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ABSTRACT 

 

Wind speed forecasting is critical for wind energy conversion systems since it 

greatly influences the issues such as scheduling of the power systems, and dynamic 

control of the wind turbines. Also, it plays an essential role for siting, sizing and 

improving the efficiency of wind power generation systems. Due to volatile and non-

stationary nature of wind speed time series, wind speed forecasting has been proven to 

be a challenging task that requires adamant care and caution. There are several state-of-

the-art methods, i.e., numerical weather prediction (NWP), statistical, and hybrid 

models, developed for this purpose. Recent studies show that artificial neural networks 

(ANNs) are also capable of wind speed forecasting to a great extent.   

In this paper, 3-layer perceptron feedforward neural network is employed for 

comparison of three different training algorithms, i.e., Lavenberg-Marquardt (LM), 

Scaled Conjugate Gradient (SCG) and Bayesian Regularization (BR) backpropagation 

algorithms, in the view of their ability to perform 12 multistep ahead monthly wind 

speed forecasting. Horizontal wind speed, absolute air temperature, atmospheric pressure 

and relative humidity data collected between November 1995 - June 2003 and July 2007 

– April 2015 for city of Roskilde, Denmark is used for training, validation and testing of 

the network model. The performed experiment shows that for 12 multistep ahead wind 

speed forecasting, SCG algorithm has obvious preference in terms of prediction 

accuracy with mean absolute percentage error (MAPE) of 3.717%, followed by LM and 

BR algorithms with MAPE of 4.311% and 4.587% accordingly. As a result, within the 

scope of this study, SCG algorithm is found to be more suitable to build a multistep 

ahead wind speed forecasting model. 

 

Key words:  Multistep ahead forecast, wind speed forecasting, backpropagation 

algorithms, neural networks. 
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ACF                Autocorrelation function 

ANN               Artificial neural network 

ARIMA    Autoregressive integrated moving average 

BMLP    Bridged Multilayer Perceptron 

BP     Backpropagation  

BR     Bayesian regularization  

ERNN    Elman recurrent neural network 

FFNN    Feed forward neural network 

FCC     Fully connected Cascade 

MLP     Multilayer Perceptron 

MSE     Mean squared errors 

MAE    Mean absolute error 

MAPE   Mean average percentage errors 

NARX   Nonlinear autoregressive  

NWP    Numeric weather prediction 

LM   Lavenberg-Marquardt 

LNNTD   Linear neural network with time delay  

LVQ    Learning vector quantization  

RB    Resilient Backpropagation 

RMSE   Root mean square errors 

RNN   Recurrent neural network 

EnKF    Ensemble Kalman Filter 

SCG    Scaled conjugate gradient 
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CHAPTER 1. INTRODUCTION 

 

 Wind is a clean, ergonomic, sustainable and cost-effective alternative energy 

source to conventional fossil fueled power generation. Increasing level of wind power 

penetration into the electric grid requires accurate wind speed forecasting methods for 

the effective and efficient management of wind farms. Wind speed forecasting is critical 

for wind energy conversion systems since it greatly influences the issues such as the 

scheduling of a power system, and the dynamic control of the wind turbine. For instance, 

long-term wind speed prediction is vital for siting and sizing of wind power applications, 

whereas short-term forecasting of wind speed is important for improving the efficiency 

of wind power generation systems (Li & Shi, 2010). Although wind energy may not be 

dispatched, related impact cost of wind power development can be substantially reduced 

if the wind energy can be scheduled using accurate wind forecasting (Wu & Hong, 

2007). However, due to its intermittent and non-stationary nature, wind speed can be 

very challenging to predict (Lodge & Yu, 2014).   

 Wind speed is affected by large-scale atmospheric conditions and the 

morphology of the surface landscape. Several state-of-the-art techniques have been 

identified for wind speed forecasting. These techniques can be cataloged into numeric 

weather prediction (NWP) methods, statistical methods, methods based upon artificial 

neural networks (ANNs), and hybrid approaches. NWP methods could be the most 

accurate technique for short-term forecasting. However, in general, statistical, ANN 

methods, or several advanced hybrid methods based on observations perform more 

accurately over the very short-term forecast range (Wu & Hong, 2007). Averaging the 

original data over a longer time interval, ANNs are capable of making precise long-term 

predictions as well. 

 Statistical methods provide relatively inexpensive statistical forecasting models 

that do not require any data beyond historical wind power generation data. However, the 

accuracy of the prediction for these models drops significantly when the time horizon is 
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extended (Saroha & Aggarwal, 2014). The advantage of the ANN is to learn the 

relationship between inputs and outputs by a non-statistical approach. These ANN-based 

methodologies do not require any predefined mathematical models. If same or similar 

patterns are met, ANNs come up with a result with minimum errors (Wu & Hong, 2007). 

In this paper, ANN method is employed for wind speed estimations. 

 Artificial neural network method has been tested on wind speed forecasting 

through different experimental set-ups in various research articles in the past years. In an 

earlier study, Ghanbarzadeh et al. (2009) used several input parameters such as air 

temperature, relative humidity and vapor pressure data during 1993-2004 for city of 

Manjil, Iran to estimate the wind speed using ANN. The measured data between 1993-

2003 were used for training purpose, while the data from 2004 were used for testing 

purpose. The results show considerable agreement between actual and predicted data; 

wherein mean absolute percentage error (MAPE) were found to be 10.78%. Lodge and 

Yu (2014) proposed a multilayer neural network model by using air temperature, 

pressure and historic wind speed measurements as input data and found that predicted 

and actual wind speed measurements are in strong agreement with root mean square 

error (RMSE) of 0.5526, which is 6.14% of the mean wind speed. Wang et al. (2004) 

developed an ANN based algorithm that summarizes short-term pattern and long-term 

trend in the wind speed data and uses a non-linear filter for the noise reduction. The 

results show that ANNs outperform persistence and autoregressive integrated moving 

average (ARIMA) models by 2.3% and 2.1% correspondingly. Also, Sharma and Lie 

(2012) proposed a hybrid technique for error reduction and improvement of basic ANN 

model by integrating the method of Ensemble Kalman Filter (EnKF) to correct the 

output of ANN to find the best estimate of wind speed. The results show that the error 

can be reduced and very good accuracy can be obtained if this hybrid model is used for 

the prediction of wind speed. 

