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Abstract

Background: COVID-19 outbreaks have occurred in homeless shelters across the US, highlighting an urgent need

to identify the most effective infection control strategy to prevent future outbreaks.

Methods: We developed a microsimulation model of SARS-CoV-2 transmission in a homeless shelter and calibrated

it to data from cross-sectional polymerase chain reaction (PCR) surveys conducted during COVID-19 outbreaks in

five homeless shelters in three US cities from March 28 to April 10, 2020. We estimated the probability of averting a

COVID-19 outbreak when an exposed individual is introduced into a representative homeless shelter of 250

residents and 50 staff over 30 days under different infection control strategies, including daily symptom-based

screening, twice-weekly PCR testing, and universal mask wearing.

Results: The proportion of PCR-positive residents and staff at the shelters with observed outbreaks ranged from 2.6

to 51.6%, which translated to the basic reproduction number (R0) estimates of 2.9–6.2. With moderate community

incidence (~ 30 confirmed cases/1,000,000 people/day), the estimated probabilities of averting an outbreak in a

low-risk (R0 = 1.5), moderate-risk (R0 = 2.9), and high-risk (R0 = 6.2) shelter were respectively 0.35, 0.13, and 0.04 for

daily symptom-based screening; 0.53, 0.20, and 0.09 for twice-weekly PCR testing; 0.62, 0.27, and 0.08 for universal

masking; and 0.74, 0.42, and 0.19 for these strategies in combination. The probability of averting an outbreak

diminished with higher transmissibility (R0) within the simulated shelter and increasing incidence in the local

community.

Conclusions: In high-risk homeless shelter environments and locations with high community incidence of COVID-19,

even intensive infection control strategies (incorporating daily symptom screening, frequent PCR testing, and universal

mask wearing) are unlikely to prevent outbreaks, suggesting a need for non-congregate housing arrangements for

people experiencing homelessness. In lower-risk environments, combined interventions should be employed to reduce

outbreak risk.
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Background
The coronavirus disease 2019 (COVID-19) pandemic

caused by infection with severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) poses a great risk to

people experiencing homelessness. Across the United

States (US), the estimated 568,000 people who experience

homelessness nightly [1] are likely to suffer a dispropor-

tionate disease burden and need for hospitalization [2, 3].

People experiencing homelessness are on average older

and have a high prevalence of comorbidities that are risk

factors for severe COVID-19 [2]. Multiple outbreaks in

homeless shelters have occurred in several cities, including

San Francisco, Boston, Seattle, Atlanta, and Los Angeles,

with attack rates of up to 67% [4–8]. Homeless shelters

have remained open in many cities despite the high inci-

dence of infection in the community, concern about the

risk of further outbreaks, and uncertainty over the effect-

iveness of different infection control strategies. There is an

immediate need to identify the best infection control strat-

egy to reduce the risk of outbreaks and assess the safety of

continuing to operate congregate shelters where transmis-

sion in the community is high.

The role of shelters and associated infection control

practices in the transmission of COVID-19 among

people experiencing homelessness is still poorly under-

stood. Given the current understanding that the SARS-

CoV-2 virus is transmitted predominantly through

respiratory droplets, with some airborne transmission

[9], there is a need to consider policies to limit transmis-

sion within high-density congregate living environments.

Different infection control strategies are currently rec-

ommended based on the level of transmission in the ex-

ternal community [10]. These include routine symptom

screening, polymerase chain reaction (PCR) testing, uni-

versal mask wearing, and relocation of individuals at

high risk of severe disease to non-congregate settings

[11]. There is limited evidence on the effectiveness of

strategies to reduce transmission in congregate settings,

and thus, further research is urgently needed to guide

city-level policy across the US.

The goal of this study is to identify the most effective

infection control strategy to slow the spread of COVID-

19 among people experiencing homelessness who reside

in shelters. We address this pressing question by esti-

mating the comparative health outcomes of key infection

control strategies using a simulation model calibrated to

data on homeless shelter outbreaks.

