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Abstract— In this paper, the problem of tackling uncertainty
propagation in the estimation of the atmospheric dispersion
of a toxic gas release is analyzed in order to assess the
risk at the event of an accident. This estimation is based
on an effect model associated with the studied dangerous
phenomenon where some input variables and model parame-
ters are known with imprecision. Two simulation approaches,
Monte Carlo and interval analysis method, are applied and
compared for estimating the confidence interval of risk in-
tensity. Interval analysis method is superior in estimating all
the possible values of intensity relative to the Monte Carlo
simulation. A sensitivity analysis based on Sobol indices is
applied in order to reduce the number of uncertain variables
while conserving an acceptable precision of effect model.
Furthermore, much less computational time is required for
interval analysis method than for Monte Carlo simulation.

Keywords: Risk assessment, sensitivity analysis, uncertainty
propagation, interval analysis, Monte Carlo simulation.

1. Introduction
The risk assessment is a decision aid that aims to rank or

quantify risks to human in order to prioritize management
actions and the allocation of resources. Science-quality crite-
ria require the assessment to be transparent, repeatable and
systematic, and its estimations to be precise and accurate.
Intensity estimations of accidental releases of hazardous
gases have a significant impact on emergency planning
around industrial plants and on the choice of risk prevention
and mitigation barriers. This impact has a very high severity
in urban areas and may be disastrous for the population
[1]. Atmospheric dispersion simulations are dependent on a
significant number of input variables (source term, weather
conditions) as well as internal parameters of the dispersion
model. This effect model includes parameters and variables
which may be measured, estimated or deduced from a priori
knowledge, but all of them are known with uncertainty [2],
[3], [4], [5]. This leads to the inaccuracy in the results when
computing the intensity of the dangerous phenomenon i.e
the gas concentration. In order to perform this intensity, it
is necessary to choose a suitable method able to express
the uncertainty associated with parameters and variables of
the dispersion model and after that, it is necessary to define

a method for estimating the propagation of uncertainties in
this model.
In the present study, two simulation approaches, Monte Carlo
and interval analysis method are applied for estimating the
confidence interval of intensity of the atmospheric disper-
sion. The obtained results by means of interval analysis
method are compared here with Monte Carlo simulation
results for uniform probability distributions in order to
study the variability of uncertainty propagation in the two
approaches and the computation time. A global sensitivity
analysis based on Sobol indices is applied in order to
determine how uncertainty in the model output can be
apportioned to the different uncertain model inputs. This
analysis allows reducing the number of uncertain model
inputs while conserving an acceptable model precision.
The organization of this paper is as follows. In the next
section the problem statement and the global sensitivity
analysis are presented. In section 3, the Monte Carlo and
interval analysis approaches for uncertainty propagation are
explained. The application and the results obtained with the
proposed approaches are reported in section 4. Finally, the
conclusion is drawn in the section 5.

2. Sensitivity analysis
In this paper, the problem of tackling uncertainty in

the estimation of the atmospheric dispersion of a toxic
gas release is analyzed. For this reason, two simulation
approaches, Monte Carlo and interval method are studied
and compared in order to propagate uncertain inputs in a
chosen analytical atmospheric dispersion model.

2.1 Uncertainty estimation
The concepts of risk and uncertainty are intimately linked.

Risk occurs because the past, present and future are un-
certain. A measurement is a process whereby the value of
a quantity is estimated. When a measurement is made or
when some quantity is calculated from the data, generally
it is assumed that some exact or "true value" exists based
on how is defined what is being measured (or calculated).
A range of values, that should contain this "true value", is
then usually specified. The most common way to define this
values set is: Measured a calculated value = exact value ±
uncertainty



