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Abstract
This paper describes several approaches to keyword spotting
(KWS) for informal continuous speech. We compare acoustic
keyword spotting, spotting in word lattices generated by large
vocabulary continuous speech recognition and a hybrid ap-
proach making use of phoneme lattices generated by a phoneme
recognizer. The systems are compared on carefully defined test
data extracted from ICSI meeting database. The acoustic and
phoneme-lattice based KWS are based on a phoneme recognizer
making use of temporal-pattern (TRAP) feature extraction and
posterior estimation using neural nets. We show its superior-
ity over traditional HMM/GMM systems. The advantages and
drawbacks of different approaches are discussed.

1. Introduction
Keyword spotting (KWS) systems are used for detection of se-
lected words in speech utterances. Searching for various words
or terms is needed in spoken document retrieval which is a sub-
set of information retrieval. KWS in spoken speech differs from
searching in written text by the ambiguity – we are never able
to make an exact “grep”, and we have to count on inaccura-
cies of recognition systems. Therefore, the estimation of confi-
dence of the found keyword is of crucial importance. The gen-
eral scheme of KWS is shown in Figure 2. The confidence of
keyword is computed as likelihood ratio (or log-likelihood dif-
ference):
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where
�
	�����

stands for the likelihood produced by a filler model
preceding the keyword which models the beginning of utter-
ance,

�������.�
is the likelihood of the keyword,

��� �/!0#��
is the

likelihood of the right filler model modelling the rest of the ut-
terance.

� (*)+!
is the likelihood of the utterance without consid-

ering the keyword – this term is needed for the normalization.
The search of keywords and computation of likelihoods can

be done in several ways (the advantages and drawbacks are dis-
cussed later in respective sections):

1 acoustic KWS, where the model of the keyword is com-
posed of phoneme models at the time the keyword is en-
tered.

1 “grep” in the output (word string or lattice) of Large vo-
cabulary continuous speech recognition (LVCSR).
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1 a hybrid approach making use of transcription of speech
into discrete units – we use the search in phoneme lat-
tices generated by a phoneme recognizer.

This paper deals with the comparison of these three approaches
to KWS and their evaluation on informal continuous speech
(recordings of meetings) within the AMI project. It is organized
as follows: Section 2 contains the description of likelihood es-
timation systems for KWS – we have chosen this organization
because often, one recognizer is used by more than one of the
approaches from the list above. Section 3 describes the evalua-
tion data. Sections 4–6 describe the methods of keyword spot-
ting systems and their results. We conclude in Section 7.

2. Likelihood estimators for KWS
Two HMM/GMM systems were compared as generators of
acoustic likelihoods for acoustic KWS (section 4): The first
set of HMM/GMM models is trained on 10 h subset of ICSI
meetings. The data was parameterized using 2�3 Mel-frequency
cepstral coefficients with 4 and 454 . Cross-word context-
dependent HMMs were trained in standard way using HTK
tools. The system is described in more detail in [1]. The set
of models is denoted as ICSI10h. This system was also used to
generate word-lattices for LVCSR-KWS (section 5). Here, we
have used a tri-gram language model trained on a blend of CTS
(3.5 Mwords), Hub4 (220 M) and ICSI (0.5 M) with trigram
probabilities interpolated with weights 0.11, 0.20 and 0.69 re-
spectively. CTS data contains about 277 hours of speech from
Switchboard (249 h), Switchboard 2 - Cellular (15 h) and Call
Home English (14 h).

Second set of HMM/GMM models used was from AMI-
LVCSR system [2]1. It is a full-fledged LVCSR system trained
on conversational telephone speech (CTS) database. Speech
is parameterized using 2�3 perceptual linear prediction (PLP)
coefficients with 4 and 454 . The features are normalized by
cepstral mean and variance normalization. Context-dependent
(CD) models are trained on CTS data. They are then adapted
using MAP adaptation on full 41 h from ICSI meetings (down-
sampled to 8 kHz). When used in acoustic KWS, these models
are denoted as CTS277h.

In acoustic KWS, we have also experimented with a
phoneme recognizer based on temporal patterns (TRAPs) and
neural networks (NN) (see Figure 1). This system [3] makes
use of unconventional feature extraction technique based on
long temporal trajectories: the temporal context of critical band
spectral densities is split into left and right context (LC-RC)

1Developed in a joint effort of University of Sheffield (UK), Univer-
sity of Edinburgh (UK), Brno University of Technology (CZ), Univer-
sity of Twente (H) and IDIAP (CH)
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Figure 1: Phoneme recognizer with split temporal context

Figure 2: General scheme of keyword spotting.