Methods
Microsimulation model

We developed an individual-level stochastic susceptible-

exposed-infectious-recovered (SEIR) model [12] to simu-

late the transmission of SARS-CoV-2 in a congregate

shelter population (Additional file 1: Figure S1) [4–7, 9,

13–75]. The model defines individuals as susceptible, ex-

posed, infectious, or immune to SARS-CoV-2 (Additional

file 1: Table S1). We constructed the model to include im-

portant aspects of the natural history of COVID-19, includ-

ing sub-clinical infection, pre-symptomatic transmission,

and age-specific differences in the risk of severe symptoms

(see Additional file 1 for full details). In the model, suscep-

tible individuals become infected with SARS-CoV-2 at a

rate proportional to the prevalence of infectious individuals

inside the shelter and their infectiousness (assuming homo-

geneous mixing), plus a static force of infection based on

the background infection incidence in the community out-

side the shelter. Upon infection, individuals enter a latent

infection stage in which they incubate the virus but are not

infectious. They then progress to become infectious and

contribute to ongoing transmission. An age-dependent

fraction of infected individuals develop clinical symptoms

with an associated risk of hospitalization and death (Add-

itional file 1: Table S2), while the remainder have sub-

clinical infection. Individuals who recover from infection

are assumed to remain immune.

Data

The model was calibrated using aggregate data from

PCR testing conducted during COVID-19 outbreaks in

five shelters in three US cities—San Francisco (n = 1),

Boston (n = 1), and Seattle (n = 3) [4, 6, 7]—from March

28 to April 10, 2020. We obtained de-identified

individual-level data from the outbreak in the San Fran-

cisco shelter (see Additional file 1 and Additional file 1:

Table S3 for details), which is fully described elsewhere

[5]. As of April 10, 2020, a total of 89 individuals (84

residents, 5 staff) of 175 tested (130 residents, 45 staff)

in the shelter were PCR-positive. We obtained aggregate

data from the outbreaks in the Boston and Seattle shel-

ters, where identified COVID-19 cases triggered mass

testing events [4, 6, 7]. In the Boston shelter, 147 of 408

residents and 15 of 50 staff were PCR-positive during

testing conducted April 2–3, 2020. The numbers of resi-

dents and staff tested and positive in the three Seattle

shelters (shelters A, B, and C) at two testing events con-

ducted March 30–April 1 and April 7–8, 2020, are given

in Additional file 1: Table S4. For the San Francisco

shelter, we used daily census data to inform the shelter

population size, which decayed over time, and risk strati-

fication for disease severity by age and comorbidity sta-

tus (Additional file 1: Figure S2). For the other shelters,

we assumed a constant population size over time.

Model calibration

We calibrated the model to the aggregate numbers of in-

dividuals PCR-positive out of those tested in each shelter

(daily data for the San Francisco shelter, cross-sectional

for the Seattle and Boston shelters) using approximate
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Bayesian computation techniques (see Additional file 1).

We fitted the following parameters: (i) the basic

reproduction number R0 (the average number of second-

ary infections generated by the average infectious indi-

vidual in an entirely susceptible shelter population), (ii)

the number of latently infected individuals who initially

entered the shelter E0, and (iii) the number of days be-

fore the first case was identified that these individuals

entered the shelter D (Table 1). The remaining parame-

ters were sourced from the literature on natural history

and epidemiology of SARS-CoV-2 (Table 1 and Add-

itional file 1: Table S5).

Infection control strategies

We simulated six infection control strategies (Additional

file 1: Table S6), selected via informal consultation with

public health experts. (1) Daily symptom-based screen-

ing: daily screening of all individuals in the shelter in-

volving a temperature and symptom survey. Individuals

who screened positive were PCR tested, with 80% com-

pliance, and isolated for 1 day pending the test result; if

negative, they returned to the population. We assumed

that isolated individuals were unable to transmit or be-

come infected. We used published data on the sensitivity

of symptom-based screening with time since infection

[72], which suggests that close to 100% of symptomatic

cases (a subset of all true cases) would eventually be de-

tected under repeated daily screening based on the def-

inition of being symptomatic, even with low sensitivity

of symptom screening on any one occasion (here as-

sumed to be 40% to give a 98% probability of detection

after 8 days of daily symptom screening). We assumed

symptom screening had a daily specificity of 90%, but as-

sumed independence between screenings, meaning the

overall specificity over the simulation was much lower

and aligned with published estimates [76–78]. We as-

sumed a minimum of 3 days between repeat PCR tests

for the same individual based on typical clinical practice

and test turnaround times. (2) Routine PCR testing:

