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The main goal of this work was to assess the performance of different initializations of matrix factorization algorithms for an
accurate identification of muscle synergies. Currently, nonnegative matrix factorization (NNMF) is the most commonly used
method to identify muscle synergies. However, it has been shown that NNMF performance might be affected by different kinds
of initialization. The present study aims at optimizing the traditional NNMF initialization for data with partial or complete
temporal dependencies. For this purpose, three different initializations are used: random, SVD-based, and sparse. NNMF was
used to identify muscle synergies from simulated data as well as from experimental surface EMG signals. Simulated data were
generated from synthetic independent and dependent synergy vectors (i.e., shared muscle components), whose activation
coefficients were corrupted by simulating controlled degrees of correlation. Similarly, EMG data were artificially modified,
making the extracted activation coefficients temporally dependent. By measuring the quality of identification of the original
synergies underlying the data, it was possible to compare the performance of different initialization techniques. Simulation
results demonstrate that sparse initialization performs significantly better than all other kinds of initialization in reconstructing
muscle synergies, regardless of the correlation level in the data.

1. Introduction

The human neuromuscular system is known to be charac-
terized by a highly complex structure, and the mechanisms
adopted by the CNS for the generation of movement are
not completely known [1]. The most common model for
redundancy control hypothesizes that the CNS modulates
muscle activity through a modular architecture [2]. In this
model, it is possible to define a set of activation patterns of
muscular groups (muscle synergies) that are used by the
CNS to generate the coordination needed for a particular
biomechanical task [3]. According to the theory of motor
control through synchronous muscle synergies, muscle
coordination can be represented by a pair of components:

a spatial (W) and a temporal (C) one. W indicates the fixed
balance of activation of a group of muscles and C the time-
varying activation of each group.

Modular motor control strategies have been investigated
in a variety of motor acts [4–11], and evidence has been pro-
vided that a set of muscle synergies is able to represent the
control strategies underlying the movement, with motor
modules that can be either typical for a particular task or
shared among different tasks. These studies also revealed
how the analysis of motor modules in conjunction with
mechanical measurements can provide a neuromechanical
description of human movement [12] and that it can be pro-
posed as a means for quantifying motor impairment and
planning neurorehabilitation [13, 14].
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Various methods of estimating the spatiotemporal
structure of synergies according to the synchronous model
are discussed in [15]. Muscle synergies are extracted from
multimuscle surface electromyographic (sEMG) recordings,
by using various dimensionality reduction methods such as
factor analysis (FA) [16], principal component analysis
(PCA), independent component analysis (ICA), and nonneg-
ative matrix factorization (NNMF). Among the abovemen-
tioned methods, NNMF is the most commonly used, due to
its low computational complexity and to its nonnegativity
constraints typical of muscle activation; evidence in literature
has been provided supporting the choice of NNMF as the
most reliable method for synergy analysis [15]. NNMF works
by factorizing an original nonnegative data matrix D into
nonnegative matrices W and C using simple multiplicative
update rules that aim at minimizing iteratively the norm of
the difference matrix between the original data matrix and
its approximate reconstruction [17]. Despite different solu-
tions having been proposed in recent literature to improve
the performance of NNMF for synergy extraction [18, 19],
the abovementioned implementation still constitutes the
most widely used.

One of the main limitations of NNMF is that it assumes
that the data are statistically independent [17, 20]; this
makes the algorithm less effective in the factorization of data
characterized by temporal correlation, such as the muscle
activity detectable in pathological subjects [9, 11, 21] or dur-
ing fast goal-directed movements [22]. From a practical
point of view, a high correlation in the commands corre-
sponds to a partial or complete temporal superposition/
dependence, leading to a partly simultaneous recruitment
of different muscle synergies; as a consequence, NNMF is
not expected to have good performance in the accurate iden-
tification of the underlying synergy vectors, if they have
highly correlated activation profiles [23].