2.2 Objective of sensitivity analysis
The sensitivity analysis is the study of how uncertainty

on the output of a model (numerical or otherwise) can be
apportioned to different sources of uncertainty in the model
input [6]. This is useful as a guiding tool when the model is
under development as well as to understand model behavior
when it is used for estimation or for decision support. For
mathematical models, sensitivity analysis is closely related
to the study of error propagation, i.e. the influence that
the lack of precision on model input will have on the
output. Sensitivity studies can identify and prioritize the
most influential inputs, decide which parameters need more
investigations to be precisely determined and simplify the
model by removing or making constant the less influential
input factors. Two types of sensitivity analysis methods can
be selected, local and global methods. The choice depends
on the objective of the analysis, the number of uncertain
input factors, the degree of regularity of the model, and the
computing time for a single model simulation. In this study
we are interested in global sensitivity analysis [7], specifi-
cally Sobol technique. Sobol method is a global sensitivity
analysis (SA) technique which determines the contribution
of each input (or group of inputs) to the variance of the
output and they take into account the whole field of possible
variation of the input variables. The usual Sobol sensitivity
indices include the main and total effects for each input, but
the method can also provide specific interaction terms [8],
[9].

2.3 Estimated Sobol indices by Monte Carlo
In a general manner, the analytical model of atmospheric

dispersion can be written in the form of a mathematical
relation 1 describing the dangerous phenomenon at a given
instant:

y = f(x1, ..., xp) (1)

We assume in this study that the input variables (x1, ..., xp)
of the model are independent. To appreciate the importance
of an input variable xi on the variance of the output y ,
we study how the variance of y decreases if the variable xi
is fixed to a value wi : V (y|xi = wi) .The problem with
this indicator is the choice of the wi value of xi which is
solved by considering the expectancy of this quantity for all
possible values of wi : E[V (y|xi)]. Thus, the variable xi
is more influent on the variance of y, when this amount is
small. The formula of the total variance
V (y) = V (E[y|xi]) + E[V (y|xi)],
leads to use in an equivalent manner the amount V (E[y|xi]),
which becomes larger when the variable xi has a more
important contribution to the variance of y. In order to use
a standardized indicator, we define the sensitivity indices of
y to xi as [8]:

Si =
V (E[y|xi])
V (y)

.

Consider an N-sample X(N) = (xk1, ..., xkp)k=1,...N of
realizations of the input variables (x1, ..., xp) , the index
k denotes the kth sample. The expectation of y, E[y] = f0
and the variance V (y) = V are classically estimated by:

f0 =
1

N

∑N
k=1 f(xk1, ..., xkp) , V =

1

N

∑N
k=1 f

2(xk1, ..., xkp)− f20 (2)

The estimation of sensitivity indices requires a variance
estimation of a conditional expectation. We remind a
technique to estimate V (E[y|xi]) due to Sobol [9].
Let us note : Vi = V (E[y|xi]) = E[E[y|xi]2] −
E[E[y|xi]]2 = Ui − E[y]2 with Ui = E[E[y|xi]2].
The variance of y being conventionally estimated by 2,
Sobol proposes to estimate the quantity Ui, in other words
the expectation of the square of the expectation of y
conditional on xi , as a conventional expectation where,
all input variables can vary, except the variable xi which
is fixed. This requires two N samples of input variables,
denoted X1

(N) and X2
(N) :

Ui =
1

N

∑N
k=1 f(x

(1)
k1 , ..., x

(1)
k(i−1), x

(1)
ki , x

(1)
k(i+1)x

(1)
kp )× f(x

(2)
k1 , ..., x

(2)
k(i−1), x

(1)
ki , x

(2)
k(i+1)x

(2)
kp ),

when the indexes (1) and (2) denote the associated N
sample. The sensitivity indices of the first order of the xi
input are then estimated by:

Si =
Vi
V

=
Ui − f20
V

3. General approach on uncertainty
propagation

The aim of this approach is to make uncertainty evalu-
ation internationally comparable. This methodology is also
proposed by the new draft of the Guide to the expression
Uncertainty in Measurement (GUM [10]). The methodology
presented can be summarized in the following main steps:

Fig. 1: Methodology for evaluating model uncertainty



3.1 Monte Carlo simulation for uncertainty
propagation

Monte Carlo simulation [11], [12] is a computational
mathematical technique, which performs model simulation
by calculating the model output by substituting each un-
certain model input by a particular feasible value. It then
calculates outputs over and over, each time using a different
set of random input values from the probability functions.
Depending upon the number of uncertainties and the ranges
specified for them, a Monte Carlo simulation could involve
thousands or tens of thousands of recalculations before it is
complete.

