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Comparison of particle (DSMC) simulation with the numerical solution of the
Navier–Stokes (NS) equations for pressure-driven plane Poiseuille flow is pre-
sented and contrasted with that of the acceleration-driven Poiseuille flow.
Although for the acceleration-driven case DSMC measurements are qualitati-
vely different from the NS solution at relatively low Knudsen number, the two
are in somewhat better agreement for pressure-driven flow.
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1. INTRODUCTION

The hydrodynamic equations may be obtained as a first approximation to
the Boltzmann equation (1) and are generally accurate at the macroscopic
level except under some extreme conditions, (2, 3) since these Navier–Stokes
equations, are derived under the assumptions of local equilibrium, small
gradients and flows with small Knudsen number.
Surprisingly, even for the simple case of acceleration-driven Poiseuille

flow with relatively small gradients and Knudsen number, the Navier–
Stokes equations fail to give qualitatively correct predictions. Specifically,
they fail to reproduce the central minimum in the temperature profile and
a non-constant pressure profile, which are both predicted by kinetic theory



and observed in numerical simulations down to Knudsen numbers of
10−2. (4–11) Furthermore, it is not possible to correct this failure by modifying
the equation of state, transport coefficients or boundary conditions and,
unlike slip phenomena, the discrepancy is not just near a boundary but
throughout the system. The object of this paper is to investigate whether a
similar discrepancy occurs in what appears to be an equivalent system,
namely pressure-driven Poiseuille flow.
The Navier–Stokes equations have the following form: (12)
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where r is density, v velocity, f body force acceleration, p pressure, g vis-
cosity, cv heat capacity, o thermal conductivity, and F the dissipation
function (i.e., viscous heating). Pressure-driven flow is related to the accel-
eration-driven case because a constant gradient of pressure will serve as a
constant body force (acceleration), that is, the first two terms on the right
hand side of Eq. (2) are equivalent at the hydrodynamic level. At the
microscopic level the two driving forces are very different since an external
force accelerates individual particles while a pressure gradient induces a
collective flow due to a spatial variation of the particles. For acceleration-
driven Poiseuille flow only the first two terms on the right hand side of
Eq. (3) contribute but for pressure-driven flow there can also be cooling by
expansion when the flow is compressible (i.e., when N · v ] 0).
In this paper the velocity, temperature, and pressure profiles are

obtained from DSMC simulations for both acceleration-driven and pres-
sure-driven Poiseuille flows and compared with numerical solutions of the
Navier–Stokes equations. In Section 2 the numerical schemes for the
Navier–Stokes solver and the DSMC simulations are described. Section 3
presents the results of the numerical investigations and in Section 4 a
discussion of our results and a list of further directions are given.

2. POISEUILLE FLOW

In Poiseuille flow the fluid is confined between two rigid parallel plates
that are stationary and act as thermal reservoirs. In the acceleration-driven
case the boundary conditions are take as periodic in the flow direction and
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a constant body force is applied in this direction. In the pressure-driven
case the boundary conditions are set to create a pressure gradient and no
external field is applied.
The numerical solution of the compressible Navier–Stokes (NS) equa-

tions is obtained using a second-order Godunov method (13–15) to evaluate
the hyperbolic fluxes and a Crank–Nicolson scheme to treat the parabolic
terms, which are approximated by standard finite difference methods. The
computation of the hyperbolic flux terms using the second-order Godunov
procedure is an explicit procedure so that the integration algorithm has a
time step restriction based on CFL considerations of the Euler equations.
The implicit discretization of the parabolic terms requires the solution of a
nonlinear system of equations and this is done by the standard Gauss–
Seidel method. The equations are solved in their conservative form using
the temperature dependent transport coefficients for a hard sphere gas.
Direct Simulation Monte Carlo (DSMC) (16) is a well-known algorithm

for computing gas dynamics at the level of the Boltzmann equation. In
DSMC, the state of the system is given by the positions and velocities of
particles. In each time step, the particles are first moved as if they did not
interact with each other. After moving the particles and imposing any
boundary conditions, collisions are evaluated by a stochastic process, con-
serving momentum and energy and selecting the post-collision angles from
their kinetic theory distributions. Being a stochastic algorithm, DSMC
measurements have statistical variation but this variation is that of spon-
taneous fluctuations and so confidence intervals (error bars) may be
evaluated using statistical mechanics. (17)