Another challenging situation for the accurate identifi-
cation of synergies through traditional factorization algo-
rithms is the extraction of synergies that share the
contribution of several muscles, such as in the activity of
biarticular muscles that can contribute to more biome-
chanical subtasks; both shared muscles and a certain
degree of correlation in the C coefficients are common fea-
tures to be found in muscle synergy analyses, in particular
when dealing with pathological subjects, and so, it is
important to have more control on how the performance
of the algorithm is affected by these characteristics of the
experimental data.

The traditional NNMF employs random nonnegative ini-
tialization forW and C from uniform amplitude distribution;
however, it has been shown that its performance can be
improved when other initializations are taken into account
[24–27]. It can be hypothesized that different initialization
matrices might lead to the convergence to different local min-
ima of the reconstruction error; in this context, it is impor-
tant to evaluate whether a different initialization, based on
the characteristics of the original data, leads to a local mini-
mum corresponding to a more accurate representation of
W, also in the presence of correlation among C. In addition,
some studies have shown that the implementation of some

sparseness constraints in the update rules can improve the
performance of NNMF [28–30], suggesting the idea that
inserting some sparseness constraints in the initialization
data can affect and potentially improve the results of the fac-
torization. Other studies have shown how initialization based
on singular value decomposition (SVD) with nonnegativity
constraints is able to improve the NNMF convergence prop-
erties guaranteeing a rapid reduction of the approximation
error [24].

Based on this background, the aim of this study is to
overcome the limitations of the commonly used random
initialization in NNMF. In this regard, two alternative
choices (SVD-based and sparse) are taken into account
for comparison with the traditional implementation of
NNMF. In our work, the method is applied in the frame-
work of modular control of muscle coordination; in par-
ticular, we are interested in the correct identification of
the spatial structure of the synergies, due to its task-
representative role in our model. The different initializa-
tions are tested on a simulated dataset with controlled
levels of correlation among activation coefficients and sim-
ilarity in synergy composition, and their performance is
compared to the traditional implementation of the NNMF
algorithm; an additional validation has been carried out on
artificially corrupted experimental data. We also investi-
gated the local convergence error coming from different
initializations, and we related it to the ability in accurately
identifying W.

2. Materials and Methods

Starting from the model of synchronous muscle synergies
described in Figure 1 and (1), this section describes how the
simulated sEMG dataset has been generated from synthetic
muscle synergies W with controlled activation coefficients
C. Each of these components has been simulated to repro-
duce different initial conditions for the generation of coordi-
nated muscle activity.

In particular, synergy activation coefficients C have
been simulated with different levels of temporal correlation,
in order to reproduce a partial temporal superposition
among activation coefficients. At the same time, synergy
vectors W have been structured to reproduce the condition
in which the contribution of a muscle to the whole coordi-
nation comes from more than one synergy. This technically
implies a higher similarity between the corresponding orig-
inal muscle synergy vectors. The contribution of these
potentially challenging initial conditions is taken into
account both separately and in combination, in order to
assess their effect on the performance of the studied matrix
factorization algorithms in the identification of the original
modular structures.

After testing the behavior of the algorithm on a set of
synthetic signals, the same analysis is carried out on a set
of real multimuscle sEMG signals recorded from eight
lower limb muscles during a pedaling task. The same sig-
nals are then artificially corrupted in order to induce a
controlled temporal correlation among the synergy activa-
tion coefficients.
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2.1. Generation of Simulated Data. Sets of simulated data
were generated according to the following mathematical
model of synchronous muscle synergies [15]:

D t = 〠
k

n=1

Cn t Wn + ε t , C ≥ 0,W ≥ 0, 1

where C k,5000 is the time-varying synergy activation coeffi-

cient matrix containing the activation of a single synergy in
each row, k denotes the number of synergies underlying the
data, W 6,k is the spatially fixed synergy matrix where each

column is a synergy vector and contains six dimensions
(i.e., the chosen number of muscles), and D 6,5000 is the sim-

ulated sEMGmatrix that is a linear combination of C andW.
Nonnegative simulated data were generated with two

