO) consists of all CPTP maps E that
commute with the unitary action of the group; i.e.

E [e−itH(ρ)eitH ] = e−itH [E(ρ)]eitH

for all t and all ρ. The class TIO was first introduced and
studied in Ref. [21]. When H is proportional to the num-

ber operator N̂ , then the unitary group of translations
provides a representation for U(1) [18].

Notice that the approach to defining coherence in the
asymmetry picture is different than the approach used in
the PIO/SIO/IO/DIO/MIO theories. The latter adopts
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a basis-dependent definition of coherence in which a state
is incoherent if and only if it is diagonal in some specified
basis I, called the incoherent basis. In order that a G′-
asymmetry theory likewise identifies I as the free states,
one needs that G′ and its representation U are such that

G(ρ) = ∆(ρ).

In the case of TIO, the condition that G(ρ) ∈ I amounts
to the generator H having a non-degenerate spectrum.
But in general, degeneracies will exist and the resulting
resource theory will look very different than the basis-
dependent theories of PIO/SIO/IO/DIO/MIO.

As an example of how TIO can define a resource theory
fundamentally different than PIO/SIO/IO/DIO/MIO,
consider a pair of bosons such as the electrons of a he-
lium atom. Due to the exchange symmetry, a natural
incoherent basis to consider for this system is {|b0〉 =√

1/2(|01〉 + |10〉), |b1〉 =
√

1/2(|01〉 − |10〉), |b2〉 =
|00〉, |b3〉 = |11〉}. In the basis-dependent theories of
PIO/SIO/IO/DIO/MIO, a state of this system is inco-
herent if and only if it is diagonal in this basis. However,
in a coherence resource theory based on U(1)-asymmetry
of the tensor product space C2⊗C2, |b0〉 and |b1〉 are still
identified as incoherent states, but so is the superposi-
tion state |ψ〉 =

√
1/2(|b0〉+ |b1〉) as well as the mixture

ρ = 1/2(|b0〉〈b0| + |b1〉〈b1|). Typically |ψ〉 is called a co-
herent superposition whereas ρ is an incoherent superpo-
sition. This example shows how the notion of coherence
in a TIO resource theory depends crucially on the par-
ticular representation of the symmetry group. Therefore
one cannot make a general comparison between PIO/-
SIO/IO/DIO/MIO and TIO since their relationship will
depend on the representation.

Conceptuallly, a TIO-based resource thoery can be in-
terpreted as defining coherence with respect to just indi-
vidual degrees of freedom for a system, whereas a basis-
dependent definition of coherence considers all degrees
of freedom. In this sense, a basis-dependent theory of
coherence may be seen as capturing a more complete no-
tion of coherence for a system. In terms of the generator
H, TIO theory characterizes coherence between differ-
ent eigenspaces of H rather than among a specific set
of eigenstates. In certain settings it may be desirable to
think of coherence in this way [21]. See also Ref. [14] for
a complementary exposition of the different approaches
to defining coherence.

In the following we introduce two resource theories of
asymmetry with the property that G(ρ) = ∆(ρ). In fact,
we identify the largest group with this property (Prop.
28).

B. G-Asymmetry and N-Asymmetry Resource
Theories

The set of all incoherent unitary matrices forms a
group which we denote by G. The group G consists of all

d× d unitaries of the form πu, where π is a permutation
matrix and u is a diagonal unitary matrix (with phases
on the diagonal). We denote by N the group of d × d
diagonal unitary matrices and by Π the group of permu-
tation matrices. Note that N is a normal subgroup of G,
and G = N o Π is the semi-direct product of N and Π.
Clearly, the group G is compact and the twirlings over
N and G are given by:∫

N

dg Tg(ρ) = ∆(ρ) and

∫
G

dg Tg(ρ) =
1

d
I (149)

where Tg(ρ) := gρg†, and the integration is with respect
to the Haar measure dg.