 The objective of this research paper is to present a comprehensive comparison 

study on the application of different artificial neural network training algorithms for 

multistep ahead monthly wind speed forecasting. Three types of training algorithms, 
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namely, Lavenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG) and Bayesian 

Regularization (BR) backpropagation algorithms for a given multilayer perceptron 

(MLP) feedforward neural network are investigated. The performance is evaluated based 

on several statistical metrics, namely, mean absolute error (MAE), mean square error 

(MSE), and mean absolute percentage error (MAPE). For this purpose, Matlab is chosen 

as an experiment environment to perform the required computations and visualizations. 

 The remainder of the paper is organized as follows. In chapter 2, related work 

from literature is explored and required knowledge regarding different ANN 

architectures and training algorithms is briefly provided. In chapter 3, a multiphase 

methodological framework is constructed, data used in this paper with its statistical 

properties are summarized and explained, and proposed network architecture is 

described. In chapter 4, the simulation parameters and the results are presented. In 

chapter 5, analysis of the results is discussed. Lastly, in chapter 6, final conclusive 

remarks are drawn and potential future work is inspected. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction to ANN 

 Neural networks are the nonlinear parallel structure inspired by human brain 

system (Rojas, 1996). A more promising method for adaptive wind speed prediction is 

the use of artificial neural networks. Originally modeled from the biological central 

nervous system of human beings, an artificial neural network is a large-scale parallel-

distributed information processing system that is composed of many inter-connected 

nonlinear computational units, i.e., neurons (Rojas, 1996). The network can perform 

many tasks such as function approximation, system identification, optimization, and 

adaptive control. A neural network based approach yields some valuable features over 

traditional methods, such as adaptive learning, distributed association, nonlinear 

mapping, as well as the ability to handle imprecise data. For wind speed prediction, a 

neural network model can be trained by taking a set of past measurement data. If there is 

a change in conditions, it can learn the change over time and adjust itself for more 

accurate predictions (Lodge & Yu, 2014). ANNs have been proved to be effective to 

simulate nonlinear systems. Hidden patterns, which could be independent of any 

mathematical models, can be found from the training data sets. If the same or similar 

patterns are met, ANNs come up with a result with minimum MSE (Wang et al., 2004). 

ANN maps the input vector into corresponding output vector and it is only imperative 

and other values need not be known. This makes ANNs very useful to mimic non-linear 

relationships without the need of any already existing models (Sharma & Lie, 2012). 

2.2 Taxonomy of ANN architectures 

 Artificial neural network architectures can be divided into two categories such as 

supervised and unsupervised networks (Wilamowski, 2009). The supervised neural 

networks are trained to produce desired outputs in response to sample inputs, making 

them particularly well suited to model and control dynamic systems, classify noisy data, 

and predict future events. Some members of this family are 1) feedforward networks 

(FFNN): multilayer perceptron (MLP), bridged multilayer perceptron (BMLP), fully 
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connected cascade (FCC), feedforward input-delay, linear network architectures 2) radial 

basis networks: generalized regression and probabilistic neural network architectures, 3) 

dynamic networks: nonlinear autoregressive (NARX), recurrent neural network (RNN), 

Elman, and Hopfield networks, and 4) learning vector quantization (LVQ) architectures. 

On the other hand, the unsupervised neural networks are trained by letting the network 

continually adjust itself to new inputs. They find relationships within data and can 

automatically define classification schemes. Members of this family include competitive 

layers and self-organizing maps. Souhaib Ben Taieb et al. (2012) gave a comparative 

review of existing strategies for multistep ahead forecasting and summarized the pros 

and cons of these strategies. According to this study, FFNN yields better result in terms 

of accuracy over RNN whereas compromising on the computation time. Afterwards, 

Saroha and Aggarwal (2014) presented a comparative analysis of different classes of 

ANNs for multistep ahead time-series forecasting of wind power. The three models, 

which have been used, are: linear neural network with time delay (LNNTD), FFNN and 

Elman recurrent neural network (ERNN). The results showed that for one step ahead 

forecasting, FFNN outperformed the others, whereas for multistep ahead forecasting 

LNNTD showed slightly better performance. Additionally, the same paper also mentions 

that FFNN is one of the most used, intuitional, and promising yet relatively less complex 

technique to use for wind speed time-series forecasting. In this paper, MLP FFNN 

architecture has been employed.  

2.3 FFNN architecture  

 Rojas (1996) provided a comprehensive review of FFNN architecture and he 

stated that feedforward backpropagation network is one of the most popular techniques 

in the field of ANNs. A MLP is a FFNN model that maps input data onto output data. 

The MLP consists of three or more layers with each layer fully connected to the next 

one. The multilayered architectures are those where set of computing N units is 

subdivided into L subsets N1, N2, . . . NL in such a way that only connections from units 

in N1 go to units in N2, and from units in N2 to units in N3, etc. The subsets Ni are 

called the layers of the network. The set of input nodes is called the input layer, and the 
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set of output units is called the output layer. All other layers in between are called the 

hidden layers. A generic MLP architecture is illustrated in Figure 2.1. 

 

 

 Figure 2.1: A generic architecture of MLP           Figure 2.2: Topology of 3-layer FFNN 

                   Source: Rojas, 1996                       Source: Li & Shi, 2010 

 

 The source nodes in the input layer of the network, which are just the entry 

points for information into the network, do not perform any computation, yet supply 

respective elements of the activation pattern or input vector, which constitute the input 

signals applied to the neurons in the hidden layer. The output signals of the hidden layer 

are used as inputs to the output layer. The output signals of the neurons in the output 

layer of the network constitute the overall response of the network to the activation 

patterns applied by the input layer neurons.  

