Syst. Biol. 52(5):705-716, 2003

Copyright (© Society of Systematic Biologists
ISSN: 1063-5157 print / 1076-836X online
DOI: 10.1080/10635150390235557

Comparison of Likelihood and Bayesian Methods for Estimating Divergence Times
Using Multiple Gene Loci and Calibration Points, with Application to a Radiation

of Cute-Looking Mouse Lemur Species

ZIHENG YANG! AND ANNE D. YODER?

IDepartment of Biology, University College London, Darwin Building, Gower Street, London WCI1E 6BT, United Kingdom;
E-mail: z.yang@ucl.ac.uk
?Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, Connecticut 06520, USA

Abstract —Divergence time and substitution rate are seriously confounded in phylogenetic analysis, making it difficult
to estimate divergence times when the molecular clock (rate constancy among lineages) is violated. This problem can be
alleviated to some extent by analyzing multiple gene loci simultaneously and by using multiple calibration points. While
different genes may have different patterns of evolutionary rate change, they share the same divergence times. Indeed,
the fact that each gene may violate the molecular clock differently leads to the advantage of simultaneous analysis of
multiple loci. Multiple calibration points provide the means for characterizing the local evolutionary rates on the phylogeny.
In this paper, we extend previous likelihood models of local molecular clock for estimating species divergence times to
accommodate multiple calibration points and multiple genes. Heterogeneity among different genes in evolutionary rate
and in substitution process is accounted for by the models. We apply the likelihood models to analyze two mitochondrial
protein-coding genes, cytochrome oxidase II and cytochrome b, to estimate divergence times of Malagasy mouse lemurs
and related outgroups. The likelihood method is compared with the Bayes method of Thorne et al. (1998, Mol. Biol. Evol.
15:1647-1657), which uses a probabilistic model to describe the change in evolutionary rate over time and uses the Markov
chain Monte Carlo procedure to derive the posterior distribution of rates and times. Our likelihood implementation has
the drawbacks of failing to accommodate uncertainties in fossil calibrations and of requiring the researcher to classify
branches on the tree into different rate groups. Both problems are avoided in the Bayes method. Despite the differences in
the two methods, however, data partitions and model assumptions had the greatest impact on date estimation. The three
codon positions have very different substitution rates and evolutionary dynamics, and assumptions in the substitution
model affect date estimation in both likelihood and Bayes analyses. The results demonstrate that the separate analysis is
unreliable, with dates variable among codon positions and between methods, and that the combined analysis is much more
reliable. When the three codon positions were analyzed simultaneously under the most realistic models using all available
calibration information, the two methods produced similar results. The divergence of the mouse lemurs is dated to be around
7-10 million years ago, indicating a surprisingly early species radiation for such a morphologically uniform group of
primates. [Bayes method; divergence times; evolutionary rate; local molecular clock; maximum likelihood; molecular clock.]

The molecular clock hypothesis (Zuckerkandl and
Pauling, 1965) has provided a powerful means for es-
timating species divergence times. However, the clock is
often violated, especially when distantly related species
are compared. A number of studies have demonstrated
that divergence time estimation is highly sensitive to as-
sumptions about the evolutionary rate (e.g., Takezaki
et al., 1995; Yoder and Yang, 2000). One approach to
the problem is to identify and exclude genes and/or
species that appear to have caused violation of the clock
so that the clock model can be applied to the rest of the
data. This strategy makes an inefficient use of the data
if many genes or many species violate the clock. An-
other approach is to try to accommodate variable rates
among lineages when divergence times are estimated.
There has been much interest recently in this approach,
and both likelihood and Bayes methodologies have been
employed.