1. G-covariant maps

We would like to characterize the set of all G-covariant
quantum channels. That is, we would like to characterize
all CPTP maps that satisfies

[E , Tg] = 0 , ∀ g ∈ G . (150)

Consider the following 3 CPTP maps that are all G-
covariant:

E(1)(ρ) = ρ

E(2)(ρ) =
1

d− 1
(I −∆(ρ))

E(3)(ρ) =
1

d− 1
(d∆(ρ)− ρ) (151)

Remark. (1) The map E(1) is the trivial map and it is co-
variant under all groups (with unitary representations),
whereas the last two maps are non-trivial as they are not
covariant with respect to all groups.
(2) The two convex combinations of E(1), E(2), and E(3):

1

d2
E(1)(ρ) +

d− 1

d
E(2)(ρ) +

d− 1

d2
E(3)(ρ) =

1

d
I

d

d+ 1
E(2)(ρ) +

1

d+ 1
E(3)(ρ) =

1

d2 − 1
(dI − ρ)

are also covariant under all groups (note that the coef-
ficient d in front of I in RHS of the second equation is
necessary since otherwise the map is not completely pos-
itive).
(3) The map E(3) is completely positive (see Theorem 17)
and the coefficient d in front of ∆(ρ) is necessary since
otherwise the map is not positive.
(4) The dephasing map is the following convex combina-
tion of E(1) and E(3):

∆(ρ) =
1

d
E(1)(ρ) +

d− 1

d
E(3)(ρ) (152)

The following theorem shows that up to convex com-
binations, these 3 CPTP maps are all the G-covariant
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maps.

Theorem 25.
(a) Let G be as above, U be a unitary matrix, and

U(ρ) := UρU†. Then,

[U ,∆] = 0 ⇐⇒ U ∈ G . (153)

(b) A CPTP map E is G-covariant if and only if E is
a convex combination of the three CPTP maps defined
above. Explicitly, E is G-covariant if and only if

E(ρ) = q1ρ+
q2

d− 1
(I −∆(ρ)) +

q3

d− 1
(d∆(ρ)− ρ)

(154)

for some qi ≥ 0 with
∑3
i=1 qi = 1.

Proof. (a) A direct calculation shows that ∆ is a G-
covariant map (it also follows from part B). Conversely,
suppose [∆,U ] = 0. Note that that for a given fixed x

∆ (U(|x〉〈x|)) =
∑
x′

|〈x′|U |x〉|2|x′〉〈x′|

U (∆(|x〉〈x|)) = U |x〉〈x|U† (155)

Comparing the two expressions gives 〈x′|U |x〉 = 0 except
for one values of x′. Hence, U ∈ G.

Before, we prove part (b) of the theorem, we first prove
the following lemma:

Lemma 26. Let E be an N-covariant CPTP map; that
is,

[E , Tg] = 0 , ∀ g ∈ N . (156)

Then, E has the following Kraus decomposition

E(ρ) =
∑
j

MjρM
†
j +

∑
x 6=x′

Jxx′ρJ
†
xx′ (157)

where all Mj =
∑
x ajx|x〉〈x| are diagonal matrices and

Jxx′ = bxx′ |x〉〈x′|.

Proof. We will apply Lemma 1 of [18] to the character-
ization of N -invariant operations. Note first that the
irreducible representations of N ∼= U(1)d are labeled by
d integers k = (k1, ..., kd), and are all 1-dimensional. The
kth irreducible representation uk : N → C has the form

uk(~θ) = ei
~θ·k . (158)

where ~θ = (θ1, ..., θd) ∈ U(1)d. It follows from Lemma 1
of [18] that the Kraus operators Kk,α of a N -invariant
operation can be labeled by the irrep k and a multiplicity
index α, and satisfy

g~θ Kk,α g
†
~θ

= ei
~θ·kKk,α , ∀~θ ∈ U(1)d . (159)

where g~θ is the diagonal matrix with components

eiθ1 , ..., eiθd on the diagonal.