twice-weekly PCR testing of residents and staff based on

prior literature analyzing reduction in transmission and

cost-effectiveness under different testing frequencies

[73–75]. We assumed 75% sensitivity and 100% specifi-

city of PCR testing based on published literature [28–

31], a mean duration of detectable viral load (starting

prior to development of symptoms) of 20 days (Add-

itional file 1: Figure S3) [17, 20–24], and 80% compli-

ance with testing. We assumed test results were

returned in 1 day, after which time individuals who

tested PCR-positive were removed from the shelter

population. (3) Universal mask wearing: wearing of

masks by individuals within the shelter. We assumed

that mask wearing reduced the amount of infectious

SARS-CoV-2 material breathed into the air by infected

individuals by 30% and that inhaled by susceptible indi-

viduals by 40% based on a review of the literature on fil-

tration efficiencies of masks and the impact of mask

wearing on infection risk (see Additional file 1), and that

60% of individuals adhered to mask wearing [37, 48]. (4)

Relocation of “high-risk” individuals: moving high-risk

individuals (defined as those ≥60 years and/or with co-

morbidities) to single hotel rooms, modeled by replacing

such individuals with lower-risk individuals. (5) Routine

PCR testing of staff only: twice-weekly testing of staff

only, assuming 80% compliance. (6) Combination strat-

egy: strategies 1–4 combined. Daily symptom screening

(strategy 1) was included in all strategies as it is consid-

ered a minimum requirement under CDC guidelines for

control practices in homeless shelters [79].

Prediction of impact of infection control strategies

For each intervention strategy, we simulated transmis-

sion within a shelter of 250 residents and 50 staff (based

on an average shelter size) over 30 days starting with one

latently infected individual 1000 times (to account for

stochastic uncertainty). The time period was chosen to

capture the trajectory of an outbreak and the differential

benefits of strategies. The primary outcome was the

probability of averting an outbreak (defined as 3 or more

infections originating within the shelter in any 14-day

period [80, 81]) under each strategy, with secondary out-

comes of the proportional reductions in the total num-

bers of SARS-CoV-2 infections and clinical cases, and

total numbers of hospitalizations, deaths and PCR tests

used. Only individuals who tested positive were removed

from the shelter population. The initial population was

chosen to have the same composition in terms of pro-

portions in different risk groups (by age and co-

morbidity status) as the San Francisco shelter. We esti-

mated the probability of averting an outbreak under

each intervention strategy (compared with no interven-

tions) for each calibrated R0 value for a range of different

background infection rates estimated from incidence of

confirmed cases in Seattle, Boston, and San Francisco

(see Additional file 1 for details). To account for poten-

tial upward bias in the estimated R0 range due to fitting

to data from shelters with high attack rates, we per-

formed the same simulations for a shelter environment

with a low R0 of 1.5. The analyses were conducted in R

version 4.0.0 [82], and the data and model code are

available at https://github.com/LloydChapman/COVID_

homeless_modelling.

Sensitivity analysis

We conducted a multi-way sensitivity analysis to as-

sess the impact of uncertainty in key natural history

and intervention parameters—relative infectiousness

of subclinical infection and the early infectious stage,

Chapman et al. BMC Medicine          (2021) 19:116 Page 3 of 13

https://github.com/LloydChapman/COVID_homeless_modelling
https://github.com/LloydChapman/COVID_homeless_modelling


sensitivities and specificities of symptom screening

and PCR tests, testing and masking compliances, and

mask effectiveness—on the results, by simulating

each intervention strategy across all combinations of

the minimum and maximum values of these parame-

ters over their uncertainty ranges (Table 1). We ex-

plored the impact of PCR testing frequency on the

probability of averting an outbreak by varying the

testing frequency in strategy 2 from daily to

monthly.

Results
Model calibration

The model reproduced the numbers of PCR-positive in-

dividuals in the cross-sectional surveys in the Seattle and

Boston shelters (Additional file 1: Figure S4) and the ob-

served numbers of PCR-positive individuals and symp-

tomatic cases over time for the outbreak in the San

Francisco shelter (Additional file 1: Figures S4–S5). The

estimated R0 values ranged from 2.9 (95% CI 1.1–6.7)

for Seattle shelter B to 6.2 (95% CI 4.0–7.9) for the San

Francisco shelter (Additional file 1: Table S7), with cor-

responding estimated cumulative infection incidences at

the end of the testing period of 14% (95% CI 1–41%)

and 83% (95% CI 72–92%) (Additional file 1: Table S8).