Although the geometry of the problem is simple, some care must be
taken to formulate and implement boundary conditions that are equivalent
in the NS and DSMC computations. The boundary conditions for the
Navier–Stokes equations are: at the entrance (x=−Lx/2),

r=r0, dv/dx=0, p=p+ (4)

and at the exit (x=Lx/2),

dr/dx=0, dv/dx=0, p=p− . (5)

These boundary conditions were chosen in an effort to minimize the
entrance and exit boundary layers, that is, mimic flow in a very long
system. At the thermal walls (y=±Ly/2), the velocity and temperature
boundary conditions are v=uslip x̂ and T=T0+Tjump, where the slip and
jump corrections for a fully accommodating surface are (18)

uslip=al
“u
“y
, Tjump=b

2c
c+1

l

Pr
“T
“y
, (6)
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where l is the mean free path, c is the ratio of specific heats, and Pr is the
Prandtl number. Ohwada et al. (19) and Sone et al. (20) predict the coefficients
a=1.11 and b=1.13, which is confirmed by DSMC simulations. (21)

In the NS computation, the inflow boundary conditions are imposed
by setting the values of the grid points at the entrance as,

rin=r0, vin=vin+1, pin=p+, (7)

where vin+1 is the velocity at the grid point immediately to the right of an
entrance grid point. The outflow boundary conditions at the exit are
imposed in a similar fashion

rout=rout−1, vout=vout−1, pout=p− . (8)

The inflow and outflow boundary conditions for DSMC are imposed
by refreshing the particles in the cells at the entrance and exit as if they
were in contact with a reservoir. At the entrance, the number of particles in
each cell is set according to the boundary condition r=r0. The individual
particle velocities are generated according to the Maxwell–Boltzmann dis-
tribution with a temperature T=mp+/rk (perfect gas) and with a mean
velocity equal to that of the adjacent fluid cell, vin+1. At the exit the number
of particles in each cell is set equal to the number in the adjacent fluid cell
so that dr/dx=0; the particle velocities are set as at the entrance but using
the exit pressure p− . To minimize fluctuations the fluid velocity used in
setting the entrance and exit boundary cells is evaluated as a running
average.

3. NUMERICAL RESULTS

The simulated fluid is a hard sphere gas with particle mass m=1 and
diameter d=1. At the reference density of r0=1.21×10−3, the mean free
path is l0=m(`2 pr0d2)−1=186. The distance between the thermal walls
is Ly=10l0 and their temperature is T0=1. The reference fluid speed is
u0=`2kT0/m=1 so Boltzmann’s constant is taken as k=1/2. The refer-
ence sound speed is c0=`ckT0/m=0.91 since c=5/3 for a monatomic
gas. The reference pressure is p0=r0kT0/m=6.05×10−4. The acceleration
and pressure gradient are chosen so that the flow will be sub-sonic, laminar
and of similar magnitude in the two cases. Specifically, r0f=8.31×10−8

for the acceleration-driven case and dP/dx % 1.08×10−7 for the pressure-
driven case (p+=

3
2 p0, p−=

1
2 p0, Lx=30l0). In both cases the Knudsen

number is Kn=l/Ly=0.1, the Mach number is Ma % 0.5 so the Reynolds
number Re %Ma/Kn is of order one. Computations were also performed
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for a variety of other Knudsen numbers, pressure ratios, aspect ratios,
etc, and similar results were obtained. As expected, the DSMC and NS
computations were in better agreement at smaller Knudsen number.
The code was first tested for the acceleration-driven case since, as

described in Section 1, this scenario has received considerable attention in
the literature. The results, shown in Figs. 1–3, are in agreement with earlier
studies and clearly show that the solution of the Navier–Stokes equations
qualitatively does not match the DSMC measurement. Namely, in DSMC
one observes a non-constant pressure profile and a temperature dip in the
center of the channel. On the other hand, the Navier–Stokes equations do
accurately predict the velocity profile, which is nearly parabolic.
The results for the pressure-driven case are shown in Figs. 4–9. The