basis vectors (i.e., synergies), six as data dimensions (i.e.,
muscles) each of which consists of 5000 data points (i.e., time
samples). For every trial, activation coefficients were gener-
ated randomly with controlled correlation between them: in
order to obtain such a controlled correlation between the
generated data, multivariate normal random numbers were
generated, with a zero mean and by using a symmetric square
covariance matrix. For this purpose, the mvnrnd MATLAB
function was used to generate correlated random variables
that follow multivariate normal distribution. The mixed
covariance terms were varied between 0 and 0.95 with steps
of 0.05; this range has been set in order to span a wide range
of correlation values, going from complete independence up
to strong temporal dependence between activation coeffi-
cients, avoiding a complete correlation that would make it
mathematically impossible to identify the underlying synergy
vectors [15]. Data have then been scaled to obtain zero min-
imum, in order to ensure their nonnegativity and preserve
the controlled level of correlation.

The simulated datasets were generated with respect to the
following two cases:

Case 1 (independent synergies (W) and dependent activation
coefficients (C)). In this dataset, data were simulated using
independent synergies (Figure 2(a)) and activation coeffi-
cients with controlled correlation values between 0 and 0.95.

Case 2 (dependent synergies (W) and dependent activation
coefficients (C)). This dataset is generated by using the same
properties as in Case 1 but using dependent synergies, in
which a single muscle is shared between synergies as shown
in Figure 2(b).

2.2. Real Data. Real EMG data were used for an additional
qualitative test. sEMG data used in this study are taken from
a single subject among those enrolled in [31]; details regard-
ing the protocol and sEMG processing can be found there.
Briefly, data were recorded from eight lower limb muscles
(gluteus maximus, biceps femoris, gastrocnemius medialis,
soleus, rectus femoris, vastus medialis and lateralis, and tibia-
lis anterior) during a 2min long unconstrained pedaling task
at 60 rpm on a cycle ergometer. EMG data were bandpass
filtered (20Hz–400Hz), full-wave rectified, and low-pass
filtered (5Hz) to obtain the linear envelope. These experi-
mental EMG envelopes underwent a classical muscle synergy
extraction via NNMF to obtain the underlying WEXP and
CEXP. In order to analyse the performance of the initialization
methods described in this paper, the extracted indepen-
dent muscle activation shown in [31] is artificially cor-
rupted by making them temporally dependent; the four
activation profiles were time shifted to obtain the maximum
degree of correlation, obtaining the correlated activation
coefficients CCORR. The modified EMG envelope matrix
DCORR was thus constructed as WEXPCCORR. Then all the
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Figure 1: Synchronous muscle synergy model. In this graphical example, two different commands C, indicating the temporal activation
coefficients, are sent to the mixing matrix W, consisting of four synergy vectors. The single command Ci is distributed to the muscle M j

according to the muscle weighting Wij. The inverse problem to be solved by a factorization algorithm is the accurate identification of the

underlying structures W and C starting from the measurement of D.
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initialization methods described in the following section were
applied on DCORR, aiming to identify WEXP.

2.3. Nonnegative Matrix Factorization. NNMF factorizes the
given nonnegative data D M,N into two matrices W and C

such that D ≈WC, where W M,k is the synergy matrix,

C k,N is the activation coefficient matrix, M is the number

of muscles, N is the number of time samples, and k is the
number of extracted synergies. We used the original version
of the algorithm implementing the multiplicative update
rules introduced in [17], defined by the following:

Wik←Wik

DC
T

ik

WCC
T

ik

,

Ckj← ckj
W

T
D

kj

WW
T
C

kj

2

The aforementioned update rules are applied until the
difference in the Frobenius norm D −WC Fr between two
successive iterations is lower than a certain threshold.

2.4. Initialization Techniques. From now on, only the differ-
ent initialization techniques of the W matrix will be
described, while the C matrix of the activation coefficients
is always initialized with values taken from a uniform ampli-
tude distribution between 0 and 1 (MATLAB rand).

The most used method for the initialization of the W

matrix in NNMF considers the elements of the initialization
matrix to be realizations of a random uniform amplitude

distribution in the range [0, 1]. Data have been generated
by using MATLAB rand, and this classical initialization will
be referred to as RAND from now on.