The median estimated number of infections initially in-

troduced was 3 for all shelters (95% CI 1–5), but with a

relatively flat posterior distribution extending to the

bounds of the uniform prior distribution, reflecting con-

siderable uncertainty in this parameter (Additional File

Table 1 Microsimulation input parameters based on observed outbreak data from homeless shelters in Seattle, Boston, and San

Francisco

Parameter* Base case value Range in sensitivity
analysis†

References

Natural history

Mean duration of latent infection period, days 3 days – [17]

Mean duration of early infectious stage (subclinical/clinical), days 2.3 days – [17]

Mean duration of late infectious stage (subclinical/clinical), days 8 days – [17, 20, 67, 68]

Relative infectiousness of subclinical infection to clinical infection 1 0.5–1 [19, 69, 70]

Relative infectiousness of early infectious stage to late infectious stage 2 1–3 [17, 18]

Probability of developing clinical symptoms Age-dependent (see
Additional file 1: Table S2)

– [13]

Background infection rate in community outside shelter Shelter-specific (see
Additional file 1)

0–439 infections/1,000,000
person-days

[49–51]

Basic reproduction number, R0 Variable 1.5–6.2 Estimated

Intervention

Symptom screening

Sensitivity 0.4 0.3–0.5 Assumed based
on [72]

Specificity 0.9 0.8–0.9 Assumed

Compliance of symptomatic individuals with PCR testing 80% 50–100% Assumed

PCR testing

Sensitivity 0.75 0.6–0.9 [28–31]

Specificity 1 0.95–1 [28, 31]

Frequency Twice weekly Daily–monthly [73–75]

Compliance 80% 50–100% Assumed

Masks

Effectiveness at reducing infectious material exhaled 30% 10–50% [36, 37, 42]‡

Effectiveness at reducing infectious material inhaled 40% 20–60% [36, 37, 42]‡

Compliance 60% 30–100% [37, 48]

*See Additional file 1: Table S5 for a complete list of all parameters used in the model calibration and intervention simulations
†In the sensitivity analysis, each intervention strategy was simulated with all combinations of the minimum and maximum values of the ranges for the indicated

parameters to generate the uncertainty ranges around the probability of averting an outbreak in Table 2
‡See Additional file 1 for a review of current literature on mask effectiveness and a full list of references
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1: Figure S10). The estimated date of introduction of in-

fection ranged from 10 days (95% CI 7–14 days) before

the first case was identified for Seattle shelter B to 21

days (95% CI 17–26 days) before for San Francisco.

Impact of infection control strategies

Table 2 shows the projected impact of the six infection

control strategies considered, for different transmission en-

vironments. Daily symptom screening performed poorly for

all levels of transmission (probability of averting an out-

break = 0.04 for San Francisco R0 = 6.2, and probability =

0.35 for R0 = 1.5). Relocating individuals at high-risk of

clinical symptoms combined with symptom screening per-

formed similarly to symptom screening alone (probability

of averting an outbreak = 0.04–0.33 for R0 = 6.2–1.5).

Twice-weekly PCR testing of staff provided some additional

benefit over daily symptom screening at lower levels of

transmission (probability of averting an outbreak = 0.04–

0.41 for R0 = 6.2–1.5). Twice-weekly PCR testing of all indi-

viduals and universal masking yielded higher probabilities

of averting an outbreak of 0.09–0.53 and 0.08–0.62 for

R0 = 6.2–1.5, respectively. The combination strategy involv-

ing daily symptom screening, twice-weekly PCR testing of

all individuals, universal masking, and removal of high-risk

individuals gave the highest probability of averting an out-

break (0.19–0.74 for R0 = 6.2–1.5), but still prevented a mi-

nority of outbreaks in all but the lowest-risk setting.

The probability of averting an outbreak under each

intervention strategy decreased with increasing transmis-

sion potential (R0) inside the shelter and with increasing

infection incidence in the community outside the shelter

(Fig. 1). Even under the combination strategy, the prob-

ability of averting an outbreak in an average-

transmission-potential shelter (R0 = 2.9) decreased from

0.77 to 0.12 as the background infection rate increased

from 0 to 439 cases per 1 million person-days (the

estimated background infection rate in San Francisco be-

tween June 27 and July 10, 2020).