Note that by virtue of the fact that the irreps are 1d,
the Kraus operators do not get mixed with one another
under the action of N (this provides a significant simplifi-
cation relative to non-Abelian groups). The most general
expression for Kk,α is

Kk,α =
∑
x,x′

ck,αxx′ |x〉〈x
′| , (160)

with some coefficients ck,αxx′ . Plugging this into (159)
yields the constraint

ck,αxx′
(
ei(θx−θx′ ) − ei~θ·k

)
= 0 , ∀ ~θ ∈ U(1)d (161)

Hence, ck,αxx′ must be zero unless k = 0 and x = x′, or the
x and x′ components of k are 1 and −1, respectively, and
all other components are zero. This completes the proof
of the lemma.

Note that the lemma above provide the form of the
Kraus operators in the resource theory of symmetric op-
erations under the group N . This can be viewed as a
physical resource theory of coherence. However, as dis-
cussed in the paper, resource theories of asymmetry can-
not be used for coherence due to decoherence subspaces.
Moreover, as we can see from the above form of the Kraus
operators, in the resource theory ofN -asymmetry permu-
tations are not free! We now ready to prove theorem 25

Proof. In addition to the form in (157), E also has to
commute with all permutations:

[E , Tπ] = 0 , ∀ π ∈ Π . (162)

In particular, we get

Tπ (E(ρ)) =∑
j,x,x′

ajxājx′ρxx′ |π(x)〉〈π(x′)|

+
∑
x′ 6=x

|bxx′ |2ρx′x′ |π(x)〉〈π(x)| (163)

whereas

E (Tπ(ρ)) =
∑
j,x,x′

ajπ(x)ājπ(x′)ρxx′ |π(x)〉〈π(x′)|

+
∑
x′ 6=x

|bπ(x)π(x′)|2ρx′x′ |π(x)〉〈π(x)| (164)

Hence, comparing the off-diagonal terms of E (Tπ(ρ)) =
Tπ (E(ρ)) give∑

j

ajxājx′ =
∑
j

ajπ(x)ājπ(x′) ≡ c , (165)
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since E (Tπ(ρ)) = Tπ (E(ρ)) holds for all ρ and for all
permutations π ∈ Π. The constant c ∈ R and is inde-
pendent of x and x′ Comparing the diagonal terms of
E (Tπ(ρ)) = Tπ (E(ρ)) gives∑

j

|ajx|2ρxx +
∑

{x′:x′ 6=x}

|bxx′ |2ρx′x′

=
∑
j

|ajπ(x)|2ρxx +
∑

{x′:x′ 6=x}

|bπ(x)π(x′)|2ρx′x′ ∀ ρ

(166)

Since the equation above holds for all ρ we must have∑
j

|ajx|2 =
∑
j

|ajπ(x)|2 ≡ a (167)

and

|bxx′ |2 = |bπ(x)π(x′)|2 ≡ b , (168)

where a and b are non-negative real numbers independent
of x and x′. We therefore get that

E(ρ) =∑
x

aρxx|x〉〈x|+
∑
x 6=x′

cρxx′ |x〉〈x′|+
∑
x′ 6=x

bρxx|x′〉〈x′|

= a∆(ρ) + c (ρ−∆(ρ)) + b
∑
x

ρxx(I − |x〉〈x|)

= a∆(ρ) + c (ρ−∆(ρ)) + b (I −∆(ρ)) (169)

Note that the condition
∑
jM

†
jMj +

∑
x 6=x′ J

†
xx′Jxx′ = I

gives

a+ b(d− 1) = 1 . (170)

We therefore conclude

E(ρ) = a∆(ρ) + c (ρ−∆(ρ)) +
1− a
d− 1

(I −∆(ρ)) (171)

where 0 ≤ a ≤ 1. We now argue that

− a

d− 1
≤ c ≤ a . (172)

Indeed,

|c| ≤
∑
j

|ajxājx′ | ≤
∑
j

1

2

(
|ajx|2 + |ajx′ |2

)
= a (173)

and we also have

0 ≤
∑
j

(∑
x

ajx

)(∑
x′

ājx′

)
=

∑
x

∑
j

|ajx|2 +
∑
x 6=x′

∑
j

ajxājx′ = da+ d(d− 1)c ,

which is equivalent to c ≥ −a/(d − 1). Finally, we note
that (171) can be expressed as:

E(ρ) =
a+ c(d− 1)

d
E(1)(ρ) + (1− a)E(2)(ρ)

+
(a− c)(d− 1)

d
E(3)(ρ) (174)

The constraints on c in (172) ensures that the above equa-
tion is a convex combination of E(1), E(2), and E(3). This
completes the proof of the theorem.