Another initialization method is based on singular value
decomposition [24]. SVD has been applied to the data matrix
D M,N in order to obtain the following representation:

D =WSC withW, S, C ≥ 0, 3

where S k,k is the matrix of the singular values. We achieved

nonnegativity in the initialization ofW M,k and C k,N by ini-

tializing them according to the procedure described in [24],
which provides a low-rank nonnegative SVD initialization
of W and C. This initialization will be referred to as NSVD.

The third initialization technique imposes a sparse struc-
ture in the spatial organization of the synergy vectors. TheW
matrix was first initialized with values taken from a uniform
random amplitude distribution in the range [0, 0.05]. Subse-
quently, one random element in each synergy has been set to
a random uniform value in the range [0.7, 0.8]; these values
have been chosen arbitrarily in order to simulate the activa-
tion of just one muscle for each synergy and to obtain an
extremely sparse synergy initialization (i.e., only one active
muscle in each synergy vector). We will refer to this initiali-
zation as SPARSE.

2.5. Assessment of the Performance in Synergy Identification.
In order to assess the performance of the three analysed ini-
tialization techniques on the simulated datasets, a quality of
reconstruction (QR) parameter is used. QR calculates an
average similarity based on the cosine of the angle between
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Figure 2: Simulated muscle synergy vectors: (a) the independent synergy vectorsWI, in which each muscle significantly contributes to only
one synergy; (b) the dependent synergy vectors WD, in which the contribution of muscle M1 is comparable between the two synergies.
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the generated muscle synergies and the synergies extracted by
each algorithm, as often done in previous studies [32]. TheQR
gives a value between 0 and 1, with 1 indicating the highest
similarity between extracted muscle synergies and the simu-
lated ones (i.e., parallel vectors in the M-dimensional space).

For simulated data, QR has been computed for all the ini-
tialization techniques across a wide range of correlation levels
(using 20 steps from 0 to 0.95). The average QR value over
100 runs has been computed between the original muscle
synergies, synthetically generated, and the synergies extracted
by NNMF.

We used a Kruskal-Wallis analysis to check the effect of
initialization technique and correlation level on the QR
parameter.

3. Results

3.1. Simulated Data. Figure 3 shows the results regarding
synergy identification obtained by each method for data gen-
erated both with independent and dependent synergies and
correlated activation coefficients. Kruskal-Wallis test shows
a general strong effect of correlation in the correct identifica-
tion of W (p < E − 10). Moreover, QR is differently affected
by the initialization technique, with post hoc analysis indicat-
ing that QRSPARSE > QRSVD > QRRAND (p < E − 5). Figure 4
shows an example of synergy identification with all initializa-
tion techniques when data are generated with dependent and
independent synergies with a level of correlation of 0.9;
it can be seen how the performance of RAND decreases

dramatically when correlation among muscle activation coef-
ficients is high, whileNSVDkeeps an acceptable performance,
although SPARSE maintains better overall performance.

In order to check whether a more accurate identification
of the underlying synergy vectors W (i.e., higher QR) is
related to a lower convergence error of NNMF (i.e., the Fro-
benius norm (FN)), we qualitatively analysed the relation
between these quantities across different levels of correlation
for each initialization technique. The QR-FN curve was built
and shown in Figure 5 for both the dependent and indepen-
dent synergies, considering the median QR and FN values
across the 100 realizations for all the correlation levels and
all three initializations; as shown in Figure 5, a 20-point trace
was obtained for each initialization technique.

3.2. Real Data. Four synergies were extracted as in [31].
Figure 6 (left column) shows that the muscle synergies
extracted by each method are very similar both in terms of
W and C when the original data are decomposed by the three
initialization techniques. This result is in accordance with
those obtained on the simulated dataset, as in the data both
partially dependent synergy vectors (contribution of RFmus-
cle is shared among 2 identified synergies) and independent
muscle activation coefficients (as identified by the clearly sep-
arated peaks of activity of the four different synergies) con-
tribute to the measured muscle coordination. The high
correlation was achieved by delaying the single activation
coefficients with respect to the lag corresponding to the
maximum of the cross-correlation function. The correlation
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Figure 3: Performance of NNMF with three different initialization techniques. Average cosine similarity between the synergies extracted
from an initialization technique and the original simulated synergies W. For each of the 20 correlation levels between the activation
coefficients C, the performance is reported as median±median absolute deviation across 100 realizations. (a) Data generated with
independent synergy vectors WI. (b) Data generated with dependent synergy vectors WD.
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levels obtained with this procedure are reported in Table 1. In
Figure 6(b), the decrease in performance of RAND and
NSVD is clearly visible and confirmed by the QR values
indicated in Table 2.