3.1.1 Monte Carlo simulation process

The Monte Carlo simulation process consists in two steps:
• Generation of a N sample X(N) of size p with uni-

formly distributed random values, where N is the num-
ber of simulations and p is the number of parameters.
For each independent sample of size p the resulting
model value of y is calculated.

• These N values of y are used to perform the propaga-
tion of uncertainties in the model output.

3.1.2 Implementation of the Monte Carlo simulation

Figure 2 present the calculation phase of uncertainty
evaluation using Monte Carlo simulation to implement the
uncertainty propagation.

Fig. 2: The calculation phase of uncertainty propagation.

The inputs of the calculation phase of uncertainty propaga-
tion are firstly the mathematical effect model, secondly the
number N of samples and thirdly the uniform distribution
functions of the uncertain model inputs. Three main steps
are executed during the implementation of the Monte Carlo
simulation : generation of N samples of p input variables,
evaluation of the model output for each sample and finally
estimation of the model output and the associated uncertainty
from the distribution function. The final result of uncertainty
propagation is the coverage interval for the model output.

Based from the N values y1, y2, ..., yN , the uncertainty u is
defined as:

u =
yMax − yMin

2
∗ 100

yNominalV alue
. (3)

With yNominalV alue is the output value of the model without
uncertainty on the model inputs. The yMin and yMax define
respectively the minimal and maximal values of yi,i=1,...,N .

3.2 Interval analysis approach in uncertainty
calculation

The sources of uncertainty are multiple, i.e. mathematical
models with uncertain parameters, representation of real
numbers on digital computers with finite precision, uncertain
initial data. In some applications, it is necessary to know the
influence of these uncertainties on the computed solution. To
solve such problems, techniques based on interval analysis
have been developed in particular by Moore [13], [14]. This
tool allows calculating an overestimated interval containing
with guarantee the feasible values of the model output.
Interval modeling consists in describing a model uncertainty
by an unknown bounded variable, whose known support
defines its feasible value set. The interval containing a real
uncertain variable x, whose value is comprised between a
lower bound x− and an upper bound x+, is written:
[x] = [x−, x+] = {x ∈ R|x− ≤ x ≤ x+}.
Note that no distribution function is required.

3.2.1 Interval Arithmetic

Interval arithmetic in its modern form was introduced by
Moore [13], [14] and is based on arithmetic conducted on
closed sets of real numbers. Mathematics elementary opera-
tions are extended to intervals. The operation result between
two intervals is an interval that contains all the results of
this operation between the different values contained in these
intervals. The operation result on finite intervals is defined
by two bounds which are obtained by working only on their
bounds. In this way, interval arithmetic is an extension of real
arithmetic. For a real arithmetic operation ◦ ∈ {+,−, ∗, /},
the corresponding interval operation on intervals [x] and [y]
is defined by:

[x] ◦ [y] = {x ◦ y|x ∈ [x], y ∈ [y]}. (4)

Interval arithmetic considers the whole range of possible
instances represented by an interval model. In the classic
set-theory interval analysis, given a Rp to R continuous
function y = f(x1, ...xp), the interval united extension [f ]
of f corresponds to the range of f -values on its interval
argument ([x1], ...[xp]) in I(Rp):
[f ]([x1], ...[xp]) = {f(x1, ...xp)|x1 ∈ [x1], ...xp ∈ [xp]} =
[min{f(x1, ...xp)|xi ∈ [xi]},max{f(x1, ...xp)|xi ∈
[xi]}]i = 1, ...p.