 A three-layer FFNN can fit multi-dimensional mapping problems arbitrarily well, 

given consistent data and enough neurons in its hidden layer (Saroha & Aggarwal, 

2014). Figure 2.2 illustrates a FFNN with n input neurons, m hidden neurons and one 

output neuron. Each computing unit collects the information from n input lines with an 

integration function. The integration function is sum of the inputs. For 𝑗!! neuron of the 

network, the integration function can be described as in (2.1), where 𝜔!" is the 

connection weight from input i to hidden node j, 𝑦! is the i
th

 input with 𝑦! being the bias 

𝑏!"(with weight 𝜔!! = 1). The total excitation computed in this way is then evaluated 

using a transfer function. Many kinds of transfer functions have been proposed in 

literature and one of the most popular hidden layer transfer functions is the hyperbolic 

tangent sigmoid function (2.2), denoted as 𝑓!. Since learning algorithms require 

computation of the Jacobian (first order partial derivatives) and/or Hessian (squared 
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second order partial derivatives) matrices of the network function, the continuity and 

differentiability of the transfer function must be guaranteed (2.3). Output of the j
th

 

neuron in the hidden layer wherein tangent sigmoid function is employed varies between 

-1 and 1 (2.4) and it serves as an input for the output neuron k (here k=1) in the output 

layer of the network (Rojas, 1996). Output of the output neuron can be calculated as 

shown in (2.5), where 𝑓! is the output layer transfer function, usually a line function, 𝜔!" 

is the connection weights from hidden node j to an output neuron, 𝑧! is the corresponding 

output of the j
th 

neuron in the hidden layer with 𝑧! being the bias 𝑏!"(with weight 

𝜔!! = 1). 

 

𝑛𝑒𝑡! = 𝜔!"𝑦!   (𝑖 = 0,1,… , 𝑛; 𝑗 = 1,… ,𝑚)𝑛

𝑖=0
                                                                (2.1) 

𝑓!(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥
                                                                      (2.2) 

!

!"
𝑓
𝐻
(𝑥) =   2𝑓

𝐻
(𝑥)(1 − 𝑓

𝐻
(𝑥))                                                    (2.3) 

−1 < 𝑧! = 𝑓! 𝑛𝑒𝑡! =
1−𝑒

− 𝜔𝑖𝑗𝑦𝑖  
𝑛
𝑖=0

1+𝑒
− 𝜔𝑖𝑗𝑦𝑖  

𝑛
𝑖=0

< 1                             (2.4) 

𝑜!"# = 𝑓!( 𝜔!"𝑧!   (  𝑗 = 1, 2… ,𝑚)𝑚

!=0
)                                                      (2.5) 

 

 The weights of the edges are real numbers selected at random. When the input 

pattern 𝑦! from the training set is presented to this network, it produces an output 𝑜!"#,! 

different in general from the target 𝑡!. The objective is to make 𝑜!"#,! and 𝑡! identical for 

i = 1 . . . p, where p is the ordered pairs of n- and k-dimensional input and output vectors 

(here k=1), by using a learning algorithm to minimize the error function of the network 

(2.6). 

 

𝐸 =
!

!
𝑜!"#,! − 𝑡!

!!

!!!
                                                          (2.6) 
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The adjustable parameters to minimize the error function are the interconnection weights 

and bias points. Thus, various iterative training algorithms can be utilized to minimize E. 

The three-layer ANN used in this study contains only one hidden layer. Multilayer ANN 

can have more than one hidden layer, however theoretical works have shown that a 

single hidden layer is sufficient for ANNs to approximate any complex non-linear 

function (Saroha & Aggarwal, 2014).       

2.4 Taxonomy of Training Algorithms  

 Training is the process of determining the optimal weights and bias points of the 

ANN. This is done by defining the total error function between the network’s output and 

the desired target and then minimizing it with respect to the weights. In this paper, we 

mainly consider the backpropagation (BP) training algorithms for FFNN. BP algorithms 

are the supervised learning method for MLP FFNN. The name refers to the backward 

propagation of error during the training of the network such that algorithms in this 

family use chain rule several times for the calculation of partial derivative of the 

network`s total error function with respect to weights. For this purpose, calculations 

begin at the output layer first and then propagate backward until each weight connection 

can be updated individually. There are different variations of BP training algorithms 

where each has certain advantages and disadvantages depending on the network 

architecture and complexity of the problem.  

 In a study conducted by Pan, Lee and Zhang (2013), BP algorithms have been 

categorized into six classes: 1) Adaptive Momentum 2) Self-adaptive learning rate 3) 

Resilient backpropagation (RB) 4) Conjugate gradient (CG) 5) Quasi-Newton 6) 

Bayesian regularization (BR). In the same paper, performances of these algorithms in the 

view of prediction accuracy, convergence speed and training time have been evaluated 

for the purpose of electricity load forecasting. Based on this study, it is concluded that 

BR algorithms perform well with an accuracy of 3.5% MAPE and it is preferred over 

other types of training algorithm. Due to its heavy processing load, it is also 

recommended that where the processing ability is limited, RB or CG can also be used to 

speed up the process and still acquire accurate results.  
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 Wilamowski (2009) in his study of neural networks and learning algorithms 

compared different network architectures and training algorithms and concluded that 

with fewer number of neurons, the neural network should have better generalization 

abilities. If too many neurons are used, then the network can be overtrained on the 

training patterns, but it will fail on patterns never used in training. With fewer number of 

neurons, the network cannot be trained to very small errors, but it may produce much 

better results for new patterns.  

 Kisi and Uncuoglu (2005) investigated the use of three BP training algorithms, 

i.e., LM, CG and RB, for stream flow forecasting and determination of lateral stress in 

cohesionless soils. Based on the study results, although the LM algorithm is found to be 

faster and to have better performance than the other algorithms for the training set, the 

resilient backpropagation algorithm showed the best accuracy for the testing set.  

 In this present paper, LM, SCG and BR algorithms are employed and their 

performances pertaining to accuracy of multistep ahead monthly wind speed forecasting 

are compared. 

2.5 Lavenberg-Marquardt backpropagation algorithm 

 LM algorithm was designed to approach second-order training speed without 

having to compute the Hessian matrix. When the performance function has the form of a 

sum of squares, then the Hessian matrix can be approximated and the gradient can be 

computer as in (2.7) (2.8) (Kisi & Uncuoglu, 2005; Hagan & Menhaj, 1994): 

 

𝐻 = 𝐽!𝐽                                                                              (2.7) 

𝑔 = 𝐽!𝑒                                                                                (2.8) 

 

Where J is a Jacobian matrix, which contains first order derivatives of the network errors 

with respect to the weights and biases, 𝑒 is a vector of network errors. The Jacobian 

matrix can be computed through a standard backpropagation technique that is much less 

complex than computing the Hessian matrix. The LM algorithm uses this approximation 
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to the Hessian matrix in the following Newton-like update (2.9), where 𝑥 represents 

connection weights. 