In a maximum likelihood (ML) method, separate rate
parameters can be assumed for lineages that show rate
changes, and such rates can be estimated jointly with
the divergence times. Kishino and Hasegawa (1990) as-
signed different transition and transversion rates to in-
dividual lineages on a primate tree to estimate both
rates and times using a normal approximation to the ob-
served numbers of transitions and transversion in pair-
wise sequence comparisons. The quartet-dating method

of Rambaut and Bromham (1998) implements a specific
rate model on a tree of four species. Yoder and Yang
(2000) extended the model to the general case, with an
arbitrary assignment of rate classes to branches. All of
these methods work on one gene and take one calibra-
tion point. In a Bayes method, a stochastic model of
evolutionary rate change is used to specify the prior
distribution of rates, and the Bayes theorem is used to
derive the posterior distributions of rates and times. A
model of stochastic rate change was proposed by Sander-
son (1997, 2002) in his semiparametric rate-smoothing
method for divergence time estimation. A formal Bayes
approach was implemented by Thorne et al. (1998) and
Kishino et al. (2001), using a Markov chain Monte Carlo
(MCMC) procedure for efficient computation. A simi-
lar algorithm was implemented by Huelsenbeck et al.
(2000), who attempted to model rate evolution within
a branch and between branches. The Thorne et al. al-
gorithm was recently extended to accommodate mul-
tiple gene loci (Thorne and Kishino, 2002), which can
have separate evolutionary models. Aris-Brosou and
Yang (2002) tested the effects of different prior models
of rate change on the posterior estimation of divergence
times.

In molecular sequence comparisons, the probability of
the data depends on the distances or branch lengths but
not on rates and times individually. Thus, rate and time
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are intrinsically confounded (Felsenstein, 1981). With the
relaxation of the molecular clock assumption, time esti-
mation becomes tricky (e.g., Yoder and Yang, 2000).
There is too much flexibility in the model in fitting data of
one gene, because a high rate and short time might fit the
data as well as a low rate and a long time. It is possible
to overcome this problem by analyzing multiple gene
loci simultaneously and by using multiple calibration
dates. Therates might vary in different ways among mul-
tiple loci, but the divergence times are shared, and the
internal constraints in the model might lead to reliable
estimation of divergence times even when the clock is
violated in every gene.

In this article, we extend the local clock models of
Yoder and Yang (2000) to accommodate multiple cali-
bration points and to analyze multiple gene loci simul-
taneously while accounting for their differences in the
evolutionary process. We apply the new models to esti-
mation of mouse lemur divergence times and compare
results with the Bayes method of Thorne et al. (1998) and
Thorne and Kishino (2002).

The mouse lemurs are nocturnal primates endemic
to Madagascar and are the world’s smallest living
primates. Until the late 1970s, only one species, Micro-
cebus murinus, had been recognized since its original
description in 1795 (Geoffroy Saint-Hilaire, 1795).
Further research prompted recognition of two distinct
forms: the long-eared gray M. murinus from the western
regions of Madagascar and the short-eared reddish
M. rufus from the east (Martin, 1972). Recent morpho-
logical (Rasoloarison et al., 2000) and molecular (Yoder
et al,, 2000) phylogenetic analyses demonstrated that
as many as nine species exist and, more strikingly,
that they form a north-south rather than west—east
divide (Yoder et al., 2000). Divergence times among
those species are unknown. By inferring the times of
speciation events and correlating them with possible
geological and environmental events, we hope to gain
a better understanding of the speciation mechanisms
of mouse lemurs and other terrestrial vertebrates of
Madagascar.

Our main objective in this article is methodological,
i.e., to explore the advantages of combined analysis of
heterogeneous data sets for date estimation when the
molecular clock is violated. We are also interested in ex-
ploring the differences between the likelihood and Bayes
approaches to the problem, the effects of nucleotide sub-
stitution models, and the differences among the three
codon positions. Given that the data being analyzed are
from a single genetic partition (the mitochondrion), the
power of our analyses lies more in the realm of method-
ological comparison than in confident estimation of ge-
ological ages for mouse lemur divergences. This latter
issue will be dealt with more fully in subsequent work.