parts. This allows for more precise modelling of the whole tra-
jectory while limiting the size of the model (number of weights
in the NN). Both parts are processed by DCT to de-correlate
and reduce dimensionality. The feature vector created by con-
catenation of vectors over all filter bank energies is fed to NN.
Two NNs are trained to generate phoneme posterior probabil-
ities for left- and right-context parts respectively. Third NN
functions as a merger and produces final set of phoneme pos-
teriors. In [3], we have shown a substantial improvement for
separate modelling of beginning, center and end of a phoneme
by the NN. Therefore, all nets produce posteriors of 3-states
per phoneme. For the acoustic KWS, these posteriors are trans-
formed to eliminate sharp peaks around 0 and 1 in linear prob-
ability distributions [4]. The TRAP-NN system is trained on
full train set � 2�� 3 h of ICSI database, its results are denoted as
TRAP-NN40h.

The TRAP-NN system is also used to generate phoneme
lattices needed for experiments in section 6. Here, the phoneme
posteriors were transformed to quasi-features and the lattice
generation was done using the standard HTK decoder HVite.
The setting of phoneme insertion penalty and of branching fac-
tor for lattice generation is discussed in section 6. No language
model was used in the phoneme recognition.

3. Evaluation
Our keyword spotting systems were tested on a large database
of informal continuous speech of ICSI meetings [5] (sampled at
2�� kHz). Attention was paid to the definition of fair division of
data into training/development/test parts with non-overlapping
speakers. It was actually necessary to work on speaker turns
rather than whole meetings, as they contain many overlapping
speakers. We have balanced the ratio of native/nonnative speak-
ers, balanced the ratio of European/Asiatic speakers and moved
speakers with small portion of speech or keywords to the train-
ing set. The amounts of data in the training, development and
test parts are 41.3 h, 18.7 h and 17.2 h respectively. The de-
velopment part was used for system tuning (phoneme insertion
penalty, etc.).

In the definition of keyword set, we have selected the most
frequently occurring words (each of them has more than ���
occurrences in each of the sets) but checked, that the phonetic
form of a keyword is not a subset of another word nor of word

System Models FOM
ICSI10h tri-phones 61.88
CTS277h tri-phones 63.66

TRAP-NN40h mono-phones 64.46

Table 1: The results of different acoustic KWS systems.

transition. The percentage of such cases was evaluated for all
candidates and words with high number of such cases were
removed. The final list consists of 2	� keywords:
actually, different, doing, first,
interesting, little, meeting, people,
probably, problem, question, something,
stuff, system, talking, those, using.

Our experiments are evaluated using Figure-of-Merit
(FOM) [6], which is the average of correct detections per 1,
2, . . . 10 false alarms per hour. We can approximately interpret
it as the accuracy of KWS provided that there are 5 false alarms
per hour.

Obviously, in real scenarios, more specific words than
doing, probably, etc. will be used. For statistical eval-
uation using FOM, we however need a set of keywords with
many occurrences in the data. We are aware that this set of
keywords favorizes LVCSR-KWS as these words are all repre-
sented in the recognition vocabulary and their tri-grams in the
language model are reliably estimated.

4. Acoustic KWS

In acoustic KWS, the model of keyword is concatenated from
phoneme models, we allow also for pronunciation variants
(there are 3 3 variants for the total of 17 keywords). The filler
and background models are phoneme loops. As these systems
were developed for real-time operation, we have not used the
right filler model. The likelihood of the keyword is taken from
the last state of keyword model and immediately compared with
the likelihood at the output of background model. Figures 3 and
4 show the networks used for acoustic KWS.

Both systems based on HMM/GMM make use of cross-
word tri-phone models. Links among tri-phones are context
sensitive (e.g. there is link between tri-phones A-B+C and
B-C+D but not between A-B+C and D-E+F). The first and the
last phoneme of keyword is expanded to all context possibil-
ities in tri-phone network (Figure 4). The TRAP-NN system
uses only context-independent models (Figure 3), so that the
network is much simpler.

The results of acoustic keyword spotting are summarized in
Table 1. The best FOM of 64.46% was obtained with the TRAP-
NN system. This is a good result, as it confirmed our previ-
ous comparison of phoneme-recognition systems [3] showing
the superiority TRAP-NN over HMM/GMM. The advantage of
this system is also the simplicity of recognition network (mono-
phones) and speed – the posteriors can be pre-computed so that
the system’s real-time factor was lower than 0.02 (more than
50 
 faster than real-time). On the other hand, when a new key-
word is entered, this system must always go through all the data,
which (even in case of 0.02 
 RT) can make the search times
prohibitive. The main use of this system is in real-time spot-
ting (meeting assistants, security) and as a post-processor for
candidates selected by other techniques.



Figure 3: Keywords spotting network using mono-phones.

Figure 4: Keyword spotting network using tri-phones.