3.2.2 Pessimism

Generally, the result of a series of operations between two
or more intervals is not minimal; the obtained interval is
pessimistic. This problem is mainly due to the dependence
problem [15]. Considered a no degenerate interval [x] =
[x−, x+] and an arithmetic operation ◦ ∈ {+,−, ∗, /}, then
using the definition 4, we obtain:

[x] ◦ [x] = {x ◦ y|x ∈ [x], y ∈ [x]}. (5)

According to 5, we see that bounded variables x and y
are considered different despite the fact that we manipu-
late the same interval. So, dependency between bounded
variables cannot always be taken into account when their
interval supports are manipulated and this problem is called
dependency phenomenon. For example, let [x] = [−1, 1],
then [x] − [x] = [−1, 1] − [−1, 1] = [−2, 2] 6= {0}, the
interval operation overestimates the exact domain {0}. In
a general manner, pessimism depends on the occurrence of
interval variables in the expression of [f ]. It leads to the
very interesting guarantee property (reliable computing) of
interval tool, but the overestimation may be important if
unsuited interval extensions are manipulated. The interval
computation can be considered as a semantic extension of
f , since it admits the logical interpretation:
(∀x1 ∈ [x1])...(∀xp ∈ [xp])(∃y ∈ [f ]([x1], ..., [xp]))y =
f(x1, ..., xp).
This logical interpretation contains the set of all trajectories
that verify the model equation.

3.2.3 The implementation of the interval analysis

Figure 3 presents the calculation phase of uncertainty
evaluation using interval analysis method to implement the
uncertainty propagation

Fig. 3: The calculation phase of uncertainty evaluation

From the result value calculates by the interval analysis
method, the propagation uncertainty u is defined as 3. The
yMin and yMax are the lower and upper bounds of the
caculated of [y].

3.3 The interest of the sensitivity analysis
In one hand, identifying the most influential inputs from

the sensitivity analysis aids to decide which uncertain inputs
need more investigations in order to reduce their interval
supports for the IAM and so to improve model accuracy. On
the other hand to reduce the number of uncertain parameters
by imposing less influential model inputs to their nominal
values leads to reduce the occurrence of some interval
variables, and thus the pessimistic in the result value.

4. Results and application
4.1 Mathematical effect model

In order to assess the severity of the risk when an
undesirable and unexpected event occurs, a mathematical
model can be used to compute physical effects coming from
the considered event. In this study, an effect model is used
to estimate or to predict the downwind gas concentration
emitted from sources such as industrial plants, vehicular
traffic or accidental chemical releases. This model represents
the relationships between the inputs of the atmospheric
dispersion model (wind speed, conditions emission point,
release flow ....) and the gas concentration in the air at a
specific point [16], [17], [18]. The concentration ck of the
released gas at a position xk, yk, zk from a continuous source
is given by the following Gaussian plume model:
ck = f(xk, yk, zk, uref , zref , h, q, ay, az, by, bz, cy, cz)

=
qz0.33ref

2πurefh0.33(ayx
by
k + cy)(azxbzk + cz)

∗ exp

−1

2

(
yk

ayx
by
k + cy

)2
 ∗{

exp

(
−1

2

(
zk − h

azxbzk + cz

)2
)

+ exp

(
−1

2

(
zk + h

azxbzk + cz

)2
)}

(6)

Where:
ck is the concentration of the emission (in micrograms
per cubic meter) at any point xk meters downwind of the
source, yk meters laterally from the centerline of the plume,
and zk meters above ground level. The index k denotes
different evaluations of the model output. q is the quantity or
mass of the emission (in grams) per unit of time (seconds).
uref is the wind speed (in meters per second) measured
at a given altitude zref . h is the height of the source
above ground level (in meters). The terms ayx

by
k + cy and

azx
bz
k + cz represent the dispersion parameters and depends

on the distance xk. They represent the standard deviations
of a statistically normal plume in the lateral and vertical
dimensions, respectively. The values of ay, az, by, bz, cy and
cz , may be determined for each atmospheric stability class
defined by Pasquill, by using the table given in [17].