The relative reduction in infection incidence under the

different infection control strategies followed the same

pattern as the probability of averting an outbreak (Add-

itional file 1: Table S10 and Fig. 2).

PCR test requirements were approximately three times

higher (at an average of 6.6 tests per person per month)

under twice-weekly PCR testing of all individuals than

when only testing individuals identified as symptomatic

in daily symptom screening (2.0 tests/person/month)

and approximately two times higher than when only

testing staff twice-a-week (2.8 tests/person/month)

(Additional file 1: Table S11).

Sensitivity analysis

The probability of averting an outbreak was most sensi-

tive to uncertainty in masking compliance and effective-

ness and relative infectiousness of the early infectious

stage, with the mean probability of averting an outbreak

under combined interventions across all combinations of

the minimum and maximum values of the other param-

eters varying from 0.40–0.71 for 30–100% masking com-

pliance, 0.49–0.62 and 0.48–0.63 for 10–50% and 20–

60% mask exhalation and inhalation effectiveness, and

0.63–0.48 for early-stage relative infectiousness of 1–3

for R0 = 2.9 (Additional file 1: Figure S9). After this, the

probability of averting an outbreak was most sensitive to

PCR sensitivity and testing compliance, with the mean

probability of averting an outbreak under combined in-

terventions varying from 0.50–0.61 and 0.51–0.60 over

the uncertainty ranges of these parameters. Decreasing

the frequency of PCR testing from daily to monthly de-

creased the probability of averting an outbreak for R0 =

1.5, 2.9, and 3.9 from 0.71 to 0.33, 0.28 to 0.12, and 0.21

to 0.08, respectively, but had little impact on the already

Table 2 Probability of averting an outbreak over a 30-day period in a generalized homeless shelter with simulated infection control

strategies

Infection control strategy‡ Probability of averting an outbreak (UR)§

R0 = 1.5 (low-risk) R0 = 2.9 (Seattle) R0 = 3.9 (Boston) R0 = 6.2 (San Francisco)

1) Symptom screening 0.35 (0.21–0.67) 0.13 (0.05–0.39) 0.08 (0.02–0.28) 0.04 (0.00–0.15)

2) Routine twice-weekly PCR testing 0.53 (0.34–0.87) 0.20 (0.10–0.64) 0.12 (0.05–0.50) 0.09 (0.01–0.33)

3) Universal mask wearing 0.62 (0.26–0.99) 0.27 (0.07–0.94) 0.19 (0.04–0.90) 0.08 (0.01–0.77)

4) Relocation of high-risk individuals 0.33 (0.20–0.68) 0.13 (0.05–0.40) 0.07 (0.02–0.29) 0.04 (0.00–0.15)

5) Routine twice-weekly PCR testing of staff only 0.41 (0.28–0.72) 0.15 (0.07–0.40) 0.09 (0.03–0.33) 0.04 (0.01–0.17)

6) Combination strategy 0.74 (0.40–1) 0.42 (0.13–0.99) 0.29 (0.07–0.97) 0.19 (0.02–0.91)

Outbreak is defined as ≥3 infections originating within the shelter in any 14-day period

Generalized homeless shelter defined as 250 residents and 50 staff with a background infection rate estimated from data for Boston

(~ 120/1,000,000 person-days)

See Additional file 1: Table S9 and Fig. 1 for the results for other background infection rates and Additional file 1: Table S10 for the reductions in infections and

symptomatic cases. See Additional file 1: Figures S6–S8 for the outbreak size distributions for the different R0 values

UR uncertainty range, R0 basic reproduction number
‡All strategies included daily symptom screening
§UR generated from parameter sensitivity analysis (see Table 1 and Additional file 1)
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low probability of averting an outbreak for R0 = 6.2

(Fig. 3).

Discussion
Several outbreaks of COVID-19 with high attack rates

have occurred in homeless shelters across the US, and

there remains uncertainty over the best infection control

strategies to reduce outbreak risk in shelters. In this study,

we applied a simulation analysis to identify infection con-

trol strategies to prevent future outbreaks. We found that

in high-risk shelters that are unable to maximize basic in-

fection control practices that sufficiently reduce the trans-

missibility of SARS-CoV-2 (e.g., social distancing, reduced

living density), no additional infection control strategy is

likely to prevent outbreaks. Similarly, in cities with high

community incidence, no infection control practices are

likely to prevent an outbreak. In contrast, in lower-risk

shelters with low background community incidence, the

implementation of strategies such as symptom screening,

routine PCR testing, and masking would help reduce out-

break risk.