5. LVCSR KWS
Detecting keywords in the “hard” output of LVCSR gives only
poor results ( � 2�� � %). Therefore we are using the LVCSR lat-
tices – oriented acyclic graphs, where each node represents a
word and each link represents time boundaries of the word at
the end of the link (Figure 5). Searching in lattices provides
better results, as the lattice holds several hypothesis in parallel.

LVCSR recognizer assigns each word acoustic� 	������ �� �������
and language model

� 	������ �	 �����.�
likeli-

hoods. In case we “grep” for keywords in LVCSR word lattices
and use the sum of these two likelihoods as confidence of the
hypothesis, we obtain FOM of 61.23%. We are further im-
proving this result by computing confidence of each hypothesis
based on log-likelihood ratio (Eq. 1):

� 	������ � ������� � � 	������ �� 	 	 # � ������� � � 	����
� � ������� �
� � 	������ �(*� � � �������&% � 	����
� �(*�
� � ,

(2)

where the forward likelihood
� 	������ �� 	 	 # � �������

is the likelihood of
the best path through lattice from the beginning of lattice to the
keyword and backward likelihood

� 	������ �( � � � �����.�
is computed

from the end of lattice to the keyword. These two likelihoods
are computed by the standard Viterbi formulas:

� 	������ �� 	 	 # � ��� � ��� 	����
� �� ��� ��� � 	����
� �	 ��� ����������� � 	����
� �� 	 	�# � �����
�
(3)
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� �(*� � � �����
�
(4)

where
� �

is set of nodes directly following node
�

(nodes�
and

���
are connected by an arc),

���
is set of nodes di-

rectly preceding node
�

. The algorithm is initialized by setting� 	������ �� 	 	 # � ��� ��!#"%$ ���'&
and

� 	����
� �( � � � ��(*)+"%$ ���'&
. The last likelihood

we need in eq. 2:
� 	����
� �( ��� � � � 	����
� �� 	 	�# � ��(*)+"%$ ��� � 	����
� �(*� � � ��� ��!,"%$ �

is
the likelihood of the most probable path through the lattice.

The result of LVCSR KWS with likelihood ratio confidence
is ��� � ���#- . We see that this result is better than acoustic KWS.
In case we pre-index the LVCSR lattices, the search can be also
very fast. The drawback of LVCSR is however the strong de-
pendence on the dictionary – in case we want to search for a
word not contained in the dictionary, we have no chance to find

it. In the same time, these words can be the ones that contain
very useful information (proper names, names of new products
etc). LVCSR-based KWS should therefore be combined with a
method for searching new and unknown keywords.

6. Phoneme Lattice KWS
This approach overcomes the drawbacks of LVCSR-KWS (de-
pendency on dictionary) and acoustic-KWS (need to process all
the data for a new keyword). Phoneme lattices were generated
from phoneme posterior probabilities (output of TRAP-NN40h
system). Phoneme insertion penalty was set to 0 for lattice gen-
eration to eliminate deletion of phonemes. We generated lattices
with different branching factors. Generated lattices contain no
language model probabilities, phoneme likelihood is only the
acoustic likelihood

� 	�#/.� ��� �
.

The search of keyword is different from the “grep” applied
on LVCSR lattice. We are searching the phonetic form of the
keyword, and our searching algorithm can handle insertions
(keyword in lattice contains more phonemes than phonetic rep-
resentation of searched keyword) and/or substitution (keyword
in lattice contains different phonemes than phonetic representa-
tion of searched keyword) of phonemes. The search is imple-
mented as a Viterbi algorithm, where the keyword confidences
are given by:
� 	 #/.��� � � 	�#/.� 	 	�# � ������� ��� 	�#/. ������� ��� 	�#/.( � � � ������� %�� 	 #/.(*��� � ,

(5)
where

� 	 #/. �����.�
is the likelihood of the keyword. For the

sub-strings of
�

phonemes from the phoneme lattice, this like-
lihood is expressed as:

� 	�#/. ������� �
�0
�*13254*6 ��� � � 	 #/.� ��� � � � 2 % 6 ��� ��� �87���� ��9

�

(6)
The variable 6 ��� � � 2 if the

�
-th keyword phoneme matches��%�$;:

phoneme from the sub-string of lattice. 6 ��� � �<&
in

case the phoneme is not matching (insertion or substitution).� 	�#/.� ��� �
is the acoustic likelihood of the

�
-th phoneme from

lattice sub-string (stored in the lattice). In case there is no
match,

�=7���� �
can be understood as a penalization for substitu-

tion or insertion error. We have experimented with several ways
to determine

�87���� �
, the best results were obtained by setting�87���� �

to the worst acoustic likelihood in the lattice adjusted
to the length of phoneme

�
.