 

𝑥!!! = 𝑥! − 𝐽!𝐽 + 𝜇𝐼 !!𝐽!𝑒                                                          (2.9) 

 

When the scalar 𝜇  is zero, this is just Newton`s method, using the approximate Hessian 

matrix. When 𝜇 is large, this becomes gradient descent with a small step size. Newton`s 

method is faster and more accurate near a minimum error, so the aim is to shift towards 

Newton`s method as quickly as possible. Thus, 𝜇  is decreased after each successful step 

and is increased only when a tentative step would increase the performance function. In 

this way, the performance function (also known as network error function) will always 

be reduced at each iteration. The LM optimization technique is more powerful than the 

conventional gradient descent techniques (Wilamowski, 2009; Hagan & Menhaj, 1994).   

2.6 Scaled conjugate gradient backpropagation algorithm  

 The basic backpropagation algorithm adjusts the weights in the steepest descent 

direction, i.e., the most negative of the gradient. This is the direction in which the 

performance function is decreasing most rapidly. It turns out that, although the function 

decreases most rapidly along the negative of the gradient, this does not necessarily 

produce the fastest convergence (Hagan, Demuth & Beale, 1996). In the conjugate 

gradient algorithms a search is performed along such a direction which produces 

generally faster convergence than the steepest descent direction, while preserving the 

error minimization achieved in all previous steps  (Kisi & Uncuoglu, 2005). This 

direction is called the conjugate direction. In most of the CG algorithms the step-size is 

adjusted at each iteration. A search is made along the conjugate gradient direction to 

determine the step size, which will minimize the performance function along that line. 

All of the CG algorithms start out by searching in the steepest descent direction at first 

iteration (2.10). Frequently, CG algorithms are used with line search. That means the 

step size is approximated with a line search technique, avoiding the calculation of the 

Hessian matrix to determine the optimal distance to move along the current search 
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direction (2.11). Then the next search direction is determined so that it is conjugate to 

previous search direction (2.12). The general procedure for determining the new search 

direction is to combine the new steepest descent direction with the previous search 

direction (Hagan, Demuth & Beale, 1996). 

 

𝑝! = −𝑔!                                                                                  (2.10) 

𝑥!!! = 𝑥! + 𝛼!𝑔!                                                                     (2.11) 

𝑝! = −𝑔! + 𝛽!𝑝!!!                                                                       (2.12) 

 

The various versions of CG algorithms are distinguished by the manner in which the 

factor 𝛽! is computed (Kisi & Uncuoglu, 2005). 

 It is also possible to use another approach in estimating the step size than the line 

search technique. The idea is to combine the model trust region approach, known from 

the LM algorithm with the CG approach. This approach is known as SCG and 

introduced to literature by Møller (1993). In this method, as it is described in (2.13), 

where 𝑠 is the Hessian matrix approximation, 𝐸 is the total error function and 𝐸` is the 

gradient of 𝐸, scaling factors 𝜆! and 𝜎! are introduced to approximate the Hessian 

matrix and initialized by user at the beginning of the algorithm such that 0< 𝜆!< 10!! 

and 0<𝜎!<10!!. For SCG, 𝛽! factor calculation and direction of the new search can be 

shown as in (2.14) (2.15) (Møller, 1993): 

 

𝑠! =
𝐸` 𝑤

𝑘
+𝜎

𝑘
𝑝
𝑘
−𝐸`(𝑤

𝑘
)

𝜎
𝑘

+ 𝜆!𝑝!                                                        (2.13) 

𝛽! =
( 𝑔

𝑘+1

2
−𝑔

𝑘+1
𝑇𝑔

𝑘
)

𝑔
𝑘
𝑇𝑔

𝑘

                                                               (2.14) 

𝑝!!! = −𝑔!!! + 𝛽!𝑝!                                                                     (2.15) 

 

Design parameters are updated at each iteration user independently, which is crucial for 

the success of the algorithm. This is a major advantage compared to the line search 

based algorithms. 
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2.7 Bayesian regularization backpropagation algorithm 

 BR is a training algorithm that updates the weights and bias values according to 

LM optimization (Foresee & Hagan, 1997; MacKay, 1992). It minimizes a combination 

of squared errors and weights, and then determines the correct combination so as to 

produce a network that generalizes well (Pan, Lee & Zhang, 2013). BR introduces 

network weights into the training objective function which is denoted as F(𝜔) in (2.16) 

and further explained by Yue, Songzheng & Tianshi (2011). 

 

𝐹 𝜔 = 𝛼𝐸! + 𝛽𝐸!                                                                   (2.16) 

 

Where 𝐸!  is the sum of the squared network weights and 𝐸! is the sum of network 

errors. Both 𝛼 and 𝛽 are the objective function parameters. In the BR framework, the 

weights of the network are viewed as random variables, and then the distribution of the 

network weights and training set are considered as Gaussian distribution. 

 The 𝛼 and 𝛽 factors are defined using the Bayes’ theorem. The Bayes’ theorem 

relates two variables (or events), A and B, based on their prior (or marginal) 

probabilities and posterior (or conditional) probabilities as in (2.17) (Li & Shi, 2012): 

 

P(A|B) =
!(!|!)!(!)

!(!)  
                                                                        (2.17) 

 

Where P(A|B) is the posterior probability of A conditional on B, P(B|A) the prior of B 

conditional on A, and P(B) the non-zero prior probability of event B, which functions as 

a normalizing constant. In order to find the optimal weight space, objective function 

(2.16) needs to be minimized, which is the equivalent of maximizing the posterior 

probability function given as in (2.18): 

 

𝑃 𝛼,𝛽 𝐷,𝑀 =
𝑃(𝐷|𝛼,𝛽,𝑀)𝑃(𝛼,𝛽|𝑀)

𝑃(𝐷|𝑀)
                                                     (2.18) 
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Where 𝛼 and 𝛽 are the factors needed be to optimized, D is the weight distribution, M is 

the particular neural network architecture, 𝑃(𝐷|𝑀) is the normalization factor, 

𝑃(𝛼,𝛽|𝑀) is the uniform prior density for the regularization parameters and 

𝑃(𝐷|𝛼,𝛽,𝑀) is the likelihood function of D for given 𝛼,𝛽,𝑀. Maximizing the posterior 

function 𝑃 𝛼,𝛽 𝐷,𝑀  is equivalent of maximizing the likelihood function 𝑃(𝐷|𝛼,𝛽,𝑀). 