We found a wide range of transmissibility of SARS-

CoV-2 based on observed outbreaks in homeless shelters,

which greatly affects intervention impact. We estimated

basic reproduction numbers (R0) of 2.9–6.2 from aggre-

gate PCR test data from outbreaks in five shelters in

Seattle, Boston, and San Francisco between March and

April 2020. This range of R0 values is at the high end of

estimates reported in the literature [52, 63, 83, 84] and

likely reflects a high degree of heterogeneity in infectious-

ness between individuals [62–66] and a highly conducive

environment for transmission within these shelters early

Fig. 1 Impact of incidence of infection in the community on the probability of averting an outbreak in a generalized homeless shelter under

different intervention strategies for different R0 values. The probability of averting an outbreak (≥3 infections over any 14-day period) in a

generalized homeless shelter of 250 residents and 50 staff over 30 days was estimated for different infection incidences in the community using

the microsimulation model described in the text. A thousand simulations of the counterfactual no-intervention scenario and each of the

intervention strategies were run, and the probability of averting an outbreak was calculated as the proportion of simulations with an outbreak in

the no-intervention scenario in which there was no outbreak in the intervention scenario. SF, San Francisco
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Fig. 2 Predicted number of SARS-CoV-2 infections over a 30-day period in a generalized homeless shelter under different infection control

strategies for different R0 values. Solid lines show the mean daily numbers of new infections, and shaded areas show the minimum and

maximum daily numbers over 1000 simulations. Generalized homeless shelter defined as 250 residents and 50 staff. Background infection rate in

the community outside the shelter of approximately 120 infections/1,000,000 person-days. SF, San Francisco

Chapman et al. BMC Medicine          (2021) 19:116 Page 7 of 13



in the pandemic due to lack of existing infection control

practices and high living density at the time of the out-

breaks. For these R0 values and representative background

infection rates, we found that the infection control strat-

egies considered are unlikely to prevent outbreaks (prob-

ability < 50%), even when combined. Nevertheless, they do

reduce the incidence of infection and clinical disease and

slow the growth of the outbreak (Fig. 2). Our R0 estimates

are likely not entirely representative of general transmis-

sion potential in shelters now given that the outbreaks oc-

curred early during the pandemic when control measures

were limited and that non-outbreaks and smaller out-

breaks may go undetected or unreported. Control mea-

sures such as rehousing of individuals to single hotel

rooms appear to have been successful, and incidence has

in general been lower in the homeless population than an-

ticipated [85]. However, there have been subsequent large

outbreaks in homeless shelters despite reduced shelter

density and stringent control efforts [86–88]. This sup-

ports our finding that outbreaks in congregate shelters re-

main likely even with fairly intensive infection control

practices.

In lower transmissibility settings, e.g., with R0 = 1.5,

which may be more representative of typical shelters

now due to improved social distancing and basic infec-

tion control practices, the intervention strategies we

have considered are more likely to prevent outbreaks

(probability up to nearly 75% under combined

interventions, for a moderate background infection rate

of approximately 120/1,000,000/day).

A key remaining issue given the limited availability of

alternative housing for people experiencing homeless-

ness is identifying the characteristics that distinguish

low-risk shelters (those similar to the R0 = 1.5 scenario

considered here) that can be operated with low outbreak

risk with implementation of infection control strategies.

Data are limited, but available evidence suggests that so-

cial distancing and reductions in super-spreading are

likely to be key factors [62, 63, 89–91]. Strategies that

may achieve these goals include reducing living density,

spacing bedding, reducing communal activities, and

adopting staffing models that limit social contacts.

The fact that intervention impact and the probability of

averting an outbreak decrease significantly with increasing

background infection rate in the community (Fig. 1) sug-

gests a need for alternative housing arrangements for

people experiencing homelessness in locations in which

community incidence is moderate to high—100–500 in-

fections/1,000,000/day, equivalent to 25–125 confirmed

cases/1,000,000/day assuming fourfold underreporting

(see Additional file 1). In lower background incidence set-

tings, combined daily symptom-based screening, twice-

weekly PCR testing, universal masking, and relocation of

high-risk individuals to non-congregate settings would re-

duce outbreak risk and limit the incidence of infection

and severe disease if outbreaks do occur.