4.2 Modelling of uncertain model inputs
Instead of representing an uncertain parameter or variable

by a constant nominal value, this one can be defined as a
bounded variable. In other words, its real value is unknown,



but it belongs to a set of feasible values defined as an interval
whose bounds are known. In the following, an imprecision
ρv means that an uncertain positive variable v is represented
by the interval value set

[v(1− ρv), v(1 + ρv)]. (7)

This study has been applied to an example of accident
involving nitric oxide gas. This gas is toxic and has a density
relative to air of 1.04, so a Gaussian model is well suited to
model dispersion of such a gas.
For a chosen stability class of C, the nominal values of
dispersion parameters are: ay = 0.105, az = 0.066, by =
bz = 0.915, and cy = cz = 0 [17]. We assume that the
height of leakage point is h = 2m. The measured wind
speed is uref = 4.58m/s, at a height of zref = 40m. The
theoretical nominal value of the release flow is q = 2216g/s.
In the following, the inaccuracy on some parameters and
variables are considered: the release flow q with an uncer-
tainty of ρv = 5%, the wind speed uref with ρv = 2.5%,
the dispersion parameters ay, az with ρv = 2.5% and by, bz
with ρv = 1%, then for each parameter is defined an interval
support of feasible values. These intervals are directly used
to calculate the result of the interval analysis method. To
compare this result with the Monte Carlo simulation result,
we need on the one hand to generate random values for
each model input contained in the same bounded support
according to a uniform distribution function. On the other
hand, we need the same indicator to express the propagation
of uncertainties; for this reason, the used indicator for the
both approaches is presented in the next section.

4.3 Uncertainty propagation before sensitivity
analysis

Let note:
CNom : Concentration in studied point with the nominal
value of the model inputs i.e. without uncertainty on these
inputs.
[MinC,MaxC]C−MC : Confidence interval of
concentration in the studied point with the Monte
Carlo simulation (MCS). The bounds MinC and MaxC
define respectively the minimal and maximal values of the
concentration ck computed for N = 100, 000 samples.
[Ca, Cb]C−IA : Interval support of concentrations in
the studied point computed with the interval analysis
method(IAM).
U − MC : This indicator defines the uncertainty on
the concentration in studied point with the Monte Carlo

simulation, U −MC =
MaxC −MinC

2
∗ 100

CNom
.

This indicator expresses the margin value (width) relative
to the nominal gas concentration according to uncertainty
on the model parameters. More precisely it represents the
same quantity in percent than the imprecision ρv defined in
7 for uncertain model inputs.

U − IA: This indicator defines the uncertainty on the
concentration in studied point computed with the modal
interval analysis. It is defined in the same way by the
following relation:

U − IA =
Cb − Ca

2
∗ 100

CNom
.

Case study

The objective is to determine the confidence interval of gas
concentration in order to determine if it is lower (safety
zone) or bigger (danger zone) than a given regulatory
threshold that leads to avoid for example lethal or health
irreversible effects. In our study the gas concentration is
estimated in 5 points placed in the downwind of a source
emitting nitric oxide gas. Concentration estimations given
by IAM in these 5 points of study are compared with
the outcome of a Monte Carlo approach. The number
of samples for the latter is increased until no significant
changes in the upper and lower bounds are observed. This
leads to N = 100, 000 samples which is a reasonable and
classical choice according to the number p = 6 of uncertain
model inputs. Uncertainties on model inputs in the MCS are
represented in terms of uniform probability distributions for
comparison with IAM. Multiplicative congruential random
generation is used to return successive pseudo-random
numbers. A looping program is implemented in java using
the class random (). Table 1 illustrates the values of the
studied model inputs with the added uncertainties,