4. Discussions

The main aim of this study was to assess the effect of three
different initialization strategies for NNMF. Ad hoc syner-
gies, both orthogonal or with spatial dependencies, were

generated, in order to evaluate the quality of their estimation
with respect to different initialization choices. Temporal
activation coefficients were simulated with different levels
of correlation, to test NNMF behavior under challenging
conditions. Our comparative study suggests that NNMF
performances are not independent from the initialization
and that the traditional random initialization yields worse

Table 2: Cosine similarity QR between pairs of homologous
synergy vectors extracted via different initialization methods.
Similarity values are presented when the extraction is performed
on the original and on the artificially corrupted EMGs, built as
D =W∗ CEXP orCCORR .

CEXP/CCORR SPARSE NSVD RAND

W1 0.99/0.99 0.99/0.94 0.98/0.87

W2 0.97/0.99 0.99/0.99 0.98/0.98

W3 0.98/0.99 0.98/0.99 0.97/0.70

W4 0.99/0.99 0.99/0.97 0.99/0.97

Table 1: Correlation between muscle activation coefficients before
(CEXP) and after the artificial intervention (CCORR) to make them
temporally correlated.

CEXP/CCORR C1 C2 C3 C4

C1 — 0.13/0.86 −0.42/0.91 −0.12/0.87

C2 — — −0.1/0.87 −0.48/0.89

C3 — — — −0.38/0.88

C4 — — — —

(a) (b)
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Figure 6: Decomposition of experimental EMG data recorded during pedaling. (a) Decomposition of matrix D =WEXP ∗CEXP; synergy
activation coefficients CEXP (upper) and synergy vectors obtained with the three different initialization techniques, together with the
original WEXP. (b) Decomposition of matrix D =WEXP ∗CCORR ; synergy activation coefficients CCORR (upper) and synergy vectors
obtained with the three different initialization techniques, together with the original WEXP.
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performances than other methods, with the most signifi-
cant differences in the case of datasets with a high degree
of correlation.

In our simulation study, we found that NNMF accurately
identifies muscle synergies when the correlation between
activation coefficients was low, regardless of the initialization
choice. However, high correlation between the activation
coefficients caused a dramatic worsening of the synergy iden-
tification accuracy, if the first choice for W is not well struc-
tured. RAND initialization has the worst performance in the
presence of dependency among synergy vectors (i.e., one
muscle is shared between two synergies) or of correlation
among activation coefficients; considering this, this kind of
initialization structure does not represent the optimal choice
when the degree of correlation or the spatial structure is not
known. On the other hand, NSVD and SPARSE have been
shown to yield good quality in the identification of the simu-
lated synergy vectors for all the correlation values tested in
this work and for all the different sets of motor modules.
These two methods have shown similar performance, with
some advantages of SPARSE for extremely high correlation
values; however, the NSVD initialization requires some cal-
culations on data before the NNMF algorithm, introducing
an additional step in the extraction procedure that can affect
the computational complexity as well as the integrity of the
data structure, given the fact that the Smatrix of the singular
values is not considered in the algorithm. Considering these
results, we hypothesize that SPARSE initialization might be
the best choice for seeding the NNMF algorithm, due to its
performances and its negligible computational cost. By
adopting this initialization procedure, we infer that the
results of modular motor control analyses can be improved
significantly, in particular in experiments dealing with chal-
lenging muscle activation patterns characterized by a high
level of muscle cocontraction [33].