Fig. 3 Impact of varying the frequency of routine PCR testing of residents and staff on the probability of averting an outbreak in a generalized

homeless shelter for different R0 values. The probability of averting an outbreak (≥3 infections over any 14-day period) over 30 days was

estimated for different frequencies of routine PCR testing from daily (1 day between tests) to monthly (30 days between tests). Generalized

homeless shelter defined as 250 residents and 50 staff. Background infection rate in the local community of approximately 120 infections/

1,000,000 person-days. SF, San Francisco
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Our findings broadly agree with those of two other

modeling studies of interventions against COVID-19 in

homeless shelters: one in the US [92] and the other in

England [93]. The former found that a combination of

daily symptom screening with PCR testing of symptom-

positive individuals, universal PCR testing every 2 weeks,

and alternative care sites for those with mild/moderate

COVID-19 would significantly reduce infections, while

remaining cost-effective, but unlike our analysis did not

consider variation in the effectiveness of interventions

with community incidence. The latter study supports

our results on the high risk of outbreaks in congregate

homeless shelters, as it found that outbreaks in homeless

shelters are likely even when incidence in the general

population is low and estimated that closure of congre-

gate shelters during the first pandemic wave in England

averted over 90% of infections that would have otherwise

occurred in the homeless population.

Each infection control strategy is limited in some as-

pect [17, 18, 69, 94–96]. Symptom-based screening has

very low sensitivity to detect infections early in the clin-

ical course (when people are most infectious) and has

poor specificity [72, 76, 77, 97]. The impact of routine

PCR testing is limited by imperfect PCR sensitivity (~

75%), especially early in the infection course [28], as well

as the need for frequent testing and missing onset of in-

fectiousness between testing periods. Other analyses

support our finding that testing less than once or twice

weekly leaves a high risk of outbreaks (e.g., testing once

every 2 weeks gives a 30% lower probability of averting

an outbreak than twice-weekly testing, Fig. 3) [73–75].

However, once- or twice-weekly testing may be finan-

cially and logistically infeasible. Similarly, relocation of

high-risk persons to independent housing is resource-

intensive. Frequent testing and universal masking also

suffer issues with adherence and may not be possible for

all individuals at all times in homeless shelters.

This study has a number of limitations. Due to limited

data availability, we only calibrated the model to a small

number of shelter outbreaks, the R0 estimates for which

are likely to be higher than for the average shelter since

they occurred early in the pandemic and larger out-

breaks are more likely to be reported. The cross-

sectional aggregate nature of the majority of the data

also led to wide uncertainty intervals around the fitted

parameters, without independent identifiability between

them (Additional file 1: Figure S10). Our results suggest

that universal masking would significantly reduce the

risk of outbreaks in homeless shelters, even with 60%

compliance. However, the impact of masking is highly

sensitive to the assumed masking effectiveness and com-

pliance, estimates for which still vary considerably des-

pite accumulating evidence that masks reduce infection

risk [36, 37, 39, 98, 99]. Many uncertainties in the

biology of SARS-CoV-2 transmission remain, particu-

larly regarding differential infectiousness over time and

by the severity of illness, and the relationship of PCR

positivity and infectiousness [17, 19, 67]. Our assump-

tion of equal infectiousness for different individuals

means that our model is unlikely to fully reproduce

super-spreading events [62, 63]. We made several simpli-

fying assumptions in modeling transmission within the

shelter and from the surrounding community, namely,

homogenous mixing within the shelter population, no

entry of new people, a stable background infection rate

over time, and full immunity upon recovery from infec-

tion given the short duration of the simulation. Our as-

sumption that individuals who are isolated within

homeless shelters while awaiting test results are unable

to transmit or become infected may have led to a slight

overestimation of the impact of testing, since in reality

isolation is not perfect. We assumed homogeneous mix-

ing due to a lack of contact data for the shelter out-

breaks, which meant that we were not able to consider

cohorting and contact tracing as interventions.

Conclusions
This study defines conditions for operating homeless

shelters with a lower risk of COVID-19 outbreaks and

estimates the impact of various interventions on out-

break risk. Our findings demonstrate the need for com-

bined interventions (symptom-based screening, PCR

testing, and masking) and regular testing to protect per-

sons experiencing homelessness from COVID-19, while

highlighting the limitations of these interventions in pre-

venting outbreaks.
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