DATA AND METHODS
Sequence Data

We use two protein-coding genes, cytochrome oxi-
dase II (COII) and cytochrome b, from the mitochondrial
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TABLE 1. GenBank accession numbers for sequences used in this
study.
Taxon CoIr Cytb
Didelphis 729573 729573
Equus X79547 X79547
Rhinoceros X97336 X97336
Balaenoptera X61145 X61145
Physeter AJ277029 AJ277029
Hippopotamus AJ010957 AJ010957
Bos J01394 J01394
Canis U96639 U96639
Ursus AF303109 AF303109
Felis U20753 U20753
Homo J01415 J01415
Pan X93335 X93335
Gorilla D38114 D38114
Pongo D38115 D38115
Macaca M74005 U38272
Callithrix AY321457 AF295586
Galago M80905 U53579
Loris AY321458 U53581
Daubentonia L22776 U53569
Lepilemur AY321459 AY321456
Propithecus L22782 U53573
Varecia 122785 U53578
Hapalemur L22778 U53574
Lemur 122780 U53575
Eulemur AF081045 AF081051
Cheirogaleus L22775 U53570
Mirza AY321460 U53571
M. ravelobensis AF285493 AF285529
M. sambiranensis AF285518 AF285554
M. rufus 2 AF285516 AF285552
M. tavaratra AF285497 AF285533
M. rufus 1 AF285515 AF285551
M. berthae AF285504 AF285540
M. myoxinus AF285499 AF285535
M. griseorufus AF321180 AF285567
M. murinus AF285522 AF285558

genome from 9 mouse lemur species as well as 26 other
mammalian species (Yoder et al., 2000). The sequences
are identified in the tree of Figure 1 (GenBank acces-
sion numbers given in Table 1). The sequence alignment
has been submitted to TreeBase (study accession number
5912 and matrix accession number M1510) and is also
included in the PAML package (Yang, 1997), which im-
plements the likelihood models described below. Since
the two genes are on the same strand of the genome and
have similar evolutionary dynamics (Kumar, 1996), we
combined them into one data set. We removed the stop
codons, leaving 1,812 nucleotides in the alignment. How-
ever, the three codon positions have drastically different
substitution rates and base compositions. Thus, we ana-
lyzed them initially as three separate data sets and later
as one combined data set with their heterogeneity ac-
commodated. Some basic statistics for the three codon
positions are listed in Table 2. We assume that the tree
topology is known and fixed. This is shown in Figure 1,
which also highlights the calibration nodes and major
nodes of interest for which we present estimated diver-
gence dates.

No fossil data are available for ancestral species closely
related to the mouse lemurs because of the paucity of
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FIGURE 1.

Rooted tree topology assumed in estimation of divergence times in this study. Three calibration points within primates (C;-Cs)

and four calibration points outside primates (C4,—C;) are used (Table 3). Some nodes of interest are labeled using the numbering system of
Thorne’s programs, for which the divergence date estimates are presented in Tables 4, 5, and 7. In the likelihood local-clock models, branches in
the anthropoid clade are assigned rate r;, mouse lemurs rate r,, while all remaining branches have the default rate r,. A few variations of this
three-rates model are examined in the text. Branches are drawn to reflect the divergence times estimated in the ML analysis of the combined
data set of three codon positions (analysis j, Table 5; F84G), with dates at the seven calibration nodes fixed at the midvalues of Table 3.

the terrestrial fossil record for the Tertiary in Madagas-
car. Fossil calibration information is available for seven
ancestral nodes distributed among the outgroup species,
all of which are employed in our analyses. In the Bayes
method, lower and upper bounds can be specified for the
ancestral node ages, with ranges given in Table 3. Cal-
ibrated nodes include the divergence between toothed
and baleen whales (Thewissen, 1994), whales and hippos

(Thewissen, 1994), horses and rhinoceros (Prothero and
Schoch, 1989; Janis et al., 1998), felids and canids (Flynn,
1996), humans and gorillas (Shoshani et al., 1996), mon-
keys and apes (Shoshani et al., 1996; Yoder and Yang,
2000), and the basal radiation of primates (Martin, 1993;
Gingerich and Uhen, 1994; Tavaré et al. 2002). In the ML
method, only a fixed date for each calibration node is
accepted (see below). We used the midvalue in the table.
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TABLE2. Parameter estimates® under the F84G model (Felsenstein,
2002) at the three codon positions.

Tree
Position L T c A G K o length 2AL
1 604 023 026 029 022 349 029 339 24793
2 604 040 025 022 013 281 017 123 1,1229
3 604 0.21 0.34 040 0.04 18.81 1.17 55.11 5,602.7
All 1,812 0.28 0.28 0.31 0.13 445 0.28 1096 12,124.2

2L is the number of nucleotide sites. Tree length is the sum of branch lengths,
i.e., the number of substitutions per site throughout the tree. 2A¢ is twice the
log-likelihood difference between the JC69 (Jukes and Cantor, 1969) and F84G
models. The unrooted tree includes the 35 ingroup species of Figure 1 as well
as the outgroup Didelphis. Estimates from the ingroup species only are virtually
identical.