In this work, we have simulated a modular motor control
scheme characterized by the activity of two synergies; in liter-
ature, however, it has been shown thatmost common tasks are
well described by the activation of 3 to 5 synergies [4–9]. Even
though a specific study on experimental data is needed for a
full validation, preliminary results from our analysis on arti-
ficially corrupted experimental data suggest that our inter-
pretations are still valid when the rank of the model is
higher than two, and data are characterized by mixed levels
of correlation among activation coefficients and similarity
among synergy vectors; however, a systematic experimental
validation of our results is critical for application in the
experimental framework, when no a priori knowledge on
the number of synergies or on the degree of spatial or temporal
correlation can be assumed.

Our results refer to the correct identification of the W

matrix, because we hypothesized that after the correct identi-
fication of one component of the spatiotemporal coordina-
tion of muscles, it is straightforward to extract the other by
inverting the matrix equation or using some reconstruction
algorithm; the same observation is valid for the problem of
identifying the correct C matrix, as some motor control the-
ories hypothesize a modular structure with invariant C as
primitives [34]. In the framework of muscle synergy analysis,

it can be logical to aim for a maximization of the perfor-
mance in the estimation of one of the two components, in
contrast with the minimization of the approximation error
for the original data matrix D. As qualitatively shown in
our results, the minimum approximation error for D is not
always related to the maximum quality in the identification
ofW; on the contrary, a counterintuitive conclusion has been
drawn from this preliminary analysis, where a higher
approximation error corresponds to a more accurate identifi-
cation of the underlying synergies W. This means that there
is the need for a more detailed investigation on the clinical
meaning that it is attributed to the different component of
the muscle synergy model, in order to develop experimental
and extraction methods aiming for the most correct extrac-
tion of meaningful information.

Recently, features of the modular motor control schemes
have assumedmore clinical importance. Our results show that
the typical implementation of NNMF used in literature does
not show consistent results across the whole range of possible
features of sEMG data in clinical experiments; given this, it is
clear how it is important to have deeper knowledge onNNMF
behavior, when dealing with typical physiological data. With-
out clarifying upon the previous point, it is extremely difficult
to assign an objective and quantitative meaning to the inter-
pretation of the structure of the synergy vectors.

In this work, all the analyses have been carried out
without the need to select the correct number of syner-
gies; the problem of a correct choice of the rank of NNMF
approximation is still an open issue that must be solved for
improving the robustness of this kind of analysis [19, 21].
Although recent studies tried to solve this ambiguity [35],
no standard methods have been proposed before, and it is
important to understand how the different initialization
strategies affect the identification of the correct number of
motor modules, to allow for a complete knowledge about
the CNS control strategies.

5. Conclusions

This study assessed the performances of different initiali-
zation techniques for NNMF, when different levels of cor-
relation characterize the temporal activation coefficients. The
results demonstrate that the performance of NNMF with the
classical random initialization decreases dramatically when
correlation among synergy activation coefficients increases,
both for independent and dependent synergy vectors. When
the aim is the accurate identification of the spatial composi-
tion of motor control, a sparse initialization to the synergy
vectors W significantly outperforms the other initialization
techniques in the presence of correlation among synergy acti-
vation coefficients. A proper shaping of the initial matrix can
thus significantly improve the convergence properties of the
NNMF algorithm for the accurate extraction of muscle syn-
ergies, regardless of the statistical distribution of the matrix
of the synergy activation coefficients. These findings suggest
that a sparse initialization is preferable, particularly in those
experimental conditions where biomechanical or neural con-
straints impose a strong muscle cocontraction. The higher
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estimation accuracy might help improving the neuromecha-
nical and clinical significance of muscle synergy analysis.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

References

[1] N. A. Bernstein, The Coordination and Regulation of Move-
ments, Pergamon Press, Oxford, UK, 1967.

[2] E. Bizzi and V. C. Cheung, “The neural origin of muscle syner-
gies,” Frontiers in Computational Neuroscience, vol. 7, p. 51,
2013.

[3] A. d'Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle
synergies in the construction of a natural motor behavior,”
Nature Neuroscience, vol. 6, no. 3, pp. 300–308, 2003.