comparison with the acceleration-driven case is best made by considering
the profiles in the cross-stream directions measured at the center of the
system (Figs. 4–6). As with the acceleration-driven case the Navier–Stokes
equations are in qualitatively agreement with the DSMC measurement for
the velocity profile (Fig. 4) but unlike before the temperature profile
(Fig. 6) is also in qualitative agreement. In the acceleration-driven case
T > T0 due to viscous heating but in the pressure-driven case T < T0 since
the viscous heating is surpassed by the expansion cooling. Interestingly, the
DSMC data indicate a reverse temperature jump at the wall, that is,
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Fig. 1. Stationary velocity for acceleration-driven case; the curve with error bars is the
DSMC result.
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Fig. 2. Stationary pressure profile (normalized by p0) for acceleration-driven case; the curve
with error bars is the DSMC result.
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Fig. 3. Stationary temperature profile for acceleration-driven case; the curve with error bars
is the DSMC result.
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Fig. 4. Stationary velocity profile for pressure-driven case; the curve with error bars is the
DSMC result. The profiles are in the cross-stream direction (y-direction) at the center of the
system (x=0).
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Fig. 5. Stationary pressure profile (normalized by p0) for pressure-driven case; the curve
with error bars is the DSMC result. The profiles are in the cross-stream direction (y-direction)
at the center of the system (x=0).
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Fig. 6. Stationary temperature profile for pressure-driven case; the curve with error bars is
the DSMC result. The profiles are in the cross-stream direction (y-direction) at the center of
the system (x=0).
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Fig. 7. Stationary velocity profile for pressure-driven case; the curve with error bars is the
DSMC result. The profiles are in the stream-wise direction (x-direction) down the center-line
(y=0).
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Fig. 8. Stationary pressure profile (normalized by p0) for pressure-driven case; the curve
with error bars is the DSMC result. The profiles are in the stream-wise direction (x-direction)
down the center-line (y=0).
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Fig. 9. Stationary temperature profile for pressure-driven case; the curve with error bars
is the DSMC result. The profiles are in the stream-wise direction (x-direction) down the
center-line (y=0).
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the temperature of the gas near the walls is slightly greater than T0 though
the temperature gradient normal to walls is negative. The NS and DSMC
pressure profiles have opposite curvature (Fig. 5) but the magnitude of the
pressure is nearly equal in the stream-wise direction (Fig. 8). The stream-
wise velocity and temperature profiles (Figs. 7 and 9) do not agree as well
but this is not so surprising given that Kn=0.1 and the aspect ratio is only
Lx/Ly=3.

4. CONCLUSIONS

In this paper, plane Poiseuille flow is studied for acceleration-driven
and pressure-driven conditions by comparing DSMC simulations with
numerical solutions of the Navier–Stokes equations. In both acceleration
and pressure-driven flows the velocity profile is approximately parabolic;
the NS solution is in better agreement with the DSMC results in the former
case. The qualitative difference observed in the temperature profile in the
acceleration-driven case is not found in the pressure-driven case but the
quantitative agreement is only fair. A concave pressure profile is observed
in the DSMC data for both types of flow though NS give a strictly con-
stant pressure in the acceleration-driven flow and a convex profile in the
pressure-driven flow.
This investigation of pressure-driven Poiseuille flow is being extended

in various directions. Some of the quantitative differences observed in the
profiles are likely due to the influence of the entrance and exit conditions.
These effects may be minimized by increasing the aspect ratio but then the
pressure difference must be increased to maintain the same pressure gra-
dient and the DSMC simulations become computationally more expensive.
A better approach is to modify the entrance and exit reservoir conditions to
better mimic the flow in a long channel. The quantitative and qualitative
differences will also vary with Knudsen number, as has already been shown
for acceleration-driven Poiseuille flow, and a similar analysis is underway
for pressure-driven flow.
Besides velocity, temperature and pressure there are other quantities of

interest, such as the various components of the stress tensor and heat flux,
and a full analysis will be presented elsewhere. Finally, the DSMC results
will be compared with kinetic theory (BGK approximation, moment
methods, etc.) in cases where predictions are available.
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