As a result of this process, optimum values for 𝛼 and 𝛽 for a given weight space are 

found. Afterwards, algorithm moves into LM phase where Hessian matrix calculations 

take place and updates the weight space in order to minimize the objective function. 

Then, if the convergence is not met, algorithm estimates new values for 𝛼 and 𝛽 and the 

whole procedure repeats itself until convergence is reached (Yue, Songzheng & Tianshi, 

2011). 
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CHAPTER 3. METHODOLOGY AND DATA 

3.1 Introduction 

 A multi-phase methodological framework is constructed in order to build a 

platform for the performance evaluation of three different backpropagation training 

algorithms, i.e., LM, SCG and BR. The proposed framework contains phases such as: 1) 

collecting the data 2) preprocessing the data 3) data transformation 4) processing the 

data and 5) postprocessing the data. A systematic methodological flow chart of the study 

is presented in Figure 3.1. An explicit description for each module and sub-module is 

given later in this section. 

 

 

Figure 3.1: Multi-phase methodological framework 
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3.2 Collecting the data 

 For this study, 10 minute averaged horizontal wind speed, atmospheric pressure, 

relative humidity and absolute air temperature data taken from the met mast located at 

Risø Campus near Roskilde, Denmark between November 1995 - June 2003 and July 

2007 – April 2015 have been used. Atmospheric pressure, air temperature and relative 

humidity constitute the input datasets and the purpose of the neural network is to use 

these input data to map the output data, which is the wind speed. Time-series diagrams 

and statistical properties of the original weather data, in terms of minimum, maximum, 

mean, standard deviation (std.), relative standard deviation (RStd.) and skewness values, 

are presented in Figure 3.2 and Table 3.1 accordingly. Standard deviation is a measure 

used to quantify the level of variations in a dataset. Relative standard deviation is the 

ratio of std. and mean values and it is shown in percentage. Skewness is a measure of the 

asymmetry of the probability distribution of a given dataset.  

 

 

Figure 3.2: 10 minutes averaged original weather data 
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Table 3.1: Properties of the original weather data 

Label Unit Altitude Sample Interval Min. Max. Mean Std. RStd. Skew 

Wind Speed m/s 76.6 m 511332 10 min. 0.8 21.98 7.00 3.25 46.43 0.57 

Temperature °C 2 m 511332 10 min. -2.00 30.90 9.61 6.57 68.37 0.25 

Pressure hPa 2 m 511332 10 min. 966.5 1043.7 1012.7 10.4 1.03 -0.4 

Humidity % 2 m 511332 10 min. -1.00 103.00 79.97 13.67 17.09 -0.9 

3.3 Preprocessing the data 

3.3.1 Data cleaning  

 Data cleaning is the process of detecting and correcting (or removing) corrupt or 

inaccurate records from a dataset. The anomalies observed within the provided datasets 

are removed and the resulting cleansed time-series for each of the weather features is 

now ready for data sampling.  

3.3.2 Data sampling 

 In this study, future wind speed is forecasted in a monthly basis. For this reason, 

after months with incomplete records are removed from the cleaned datasets, the 

remaining datasets are sampled into monthly averages and presented in Figure 3.3. 

Statistical properties of monthly averaged datasets are listed in Table 3.2. 

  

Figure 3.3: Monthly averaged weather data 
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Table 3.2: Statistical properties of the monthly averaged weather data 

Data Label Sample Min. Max. Mean Std. RStd.[%] Skew 

Wind Speed 126 4.72 10.73 7.04 1.088 15.45 0.69 

Temperature 126 -0.38 21.42 9.07 5.97 65.78 0.23 

Pressure 126 999.05 1026.10 1012.82 4.40 0.43 -0.13 

Humidity 126 66.315 92.63 80.417 6.44 8.01 -0.013 

 

As it is seen from Table 3.2, absolute air temperature data suffers from high dispersion 

level whereas wind speed suffers from the degree of skewness. Therefore, datasets need 

to be further processed until they reach stationarity. 

3.3.3 Stationarity check 

 Stationarity is another measure that characterizes the nature of a time-series, i.e., 

time-series with constant mean and standard deviation over time. The time-series 

forecast is based on the assumption that provided datasets are stationary (T. Kim, Oh, C. 

Kim & Do, 2004). Therefore, it is essential to verify the stationarity assumption of 

datasets before they are deployed into neural network. For this purpose, autocorrelation 

function (ACF), i.e., indicator of stability of a time-series, is utilized to check whether 

weather datasets used in this study are stationary. Corresponding results from ACF are 

provided in Figure 3.4. 

 



 18 

 

Figure 3.4: Autocorrelation function results for horizontal wind speed, absolute air 

temperature, atmospheric pressure and relative humidity datasets.  

 

Figure 3.4 shows that horizontal wind speed, absolute air temperature and relative 

humidity datasets exhibit significantly large ACF values at the increasing lags (lags in 

this context mean months and number of months used in this test is 40, which is chosen 

arbitrarily), which do not diminish quickly. This indicates the non-stationarity of these 

datasets (Brockwell, 2003; Montgomery, Jennings & Kulahci, 2008). It is also clear 

from the ACF diagrams that, these datasets have a cyclic pattern with periodicity of 12 

samples. On the other hand, pressure data follows rather stationary behavior with no 

obvious periodic fluctuations. In order to have better accuracy of forecast, non-stationary 

datasets need to be further processed until they are stationary. 

3.3.4 Data transformation 

 The objective of the data transformation is to produce a series with no apparent 

deviations from stationarity, and in particular with no apparent trend or seasonality. The 

next step is to model the estimated noise sequence, i.e., the residuals obtained by 

estimating and subtracting the trend and seasonal components (Brockwell, 2013). 
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Classical decomposition model suggests that a time-series can be described as a sum of 

trend, seasonal and random noise components (3.1): 

 

𝑋! = 𝑚! + 𝑠! + 𝑌!                                   (3.1) 

 

Where 𝑋! is the observation at time t, 𝑚! is the trend component, 𝑠! is the seasonal 

component, and 𝑌! is the random noise component.  

3.3.5 Data detrending   

 Data detrending, in this context, means removing the mean trend from a time-

series. All provided datasets including the atmospheric pressure (even it shows 

stationary behavior) are subject to this process. This means that each of the weather 

datasets is set to have a zero mean value and the corresponding statistical properties that 

are matter of particular interest, i.e., std. and skewness, of the detrended datasets stayed 

unchanged as expected. Data detrending is the preliminary stage for data 

deseasonalization. 