[4] G. Cappellini, Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti,
“Motor patterns in human walking and running,” Journal of
Neurophysiology, vol. 95, no. 6, pp. 3426–3437, 2006.

[5] G. Torres-Oviedo and L. H. Ting, “Muscle synergies character-
izing human postural responses,” Journal of Neurophysiology,
vol. 98, no. 4, pp. 2144–2156, 2007.

[6] C. De Marchis, M. Schmid, D. Bibbo, A. M. Castronovo,
T. D'Alessio, and S. Conforto, “Feedback of mechanical effec-
tiveness induces adaptations in motor modules during
cycling,” Frontiers in Computational Neuroscience, vol. 7,
p. 35, 2013.

[7] C. De Marchis, G. Severini, A. M. Castronovo, M. Schmid, and
S. Conforto, “Intermuscular coherence contributions in syner-
gistic muscles during pedaling,” Experimental Brain Research,
vol. 233, no. 6, pp. 1907–1919, 2015.

[8] R. R. Neptune, D. J. Clark, and S. A. Kautz, “Modular control
of human walking: a simulation study,” Journal of Biomechan-
ics, vol. 42, no. 9, pp. 1282–1287, 2009.

[9] D. Clark, L. Ting, F. Zajac, R. Neptune, and S. Kautz, “Merging
of healthy motor modules predicts reduced locomotor perfor-
mance and muscle coordination complexity post-stroke,”
Journal of Neurophysiology, vol. 103, no. 2, pp. 844–857, 2010.

[10] A. d'Avella, L. Fernandez, A. Portone, and F. Lacquaniti,
“Modulation of phasic and tonic muscle synergies with reach-
ing direction and speed,” Journal of Neurophysiology, vol. 100,
no. 3, pp. 1433–1454, 2008.

[11] V. C. K. Cheung, A. Turolla, M. Agostini et al., “Muscle
synergy patterns as physiological markers of motor cortical
damage,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 109, no. 36, pp. 14652–
14656, 2012.

[12] L. H. Ting and J. L. McKay, “Neuromechanics of muscle
synergies for posture and movement,” Current Opinion in
Neurobiology, vol. 17, no. 6, pp. 622–628, 2007.

[13] L. H. Ting, H. J. Chiel, R. D. Trumbower et al., “Neurome-
chanical principles underlying movement modularity and
their implications for rehabilitation,” Neuron, vol. 86, no. 1,
pp. 38–54, 2015.

[14] F. Lunardini, C. Casellato, M. Bertucco, T. D. Sanger, and
A. Pedrocchi, “Children with and without dystonia share com-
mon muscle synergies while performing writing tasks,” Annals
of Biomedical Engineering, vol. 45, no. 8, pp. 1949–1962, 2017.

[15] M. C. Tresch, V. C. K. Cheung, and A. d’Avella, “Matrix fac-
torization algorithms for the identification of muscle synergies:
evaluation on simulated and experimental data sets,” Journal
of Neurophysiology, vol. 95, no. 4, pp. 2199–2212, 2006.

[16] L. A. Merkle, C. S. Layne, J. J. Bloomberg, and J. J. Zhang,
“Using factor analysis to identify neuromuscular synergies
during treadmill walking,” Journal of Neuroscience Methods,
vol. 82, pp. 207–214, 1998.

[17] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Advances in Neural Information Pro-
cessing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp,
Eds., pp. 556–562, MIT Press, Cambridge, 2001.

[18] K. Devarajan and V. C. K. Cheung, “On nonnegative matrix
factorization algorithms for signal-dependent noise with
application to electromyography data,” Neural Computation,
vol. 26, no. 6, pp. 1128–1168, 2014.

[19] A. Santuz, A. Ekizos, L. Janshen, V. Baltzopoulos, and
A.Arampatzis, “On themethodological implications of extract-
ing muscle synergies from human locomotion,” International
Journal of Neural Systems, vol. 27, no. 05, article 1750007, 2017.

[20] V. C. K. Cheung and M. C. Tresch, “Non-negative matrix
factorization algorithms modeling noise distributions within
the exponential family,” in 2005 IEEE Engineering in Medi-
cine and Biology 27th Annual Conference, pp. 4990–4993,
Shanghai, China, January 2005.