2. N-covariant maps

The N -covariant operations given in Lemma 26 are
very similar to the ”cooling operations” given in [35].
The only difference is that Jxx′ is zero unless x < x′ (in
the context of thermodynamics, the x index corresponds
to energy levels, and cooling operations can not increase
the energy). Therefore, N -covariant operations are a bit
more powerful than cooling operations, as can be seen
from the following theorem, when compared with Theo-
rem 1 in [35].

Theorem 27. Let ρ, σ be two density matrices of the
same dimensions, with all the off-diagonal terms of ρ be-
ing non-zero. Define the matrix Q = (qxx′) as follows:

qxx′ :=

{
min

{
σxx
ρxx

, 1
}

if x = x′

σxx′
ρxx′

if x 6= x′
(175)

Then, σ = E(ρ) where E is N -invariant operation if and
only if Q ≥ 0.

Proof. Let ax ≡ (ajx)j where ajx are the coefficients of
Mj as in Eq. (157). Denote also hxx′ ≡ a†xax′ , and

rx′|x ≡
{
hxx if x = x′

|bxx′ |2 if x 6= x′
(176)

where bxx′ are the coefficients associated with the op-
erator Jxx′ in Eq. (157). Since E is trace preserving,∑
x′ rx′|x = 1. Note that the matrix H = (hxx′) is

Gramian and therefore positive semi-definite. Recall also
that the components of any positive semi-definite matrix
can be written as a†xax′ for some vectors ax. Hence,
from (157) it follows that there exists N -covariant map
E such that σ = E(ρ) iff there exists H ≥ 0 and a col-
umn stochastic matrix R = (rx|x′) with diagonal ele-
ments rx|x = hxx such that

σxx′ ≡
{ ∑

y rx|yρyy if x = x′

hxx′ρxx′ if x 6= x′
(177)
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From the relation above we get

hxx′ =
σxx′

ρxx′
≡ qxx′ for x 6= x′

hxx = rx|x ≤ min

{
σxx
ρxx

, 1

}
≡ qxx (178)

Suppose now that σ = E(ρ). Then, there exists H ≥ 0
that satisfies the above relations. Since, Q andH are only
different in the diagonal elements we can writeQ = H+D
where D is some diagonal matrix. The equation above
shows that D ≥ 0. Therefore, Q ≥ 0. Conversely, sup-
pose Q ≥ 0. We need to show that there exists H ≥ 0
and column stochastic matrix R (with the same diagonal
as H) that satisfy Eq.(177). We take H = Q and show
that there exists R with the desired properties. For sim-
plicity of the exposition here, suppose that ρxx ≤ σxx for
x = 1, ..., k and ρxx > σxx for x = k+1, ..., d. We take the
column stochastic matrix R to have the following form

R =

(
Ik CD′

0 D

)
(179)

where Ik is the k× k identity matrix, 0 is the (d− k)× k
zero matrix, D is the (d − k) × (d − k) diagonal matrix
with diagonal elements {σxx/ρxx} with x = k + 1, ..., d,
the matrix C is a k × (d− k) column stochastic matrix,
and D′ is a (d−k)×(d−k) diagonal matrix with diagonal
elements {1 − σxx/ρxx} with x = k + 1, ..., d. Hence, R
is column stochastic as long as C is column stochastic.
With this form of R, the condition σxx =

∑
y rx|yρyy is

equivalent to
σ11

σ22

...
σkk

 =


ρ11

ρ22

...
ρkk

+ C


ρ(k+1)(k+1) − σk+1)(k+1)

ρ(k+2)(k+2) − σ(k+2)(k+2)

...
ρdd − σdd


(180)

Define r to be the k-dimensional vector whose compo-
nents are σxx − ρxx for x = 1, ..., k, and t the d − k-
dimensional vector whose components are ρxx − σxx for
x = k + 1, ..., d. By definition, both vectors have non-
negative components, and note also that the sum of the
components of r is the same as the sum of the compo-
nents of t. Hence, there exists a column stochastic matrix
C that satisfies r = Ct. This completes the proof.