Nucleotide Substitution Models

Both the likelihood and Bayes analyses can be per-
formed under a variety of nucleotide substitution mod-
els (see Whelan et al., 2001, for a review). In this arti-
cle, we use two models in both methods: the JC model
(Jukes and Cantor, 1969), which assumes that all rates of
nucleotide substitution are equal, and the F84G model,
which accounts for the transition/transversion rate bias
and unequal base compositions (from the DNAML pro-
gram of Felsenstein, 2002) and uses a discrete gamma
model with five rate classes to accommodate variable
rates among sites (Yang, 1994). JC appears to have been
rejected in every DNA sequence data set in which it was
tested and is much worse than F84G for the data ana-
lyzed here (Table 2). However, we used it as a contrast
to F84G for examining the robustness of the results to
assumptions about the substitution process. From previ-
ous studies, we expect rate variation among sites to have
much greater effect on divergence time estimation than
the transition/transversion rate bias or unequal base fre-
quencies (e.g., Yang et al., 1994; Sullivan and Swofford,
2001), although we do not attempt to examine the indi-
vidual effects of those factors here.

Likelihood Models of Global and Local Clocks
with Multiple Calibrations

We describe first our implementation of the global
clock model when multiple calibration points are used
and then describe extensions to local clock models and

TABLE 3. Calibration dates® for nodes in Figure 1 (millions of years).

Node Range Midvalue
Within primates

C; human/gorilla 8-12 10

C, monkey/ape 32-38 35

C; basal primates 63-90 77
Outside primates

C, horse/rhinoceros 50-58 54

Cs toothed /baleen whales 33-40 37

C, whale/hippo 51-60 56

C; felid /canid 45-65 55

2The range is used in Bayes analysis as lower and upper bounds for the node
ages, while the midvalue is used as a fixed constant in the ML analysis.

to data of multiple genes. Our focus is on the rate and
time parameters. When calibration information is avail-
able for an ancestral node in the tree, we assume that the
node age is known without error and thus is fixed. An
alternative approach is to use lower and upper bounds to
constrain thenode age, in which case thenode ageisstilla
free parameter but its estimate will often be at the bound-
ary. We did not pursue this approach here. Parameters
in our model include the mutation (substitution) rate
and the ages of nodes that are not calibration points. Sup-
pose there are s species and s — 1 ancestral nodes in the
rooted tree and that calibration dates are available for c
nodes. The parameters in the model are then the substi-
tution rate u and the (s — 1) — c ages for the nodes without
calibration information, with a total of s —c parameters in
the model. For example, the tree of five species in Figure 2
has four ancestral node ages: t, t;, 3, and t;. Suppose
fossil data are available for node ages t, and 3, so that t,
and t;3 are known. There are then three parameters to be
estimated: the substitution rate x and the node ages #
and #4. Note that u is the absolute rate, measured by the
expected number of substitutions per site per time unit.
The time parameters have to satisfy the constraints that
the age of any node is not older than the age of its mother
node;ie., t; > max(t, 3),and 0 < #4 < f,. Numerical op-
timization for ML estimation of parameters has to be per-
formed under such constraints. Algorithms used in the
PAML package deal with simple bounds on parameters
but not general inequality constraints. Thus, the follow-
ing variable transform is used. For each node age t; to
be estimated, all its descendent nodes are examined, and
the oldest calibration date among them is located. This
is the youngest age for the node, f;i.e., t; > t;. Let t4 be
the age of the mother (ancestral) node. We define a new

t

1 2 3 4 5

FIGURE 2. Example tree of five species used to explain the imple-
mentation of global and local clock models in the ML method. Fossil
dates are available for node ages t, and f;, so that these two dates are
fixed, while divergence times t; and t, are estimated by ML through
numerical optimization, together with the substitution rate .
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Variablex]- = (t]' — l’L)/(tA — tL)OI‘t]' =t + (ta— l’L)x]',SO
that 0 < x; < 1. If the age of the root is to be estimated
(i.e., if it is not a calibration node), the age is used with-
out transform. Thus, for the example of Figure 2, the
parameters used are u, t;, and x4 = t4/t>, which have to
satisfy the following constraints (bounds): 0 < u < oo,
max(f, 3) <t <oo,and 0 < x4 < 1.