Table 1: Model inputs

q ± 5% ay ± 2.5% az ± 2.5% by ± 1% bz ± 1% uref ± 2.5% x y z zref h
350 8
200 10

2216 0.105 0.066 0.915 0.915 4.58 150 5 2 40 2
50 5
40 5

Table 2 illustrates the concentration CNom with the nom-
inal values of the inputs studied, ranges of concentrations
with Monte Carlo approaches [MinC,MaxC]C−MC and
modal interval analysis [Ca, Cb]C−IA, finally the computed
indicators (U −MC,U − IA) of the gas concentration on
the 5 points studied.

Table 2: Computed confidence intervals and indicators

Point(xk, yk, zk) CNom [MinC,MaxC]C−MC [Ca, Cb]C−IA U −MC U − IA
(350, 8, 2) 1.22 [1.09, 1.37] [1.06, 1.41] 11,47% 14.34%

(200, 10, 2) 2.65 [2.39, 2.96] [2.27, 3.09] 10,75% 15,47%
(150, 5, 2) 5.10 [4.56, 5.65] [4.40, 5.89] 10,68% 14,63%
(50, 5, 2) 12.04 [10.91, 13.29] [9.84, 14.64] 9,88% 19,93%
(40, 5, 2) 10.46 [9.25, 11.76] [8.36, 12.98] 11,99% 22.10%

Figure 4 represents the propagation of uncertainties with
MCS and IAM methods for the 5 points of coordinates
(xk, yk, zk).



Fig. 4: Uncertainty propagation according to studied points

Interpretation of results

With the Monte Carlo simulation, the obtained results show
that the uncertainty on model output varies between 9.88%
and 11.99% in the different points studied. With the interval
analysis method, the indicator varies between 14.34% and
22.10% and the uncertainty increases when the distance de-
creases between the source and the point studied. Concerning
the execution time with the IAM, the calculation script needs
1.5 ms as execution time to obtain the concentration at a
given point. With the MCS the execution time is 128 ms,
so it can be deduced that the reduction time with the IAM is
almost 98.8% compared to the MCS. These results show that
the IAM provides larger confidence intervals relative to the
MCS when some model inputs are uncertain. Several reasons
explain the difference between the both approaches. The first
one is due to the problem of pessimism of IAM because of
multiple occurrences of some uncertain model inputs such
as ay, az, by, bz . The second reason is that the Monte Carlo
simulation needs to randomly generate each model input
in its interval support. On one hand the MCS does not
guarantee to take all the values in these bounded supports
and on the other hand to take all the possible combinations
of model input values. For comparison, the IAM takes into
account all the feasible combinations which guarantees the
results. In others word, IAM and MCS leads respectively
to outer and inner approximations of the exact confidence
interval on gas concentration. Concerning the execution time,
the principal reason of the difference is the large number N
of samples used by MCS.

4.4 Sensitivity analysis
Table 3 presents the results of the global sensitivity anal-

ysis for the studied uncertain model inputs. The first order
indices are computed for 100 repetitions and N = 100, 000
samples:
The result shows, that the less influential model inputs on
the model output are az, by and bz .

Table 3: Sensitivity analysis using Sobol indices

Si :Sobol index of the first order Confidence interval of Si
uref 0.14 [0.09, 0.23]
q 0.50 [0.44, 0.54]
ay 0.33 [0.29, 0.41]
az 0.07 [-0.02, 0.12]
by 0.02 [-0.05, 0.10]
bz 0.02 [-0.05, 0.10]

4.5 Uncertainty propagation after the sensitiv-
ity analysis

Based on the results of the sensitivity analysis, uncertainty
on az, by and bz has been removed, in other terms these
model inputs are fixed on their nominal values. All the other
model inputs q, ay and uref are considered uncertain and can
vary on their respective bounded supports.
Table 4 illustrates the values of the studied model inputs
with the added uncertainties only on q, ay and uref . Table
5 represents the obtained results for uncertainty propagation.