3.3.6 Data deseasonalization 

 Many time-series exhibit cyclic variation known as seasonality. Seasonal 

variation is a component of a time-series, which is defined as the repetitive and 

predictable movement around the trend line. The objective of data deseasonalization is to 

eliminate these seasonal periodic variations from the detrended datasets in order to find a 

nonparametric relationship between irregularities (residuals, noise) exist in the input and 

output data, which is a challenging task (Montgomery, Jennings & Kulahci, 2008). For 

this purpose, the method of least squares is used to determine the best-fit line to data. To 

reflect the seasonal changes, Fourier series, i.e., sum of sine and cosine functions that 

describes a periodic signal, is used as a fit line model. The atmospheric pressure data is 

exempt from this stage since it did not show any obvious seasonal pattern. The 

remaining time-series have gone through this process and the corresponding results are 

provided in Figure 3.5 and Table 3.3.  
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Table 3.3: Fit lines and residual statistics 

Label Fit line Std. Skew 

Wind Speed 𝑓 𝑥 = −0.1264 − 0.1712 ∙ cos 0.5236 ∙ 𝑥 + 1.01 ∙ sin  (0.5236 ∙ 𝑥)  0.86 0.37 

Temperature 𝑓 𝑥 = 0.2471 + 1.132 ∙ cos 0.5235 ∙ 𝑥 − 8.03 ∙ sin  (0.5235 ∙ 𝑥)  1.60 0.086 

Pressure N/A 4.41 -0.13 

Humidity 𝑓 𝑥 = −0.1701 + 2.869 ∙ cos 0.526 ∙ 𝑥 + 7.435 ∙ sin  (0.526 ∙ 𝑥)  3.08 -0.55 

 

 

 

Figure 3.5: Weather data residuals after deseasonalization 

 

3.3.7 Data normalization 

 To increase the efficiency of the network, all of the datasets are normalized. For 

this purpose, the feature scaling method described in (3.2) is adopted so as to bring all 

values into the range [-1,1]; where x is a value within an initial dataset before 

normalization takes place, 𝑥! represents the normalized value, and 𝑥!"# and 𝑥!"# 

represent the minimum and maximum value of the initial dataset. The reason behind the 

normalization step is for that if input values as they appear in the initial datasets are fed 

into the neuron, integration process may yield very high results, which would cause the 
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transfer function (tangent sigmoid) to exhibit low performance to resolve between small 

changes in input data and lose its sensitivity. Corresponding results of this stage with 

final statistical evaluation of datasets just before they are fed into the network are 

provided in Figure 3.6, Tables 3.4 and 3.5. Figure 3.7 shows the ACF of normalized 

weather data and explained later in this paper.  

 

𝑥! =   2 ∙
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1                                                         (3.2) 

 

 

Figure 3.6: Normalized weather data 

 

          Table 3.4: Statistical evaluation of the normalized weather data 

Data Label Sample  Min. Max. Mean Std. Skew 

Wind Speed 126 -1 1 -0.38 0.25 0.37 

Temperature 126 -1 1 -0.07 0.37 0.08 

Pressure 126 -1 1 0.02 0.32 -0.13 

Humidity 126 -1 1 0.24 0.34 -0.55 
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Table 3.5: Evolutionary statistical properties of the weather datasets 

  Original data Sampled data Deseasonalized Normalized 

Label Std. Skew. Std. Skew. Std. Skew. Std. Skew. 

Wind Speed 3.25 0.57 1.088 0.69 0.86 0.37 0.25 0.37 

Temperature 6.57 0.25 5.97 0.23 1.60 0.086 0.37 0.086 

Pressure 10.4 -0.4 4.40 -0.13 4.41 -0.13 0.32 -0.13 

Humidity 13.67 -0.9 6.44 -0.013 3.08 -0.55 0.34 -0.55 

 

 

Figure 3.7: Autocorrelation function of the normalized weather data 

 

3.4 Processing the data 

3.4.1 Network architecture and parameters selection 

 In this study, three-layer FFNN architecture is employed. Matlab neural network 

toolbox is utilized to build the network model and then the corresponding Matlab code is 

generated and further developed to serve the purpose. The proposed FFNN architecture 

consists of 1 input, 1 hidden and 1 output layer. The number of neurons in the hidden 
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layer is adjusted to give the best performance for each training algorithm used. The 

neurons in the hidden layer use the tangent sigmoid transfer function whereas the output 

neuron uses the pureline transfer function. The shorthand notation for this proposed 

network topology is 3-N-1 where 3 is the number of nodes in the input layer, N is the 

number of neurons in the hidden layer, and 1 is the number of neurons in the output 

layer. The proposed network model is provided in Figure 3.8. 

 

 

 

Figure 3.8: 3-layer perceptron FFNN architecture 

 

3.4.2 Training and Validation of the proposed ANN model 

 The objective of training and validation stages is to generate an optimum weight 

space in order to establish the mapping of the extracted noise components from input 

and target datasets. After the neural network is built, previously normalized datasets are 

deployed into the network. There are total 126 samples for each weather feature. The 

datasets are divided into three subsets, i.e., training set, validation set, and testing set. 

During the training phase, training algorithms attempt to correct the randomly 

distributed initial weight space until the performance goal of the validation phase is 

archived or no further correction can be made after several consecutive iterations. The 

validation set is set up to avoid the overfitting on the training data, as an ANN without 

validation set is likely to be overfitted on the training data (T. Kim, Oh, C. Kim & Do, 

2004). When overfitting occurs, the network loses its ability to find an underlying 
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relationship between training and testing sets, rather focuses on the training set 

performance, which brings the testing set performance significantly lower.  All subsets 

are composed of the three input vectors, i.e., absolute air temperature, atmospheric 

pressure and relative humidity, and one target/output vector, i.e., the horizontal wind 

speed data. The breakdown of samples for each subset is chosen arbitrarily such as: 90 

samples for the training set, 24 samples for the validation set, and 12 samples (a year) 

for the testing set. Different training algorithms, i.e., LM, SCG and BR backpropagation 

algorithms, are used to train the network and the corresponding configuration parameters 

are as shown in Table 3.6. Thereafter, the trained network is used to forecast 1 to 12 

multistep ahead target values in the testing set. 