[21] E. Ambrosini, C. De Marchis, A. Pedrocchi et al., “Neuro-
mechanics of recumbent leg cycling in post-acute stroke
patients,” Annals of Biomedical Engineering, vol. 44, no. 11,
pp. 3238–3251, 2016.

[22] A. d'Avella, A. Portone, and F. Lacquaniti, “Superposition and
modulation of muscle synergies for reaching in response to a
change in target location,” Journal of Neurophysiology,
vol. 106, no. 6, pp. 2796–2812, 2011.

[23] K. M. Steele, M. C. Tresch, and E. J. Perreault, “Consequences
of biomechanically constrained tasks in the design and inter-
pretation of synergy analyses,” Journal of Neurophysiology,
vol. 113, no. 7, pp. 2102–2113, 2015.

[24] C. Boutsidis and E. Gallopoulos, “SVD based initialization: a
head start for nonnegative matrix factorization,” Pattern Rec-
ognition, vol. 41, no. 4, pp. 1350–1362, 2008.

[25] A. Janecek and Y. Tan, “Using population based algorithms
for initializing nonnegative matrix factorization,” in Advances
in Swarm Intelligence. ICSI 2011, Lecture Notes in Computer
Science, Y. Tan, Y. Shi, Y. Chai, and G. Wang, Eds.,
pp. 307–316, Springer, Berlin, Heidelberg, 2011.

[26] M. Rezaei, R. Boostani, and M. Rezaei, “An efficient initializa-
tion method for nonnegative matrix factorization,” Journal of
Applied Sciences, vol. 11, no. 2, pp. 354–359, 2011.

[27] D. Kitamura and N. Ono, “Efficient initialization for nonnega-
tive matrix factorization based on nonnegative independent
component analysis,” in 2016 IEEE International Workshop
on Acoustic Signal Enhancement (IWAENC), pp. 1–5, Xi'an,
China, September 2016.

[28] W. Liu, N. Zheng, and X. Lu, “Non-negative matrix factoriza-
tion for visual coding,” in 2003 IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP '03), vol. 3, pp. III-293–III-296, Hong Kong, April
2003.

[29] P. O. Hoyer, “Non-negative matrix factorization with sparse-
ness constraints,” Journal of Machine Learning Research,
vol. 5, pp. 1457–1469, 2004.

9Applied Bionics and Biomechanics



[30] K. Stadlthanner, D. Lutter, F. J. Theis et al., “Sparse nonnega-
tive matrix factorization with genetic algorithms for microar-
ray analysis,” in 2007 International Joint Conference on
Neural Networks, pp. 294–299, Orlando, FL, USA, August
2007.

[31] C. De Marchis, M. Schmid, D. Bibbo, I. Bernabucci, and
S. Conforto, “Inter-individual variability of forces andmodular
muscle coordination in cycling: a study on untrained subjects,”
HumanMovement Science, vol. 32, no. 6, pp. 1480–1494, 2013.

[32] A. d'Avella and E. Bizzi, “Shared and specific muscle synergies
in natural motor behaviors,” Proceedings of the National Acad-
emy of Sciences of the United States of America, vol. 102, no. 8,
pp. 3076–3081, 2005.

[33] F. Lunardini, C. Casellato, A. d'Avella, T. D. Sanger, and
A. Pedrocchi, “Robustness and reliability of synergy-based
myocontrol of a multiple degree of freedom robotic arm,”
IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 24, no. 9, pp. 940–950, 2016.

[34] Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Five basic
muscle activation patterns account for muscle activity during
human locomotion,” The Journal of Physiology, vol. 556,
no. 1, pp. 267–282, 2004.

[35] V. C. Cheung, K. Devarajan, G. Severini, A. Turolla, and
P. Bonato, “Decomposing time series data by a non-negative
matrix factorization algorithm with temporally constrained
coefficients,” in 2015 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 3496–3499, Milan, Italy, 2015, August.

10 Applied Bionics and Biomechanics



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