Partial Viterbi likelihoods
� 	�#>.� 	 	�# � �������

and
� 	�#/.( � � � �������

from Eq. 5 are very similar to LVCSR-KWS. Forward likeli-
hood

� 	�#/.� 	 	�# � �������
is the likelihood of the best path through

lattice from the beginning of lattice to the keyword. Backward
likelihood

� 	�#/.( � � � �������
is computed from the end of lattice to

the keyword. Forward and backward probability are recursively
evaluated as:

� 	�#/.� 	 	 # � ��� �
� � 	 #/.� ��� � ������� � � 	�#/.� 	 	 # � ��� � �
(7)

� 	 #/.(*� � � ��� �
� � 	�#/.� ��� ������?���� � 	�#>.( � � � ��� � �
(8)

where
���

is set of nodes directly following node
�

(nodes�
and

� �
are connected by arc),

� �
is set of nodes directly

preceding node
�

. The first node has
� 	�#/.� 	 	�# � ��� ��!#"%$ ��� 2 and

the last node has
� 	�#/.( � � � ��(*)+"%$ � � 2 .

Finally, the likelihood
� 	�#/.( ��� � � � 	�#/.� 	 	 # � � � 	�#/.( � � � is the

likelihood of the most probable path through lattice. Note,
that

� 	�#/.� 	 	 # � ��� �
,
� 	 #/.(*� � � ��� �

and
� 	 #/.(*�
� � can be pre-computed and
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Figure 5: Example of word lattice for utterance ”DID YOU GET THAT”.

Parameters Branching factor
2 3 4 5 6 7

NoIns NoSub 32.66 43.85 49.91 53.45 55.30 56.33
Ins NoSub 32.86 44.44 50.39 54.09 55.86 56.89
NoIns Sub 36.91 51.25 55.66 57.45 58.32 58.90

Ins Sub 37.03 51.08 55.76 57.20 58.22 58.84

Table 2: Accuracies (FOM) of systems depending on branching
factor of lattice

stored with the lattice, so that the evaluation of confidence is
very fast.

The results are summarized in Table 2. Searching for
the exact phonetic form of keyword in lattice gives FOM of
� � � 3 3,- . Allowing of substitutions increases the accuracy by� � � � - to � � � �

&
for branching factor � . Generated lattices have

sufficiently high density (caused by
&

word insertion penalty),
so that allowing of insertions has no significant affect on the ac-
curacy. Our highest branching factor was � because the FOM
saturates there, only the size of lattices grow up. The best result
on phoneme lattice KWS is FOM � � � �

& - .
The results (see the comparison of the 3 approaches in Ta-

ble 3) are the worst among the three approaches, but we should
take into account, that searching phoneme-lattices is able to
combine the advantages of LVCSR and acoustic approaches
(no dependence on the dictionary and possibility to search fast).
We are aware the penalization used for substitutions was quite
rudimentary and plan to use more sophisticated approaches (for
example using phoneme confusion matrix to determine the pe-
nalization for a mismatch between the phoneme searched and
contained in the phoneme lattice). This approach can also be
used for a fast search of candidates that can be post-scored by
the acoustic KWS.

7. Conclusions and future work
Comparison of accuracies of acoustic, LVCSR and phoneme-
lattice KWS is shown in Table 3. All presented techniques are
evaluated on informal continuous speech database containing
native and non-native English speakers in meeting environment.
The set of keywords contains 2�� of the most frequent words for
statistically reliable evaluation using Figure-of-merit (FOM).

The best accuracy is provided by system using searching
in LVCSR word lattices and keyword confidence computation
using likelihood ratio. The usefulness of LVCSR-KWS is how-
ever limited - the keyword must be contained in the LVCSR’s
vocabulary. This is not a problem for our keyword set (frequent
words selected in order to have statistically reliable results) but
can severely impair the performance when searching for really
useful information (rare words, proper names, . . . ). This sce-

System FOM
Acoustic KWS - TRAP-NN40h 64.46

Phoneme lattice KWS 58.90
LVCSR lattice KWS 66.95

Table 3: The results of different keyword spotting systems.

nario is on the other hand well handled by the other two ap-
proaches. Taking into account the absence of language model,
the results obtained by the acoustic KWS are very encouraging.
The phoneme-lattice based KWS is not reaching the accuracies
of the other two methods, but can be used for a fast pre-selection
of candidates. Especially in case of searching archives contain-
ing hundreds or thousands hours of speech data, the speed of
search is as important as the accuracy.

In future, we will work on improving the individual ap-
proaches, especially the phoneme-lattice spotter. We will also
combine the three approaches in a modular, “Google-like” sys-
tem, that will be usable for different scenarios (meetings, lec-
tures, security applications).
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