 

 Table 3.6: Training algorithms configuration parameters 

Configuration Parameters LM SCG BR 

Maximum number of epochs to train 1000 1000 1000 

Performance goal 0 0 0 

Maximum validation failures 2 2 2 

Initial 𝜇 0.001 N/A 0.005 

𝜇 decrease factor 0.1 N/A 0.1 

𝜇 increase factor 10 N/A 10 

Maximum 𝜇 1e10 N/A 1e10 

𝜎! N/A 5e-5 N/A 

𝜆! N/A 5e-7 N/A 

 

3.5 Postprocessing the data 

 After the normalized datasets being processed by the proposed ANN model, 

generated network output is gone through the postprocessing procedure. This includes 

the denormalization of the network`s output, recovery of seasonality, recovery of trend 

and performance evaluation steps. 
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3.5.1 Denormalization 

 Before the datasets were fed into the network, it was normalized. Thereby, after 

all calculations are finalized, the output of neural network is denormalized using (3.3). 

 

𝑦! = 𝑦!(𝑥!"#−𝑥!"#  ) + 𝑥!"#                                                   (3.3) 

 

Where 𝑦! is the network output, 𝑦! is the denormalized network output, 𝑥!"# and 𝑥!"# 

are the normalization parameters of the input datasets as they are described in (3.2).    

3.5.2 Recovery of seasonality 

 During the preprocessing phase, seasonalities have been modeled as a best fit of 

Fourier series and removed. Here the removed part, i.e., seasonal variations of wind 

speed, is added on to the denormalized network output. 

3.5.3 Recovery of trend 

 Recovery of trend is the opposite of detrending and it is proceed as adding the 

removed mean value of the monthly wind speed data back to the denormalized network 

output.  

3.5.4 Performance evaluation 

 After denormalization and recovery phases, actual and forecasted testing datasets 

are evaluated. The performances of three proposed training algorithms (LM, SCG and 

BR) are examined for 12 multistep ahead wind speed forecasting in the view of accuracy 

of predictions. For this purpose, statistical tools such as MAPE, MAE and MSE are 

employed to evaluate the measure of accuracy (3.4, 3.5 & 3.6).  

 

𝑀𝐴𝑃𝐸 =
1

𝑛

𝐴𝑡−𝐹𝑡

𝐴𝑡

𝑛

𝑡=1
×100                                                        (3.4) 

𝑀𝐴𝐸 =
1

𝑛
   𝐹! − 𝐴!
𝑛

𝑡=1
                                                                 (3.5) 

𝑀𝑆𝐸 =   
1

𝑛
   (𝐹! − 𝐴!)

!𝑛

𝑡=1
                                                              (3.6) 
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Where F and A are the actual and forecasted values, n is the number of samples. The 

final comparisons of algorithms are evaluated using MAPE values since it is more 

intuitional measure with its percentage-wise analysis, however, ranking of the 

algorithms does not depend on the choice of utilized statistical tool. Therefore, 

experiment results are valid for all tools of accuracy measurements. The experiment 

results are presented in visual and tabular forms in the following section. 

CHAPTER 4.  APPLICATION OF THE METHODOLOGY AND RESULTS  

 

 The main objective of this study is to compare the different types of 

backpropagation training algorithms in their ability to build a wind speed forecasting 

model, and then select the most suitable training algorithm to train the model especially 

for multistep ahead monthly wind speed forecasting. The used datasets are based on the 

historical weather records for Roskilde, Denmark, which contains 126 monthly samples 

for each of the 4 features; those are horizontal wind speed, absolute air temperature, 

atmospheric pressure and relative humidity. The first 90 samples are the training dataset 

and the latter 24 samples are the validation dataset for building the neural network 

models with different training algorithms and the remaining 12 samples are the test 

dataset to evaluate the models. For this purpose, statistical measures such as MAPE, 

MSE and MAE are adopted. The proposed methodological framework is applied on this 

case study. The experiment results are presented as follows. 

 After numerous iterations and adjustments to the number of neurons in the 

hidden layer (for each trial at different number of hidden neurons, from 3 to 13, more 

than 30 cases are run with different initial weights), the best performance records for 

each algorithm are found to be as in Table 4.1 where H is the number of neurons in the 

hidden layer. Figures 4.1, 4.2 and 4.3 present the 1 to 12 multisteps ahead wind speed 

forecast and actual data, accordingly for the cases wherein LM, BR and SCG algorithms 

are employed. Figure 4.4 shows forecast and actual data for all algorithms superimposed 

on each other in order to visually interpret the accuracy of predictions. Afterwards, in 

Table 4.2, detailed statistical measurements of the prediction accuracy for each training 
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algorithm versus forecast horizon are given for the quantitative evaluation of 

performance. Finally, in Figure 4.5, graphical representation of data in Table 4.2 is given 

for the reason of comparison between performances of different training algorithms 

used.  

 

Table 4.1: Training and validation performance results 

 LM [ H=8 ] SCG [ H=9 ] BR [ H=8 ] 

 Training Validation Training Validation Training Validation 

MAPE [%] 8.523 8.057 9.186 7.959 10.488 8.448 

MSE 0.582 0.471 0.664 0.493 0.828 0.570 

MAE 59.106 57.667 63.365 57.572 74.451 60.580 

 

 

  

Figure 4.1: 1 to 12 steps ahead wind speed      Figure 4.2: 1 to 12 steps ahead wind speed            

forecast using the LM algorithm                  forecast using the BR algorithm 

 

 

Figure 4.3: 1 to 12 steps ahead wind speed      Figure 4.4: 1 to 12 steps ahead wind speed       

        forecast using the SCG algorithm              forecast results for all training algorithms    
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Table 4.2: Prediction results of ANN from step 1 to step 12 

 

Steps 

LM SCG BR 

MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE 

1. 10.182 0.350 59.213 11.073 0.414 64.379 10.216 0.353 59.410 

2. 8.861 0.266 50.902 9.117 0.289 52.422 7.049 0.200 40.670 

3. 6.066 0.177 34.873 7.081 0.203 40.865 5.159 0.135 29.823 

4. 5.299 0.143 31.274 5.493 0.153 31.892 5.156 0.132 31.162 

5. 5.521 0.148 33.152 4.828 0.126 28.271 6.567 0.226 40.425 

6. 5.375 0.140 32.912 4.275 0.107 25.270 5.772 0.191 35.736 

7. 5.085 0.128 31.634 3.876 0.093 23.178 5.057 0.164 31.414 

8. 4.603 0.113 28.929 3.583 0.083 21.839 4.589 0.145 28.823 

9. 4.572 0.116 29.923 3.522 0.082 22.364 4.332 0.133 27.831 

10. 4.134 0.105 27.078 3.181 0.073 20.219 4.001 0.120 25.897 

11. 4.139 0.103 27.323 3.398 0.0815 21.983 3.718 0.110 24.074 

12. 4.311 0.113 28.982 3.717 0.099 24.728 4.587 0.197 31.025 

 