In the next proposition we show that the groupN is the
largest group possible with the property that its twirling
is the dephasing map ∆.

Proposition 28. Let G′ be any group with unitary rep-
resentation U(g) for g ∈ G′ such that∫

G′
dg U(g)ρU(g)† = ∆(ρ). (181)

Then, the set {U(g)}g∈G′ is a subgroup of N .

Proof. If
∫
G′
dg U(g)ρU(g)† = ∆(ρ), then∫

G′
dg U(g)|x〉〈x|U(g)† = |x〉〈x| , ∀ x = 1, ..., d (182)

which gives

U(g)|x〉 = eiθx(g)|x〉 , (183)

where {θx}dx=1 are one-dimensional representations of G′.
The equation above clearly indicates that U(g) ∈ N so
that U(G′) must be a subgroup of N . In this sense, N is
the largest group with the property that G(ρ) = ∆(ρ).

The requirement G(|x〉〈x′|) = 0 for x 6= x′ gives in
addition ∫

G′
dgei(θx(g)−θx′ (g)) = δxx′ (184)

Taking dg = dα
2π and θx(g) = xα with α ∈ [0, 2π] repro-

duce the U(1)-twirling. Of course, the equation above
is also satisfied for θx(g) = x2α, but still the group
G′ = U(1).

V. OPEN PROBLEMS

We conclude with a few open questions.

A. State Transformations

Pure state transformations under SIO (both asymp-
totic and single copy cases) have been completely char-
acterized in this paper via the one-to-one correspondence
with LOCC. Consequently, among all coherence models
discussed here, the SIO model is the most similar to the
theory of pure bipartite entanglement. Particularly, in
the single-copy regime, pure state transformations are de-
termined by the majorization criterion (similar to Nielsen
theorem in entanglement theory). A key open question
is whether or not this criterion can be extended to the
IO and DIO models.

Since majorization is both a necessary and sufficient
condition for an SIO pure state transformation |ψ〉 → |φ〉,
it follows that it is sufficient for both IO and DIO (recall
SIO is a subset of both IO and DIO). In IO it is also
known to be necessary if both pure states have a full
Schmidt rank since here the transformation is actually
accomplished by sIO. But as we discussed in this paper,
it is not clear if it is still the case when the Schmidt rank
of the target state |φ〉 is strictly smaller than the Schmidt
rank of |ψ〉.

As for DIO, we have shown that all the Rényi entropies
of the Schmidt components of a pure state are monotones
under DIO. In [36] it was shown that if Sα(ψ) ≥ Sα(φ)
for all α then there exists a catalyst |C〉 such that the
Schmidt components of |ψ〉|C〉 are majorized by the
Schmidt components of |φ〉|C〉. Therefore, the existence
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of a catalyst provides a sufficient condition for the trans-
formation |ψ〉 → |φ〉 under DIO. This means that neces-
sary and sufficient condition for pure state transforma-
tion under DIO are somewhere between majorization and
catalytic majorization.

Majorization also provides sufficient condition for
|ψ〉 → |φ〉 under MIO, but here we also know that is
is not necessary. In fact, MIO can increase the Schmidt
rank as demonstrated in Theorem 14. However, Theo-
rem 14 only involves a transformation from pure qubit
to pure qudit. It is left open to extend it to higher di-
mensions.

Necessary and sufficient conditions for mixed-state
transformations have only been found for the qubit case,
and a special type of asymmetry-based theory with sym-
metry groups G and N . However, in higher dimensions,
necessary and sufficient conditions for mixed state trans-
formations for SIO/IO/DIO/MIO are not known. In
the asymptotic limit of many copies of a mixed state
we know that IO is not a reversible model, and distil-
lation and formation rates have been calculated in [7].
MIO on the other hand, is a reversible quantum resource
theory (QRT) in the asymptotic limit of many copies,
due to a general QRT theorem proved in [37]. However,
the asymptotic distillation and formation rates are not
known for SIO and DIO.