Table 4: Model inputs

q ± 5% ay ± 2.5% az by bz uref ± 2.5% x y z zref h
350 8
200 10

2216 0.105 0.066 0.915 0.915 4.58 150 5 2 40 2
50 5
40 5

Table 5: Computed confidence intervals and indicators

Point(x, y, z) CNom [MinC,MaxC]C−MC [Ca, Cb]C−IA U −MC U − IA
(350, 8, 2) 1.22 [1.11, 1.34] [1.10, 1.35] 9,42 % 10.24%
(200, 10, 2) 2.65 [2.44, 2.88] [2.36, 2.97] 8,30 % 11,47%
(150, 5, 2) 5.10 [4.66, 5.58] [4.58, 5.66] 9,01 % 10.60%
(50, 5, 2) 12.04 [10.96, 13.14] [10.40, 13.87] 9,05 % 14,41%
(40, 5, 2) 10.46 [9.34, 11.63] [8.82, 12.31] 10,94 % 16,69%

Figure 5 presents the comparison of the uncertainty
propagation with MCS and IAM.

Fig. 5: Uncertainty propagation according to studied points



Interpretation of results

With the Monte Carlo simulation, the obtained result shows
that the uncertainty on output model varies between 8.30%
and 10.94% for the different points studied. With the interval
analysis method, the indicator varies between 10.24% and
16.69% and the uncertainty increases when the distance
decreases between the source and the point studied. With
the IAM, the calculation script needs 0.7 ms as execution
time to obtain the concentration of a given point. With
the MCS the execution time is 105 ms, so the reduction
time with the IAM is almost 99.3% compared to the MCS.
The sensitivity analysis helps in fixing the less influential
parameters as constant values. This in turn reduces the
computation time which leads to a faster treatment. While
some solutions may be loosed in the MCS method, the
sensitivity analysis carried out is pertinent because this loss
is reasonable. For the interval method, the number of lost
solutions is greater than those in the MCS method, i.e. the
reduction of the uncertainty on model output is more impor-
tant. This is an expected result because some of the multi-
occurrent variables (e.g. az, by, bz) are fixed to constant and
nominal values. Accordingly, this leads to a reduction in the
dependence phenomenon between uncertain model inputs, so
the reduction of the pessimism in the interval method and
produces more accurate results. It is worth noting that the
results obtained with IAM are almost equal to the confidence
interval of MCS before carrying out the sensitivity analysis
(see Table 2). Therefore, the sensitivity analysis may lead
to an interesting simplification by improving the precision
of the IAM model. In the context of risk assessment in
the transport of hazardous materials, it is better to get all
the possible estimations of gas concentration as with the
method of analysis interval, instead of getting a part of the
values as in the Monte Carlo simulation. An inner estimation
of the interval confidence may lead to an inadequate and
insufficient evacuation operation from the danger area, and
then leads to serious injuries.

5. Conclusion
From this study we can conclude that the interval analysis

method is a significant tool for estimating the propagation of
uncertainties. In this study where several model inputs of the
analytical model studied are uncertain , we find that the IAM
provides larger confidence intervals relative to the MCS.
Moreover the computation time is smaller with IAM than
with the Monte Carlo simulation. The sensitivity analysis
helps in fixing the less influential parameters as constant
values. This in turn reduces the computation time which
leads to a faster treatment and on the other hand leads to
a reduction of the pessimism in the interval method and
produces more accurate results. At last, the notion of reliable
or guaranteed computation is crucial for risk assessment.
The next objective is to extend the proposed approach which

may be also used to determine all the geographical region
in which gas concentration is less than a given regulatory
threshold or used for other types of dangerous phenomenon
like the explosion of dangerous goods.
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