 

Figure 4.5: Performance evaluation 
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CHAPTER 5. DISCUSSION AND ANALYSIS 

 

 ANNs are sensitive to input and output datasets and their performance is highly 

dependent on the nature of time-series fed into the network. The non-stationary time-

series with high values of standard deviation and skewness may lead to poor 

performance of ANNs (Kisi & Uncuoglu, 2005). As it is seen from Table 3.5 and Figure 

3.7, after the preprocessing phase, the resulting statistical measures such as standard 

deviation and skewness are within the acceptable range and all datasets now exhibit the 

stationary behavior. 

 Table 4.1 shows that for each algorithm, validation set has higher prediction 

accuracy compared to the training set and therefore, no obvious overfitting on the 

training data is observed and high degree of generalization is achieved. The validation 

set performance reflects the accuracy of forecast in the testing set better than the training 

set performance and therefore, taking the results in Table 4.1 as a basis, it also can be 

claimed that SCG algorithm showed better generalization with MAPE of 7.959% 

followed by LM and BR algorithms with 8.057% and 8.448% values accordingly.  

 As it is seen from Table 4.2 and Figure 4.5, all algorithms start with low 

prediction accuracy. Up to step 4, BR outperforms LM and SCG. In step 4, all 

algorithms show very similar results. Step number 4 is a stage of transition where from 

step 4 to step 5, BR falls behind LM, and SCG shows the best result. Starting from step 

6 up to step 10, performance of SCG gets even better whereas performances of LM and 

BR are almost the same.  Step 10 is another transitory stage where performances of SCG 

and LM start to decrease and one step later, i.e., step 11, all algorithms exhibit 

decreasing performance.  

 Based on these results, it can be concluded that BR has better capability of a 

short-term forecast, however in the long run, it loses its accuracy and follows similar 

performance to that of LM. On the other hand, SCG shows less preferable performance 

for a short-term forecast, however, in the long run, it yields the best results. Within the 

scope of this study, for 12 multistep ahead monthly wind speed forecast, SCG 
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outperformed LM and BR by MAPE of 0.594% and 0.87% accordingly in terms of 

overall prediction accuracy.  

 In a similar study, conducted by Ghanbarzadeh et al. (2009), 3-layer FFNN with 

12 neurons in the hidden layer using the LM algorithm yielded MAPE of 10.78% for the 

same length of forecasting horizon used in this study. However, this study shows that in 

conjunction with the proper usage of preprocessing, LM algorithm with 8 neurons in the 

hidden layer is capable of the better estimation with MAPE of 4.311%. Another similar 

study carried out by Kisi and Uncuoglu (2005) for the lateral stress prediction which 

used 3-layer FFNN, trained by LM and CGF (a similar variation of SCG) algorithms 

with 176 training and 88 testing samples and featured 5 input/output datasets yielded 

similar results with MAPE of 4.13% and 4.27% respectively.  

 Based on these present research findings, SCG algorithm in conjunction with 3-

layer FFNN, which showed the best result with MAPE of 3.717% is found to be superior 

to cases where LM and BR algorithms correspondingly resulted in MAPE of 4.311% 

and 4.587% and therefore it is suggested to build a multistep ahead wind speed 

forecasting model using the SCG algorithm. 
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CHAPTER 6. CONCLUSIONS 

 

 Wind speed forecasting plays a significant role in spatial planning of wind farms, 

such that accurate wind speed predictions can substantially reduce the impact cost 

pertaining to wind power development. Therefore, wind speed forecasting has always 

attracted special attention from both academia and industry. Due to volatile and non-

stationary nature of wind speed time-series, wind speed forecasting has been proved to 

be a challenging task that requires adamant care and caution. There are several state-of-

the-art methods, i.e., numerical weather prediction (NWP), statistical and hybrid models, 

developed for this purpose. Recent studies show that artificial neural networks (ANNs) 

are also capable of wind speed forecasting to a great extent.   

 In this paper, the 3-layer perceptron FFNN is used as an ANN architecture and 

the accuracy-wise comparison of three different backpropagation training algorithms, 

i.e., LM, SCG and BR is investigated. A multi-phase methodological framework is 

constructed and applied in order to build a 12 multistep ahead monthly wind speed 

forecasting model. An input matrix that contains 114 out of total 126 monthly averaged 

samples of absolute air temperature, atmospheric pressure and relative humidity and an 

output vector with the same length that is composed of the corresponding horizontal 

wind speed data gathered between November 1995 - June 2003 and July 2007 – April 

2015 for city of Roskilde, Denmark is used for training and validation purposes whereas 

the remaining 12 samples of monthly averaged input data is used so as to perform 12 

multistep ahead wind speed prediction, i.e., an equivalent of a year. 

 The performed experiment shows that for 12 multistep ahead wind speed 

forecasting SCG algorithm has obvious preference in the view of prediction accuracy 

with MAPE of 3.717%, followed by LM and BR algorithms with MAPE of 4.311% and 

4.587% accordingly and therefore it is suggested to build a wind speed forecasting 

model within the scope of this study.  
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 A difficult task involved in the application of ANNs on wind speed forecasting 

includes choosing the suitable network architecture, training algorithm, and 

configuration parameters since they directly affect the accuracy of the predictions. MLP 

FFNN suffers from the limitation of static input output mapping and non-stationarity of 

time-series (Anbazhagan & Kumarappan, 2013). Furthermore, ANNs are sensitive to 

statistical properties of the input and output datasets and therefore their performance 

varies accordingly.  

 Therefore it is a tedious task to prepare the datasets to feed into the neural 

network and optimize the configuration parameters such as number of the neurons in the 

hidden layer. Hence, the findings of this research should not be generalized and further 

research that includes optimization of the network parameters, several datasets from 

different sources with different size and statistical properties together with more 

sophisticated data preprocessing & postprocessing methods should follow this study.  
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