Finally, another area of open inquiry pertains to de-
termining the precise relationship between SIO, IO, and
DIO. To our knowledge, no operational gap in terms
of state transformation is known between these classes,
despite the fact that they represent distinct collections
of CP maps. More precisely, for every transformation
ρ → σ feasible by IO (resp. DIO), is it also feasible by
DIO (resp. IO) as well as SIO? We suspect that such
examples can be found, but perhaps not when ρ is pure.

B. Monotones

There are few open problems regrading coherence
monotones. In [3] a measure of coherence under IO was
introduced. This measure was defined by

C`1(ρ) =
∑
x 6=y

ρxy , (185)

where ρxy are components of ρ in the incoherent basis. In
the Appendix, we have shown that the robustness of co-
herence as defined in (105) equals C`1 for pure states and
mixed states with non-negative real off-diagonal terms.
While the robustness of coherence is a monotone under
MIO, it is not know if C`1 is also a monotone under MIO.

In the Appendix we have also introduced many new
monotones under DIO. These set of monotones are
closely related to monotones under thermal operations.
In the resource theory of quantum theormodynamics,
the free (or “thermal”) operations take the form ρA →
TrB [U(ρA ⊗ γ(T )

B )U†], where U is any unitary that com-

mutes with the joint Hamiltonian, and γ
(T )
B is the Gibbs

state at temperature T [38, 39]. It was also observed
in [40] that Thermal operations are time-translation sym-
metric, and in particular belongs to DIO when the inco-
herent basis is taken to be the energy eigenstates, assum-
ing no-degeneracy in the energy eigenstates. Therefore,
all the DIO monotones introduced in this appendix, are
also monotones under thermal operations. In the case of
degeneracy in the energy eigenstates, it is left open how
to apply the DIO monotones to thermodynamics.

C. Relating Coherence with Maximally Correlated
Entanglement

Propositions 5 and 10 show that every transforma-
tion ρ → σ by either SIO or sIO corresponds to an
LOCC transformation between the corresponding maxi-
mally correlated states ρ(mc) → σ(mc). One obtains the
maximally correlated state ρ(mc) from the single-system
state ρ via the “coherent channel” |x〉 → |xx〉. In and of
itself, such a channel appears in the theory of coherent
communication where the tasks of coherent superdense
coding and coherent teleportation are fully dual to one
another (see Chapter 7 of [41]). We have been interested
in using this channel to map the theory of SIO/sIO into
one-way/two-way LOCC. A natural question is whether
or not such a connection can also be established between
IO and LOCC. Such a relationship has been conjectured
in Ref. [7], and a probabilistic version of it was proven
in Ref. [42]. Specifically, it was shown that for every IO
transformation ρ→ σ, the transformation ρ(mc) → σ(mc)

can always be accomplished with some nonzero probabil-
ity. It is unknown whether a deterministic LOCC imple-
mentation is always possible, and whether such a result
also holds for transformations ρ → σ that are feasible
using DIO.

Lastly, Theorem 14 shows that ρ→ σ by MIO fails to
imply ρ(mc) → σ(mc) by LOCC. Unlike LOCC, MIO is
able to increase the Schmidt rank under pure state trans-
formations. An interesting open question is whether,
analogous to MIO, the Schmidt rank can be increased
by some non-entangling operation.

Note Added:— In the preparation of this article we
became aware of independent work by Marvian and
Spekkens [14], where the physical meaning of incoher-
ent operations is analyzed and the class of dephasing-
covariant incoherent operations is presented.

Note Added:— Recently, Bu and Xiong have demon-
strated a state transformation this can be performed by
DIO but not IO [43]. There example also shows that `-1
norm is not a monotone under MIO, thus resolving one
of the open problems listed above.
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