Local clock models (Yoder and Yang, 2000) relax the
clock assumption by allowing some branches on the tree
to have independent rates. Instead of one rate u, we use k
rates, and each branch in the tree can take one of those k
possible rates. For example, the trees of Figure 3 show
that the mouse lemurs and the anthropoids tend to have
very different rates from other lineages in the tree and
can be assigned independent rates. We suspect that slight
overparametrization, i.e., assigning lineages that share a
similar rate to different rate groups, will not cause a seri-
ous problem to date estimation, while forcing branches
with very different rates into one rate group may lead to
biased date estimates.

The length of any branch in the tree is given by the
product of the time duration of the branch and the rate
for the branch. Given the branch lengths, the likelihood
function is calculated using the sequence alignment ac-
cording to Felsenstein (1981) for models of one rate for
all sites and according to Yang (1994) for models of vari-
able rates among sites. Rate and time parameters, as well
as parameters in the substitution model are then esti-
mated by maximizing the likelihood. The curvature of
the likelihood surface can be used to calculate the approx-
imate variances of ML estimates (Stuart et al., 1999:60—
62). The global and local clock models are also imple-
mented for viral sequences with known dates (Rambaut,
2000; Drummond et al., 2001), where the ages of the tips
serve as calibration points while the ages of ancestral
nodes are estimated by ML.

Accounting for Different Substitution Processes
in Multiple Genes

Our description here uses the term genes to refer to
partitions of sites in the sequence alignment. We stress
that site partitioning is for accommodating large-scale
heterogeneity among sites in the evolutionary dynam-
ics and does not have to correspond exactly to genes.
For the mitochondrial data set analyzed, the differences
between the two genes (COII and cytochrome b) are
small but huge differences exist among the codon po-
sitions. Thus, the term genes below corresponds to the
three codon positions in our data. The general model
implemented here assumes that the divergence times
and calibration points are shared among genes, while all
other parameters involved in the evolutionary process
are free to vary. Following Yang (1996b), we assume dif-
ferent genes have different overall substitution rates, dif-
ferent base frequencies and transition/transversion rate
ratios, and separate gamma distributions to describe the
rate variation among sites within each gene.

Under the local-clock models, we again assume that
the branches are classified into k rate classes. We

implemented two versions of the local-clock model for
multiple genes in the computer program. The first ver-
sion assumes that the local branch rates are proportional
for different genes. Suppose there are ¢ genes. The model
then involves k + g — 1 rate parameters: k branch rates
for the first gene, and g — 1 relative rates for the other
genes. The model assumes that branches with high rates
in one gene have high rates in other genes as well. This
assumption is clearly violated in the data analyzed in this
study (Fig. 3), and thus this model is not used in the anal-
ysis of this paper. The second version allows the branch
rates to be estimated separately for different genes, so
that there are kg rate parameters.

Bayes Estimation of Divergence Times Using MCMC

The three codon positions were initially analyzed as
separate data sets, using a Bayes MCMC package written
by Jeff Thorne (Thorne et al., 1998). A new version of the
package (Thorne and Kishino, 2002) was used to analyze
the three codon positions simultaneously while account-
ing for their differences in substitution process. The first
program in the packages, estbranches, produces ML esti-
mates of branch lengths for the ingroup rooted tree and
their approximate variance—covariance matrix. For this
purpose, a substitution model should be specified and
information about parameters in the substitution model
should be provided. We used the baseml program in the
PAML package to obtain estimates of the transition/
transversion rate ratio « and the rates for site classes
under the discrete-gamma model of rates among sites
under the F84G model (Table 2). Those estimates were
used as input to the estbranches program. The Bayes pro-
gram also requires an outgroup clade to locate the root
in the ingroup tree, for which we used Didelphis vigini-
ana, a marsupial. Note that this outgroup sequence is
not used in the ML analysis. The second program in
Thorne’s packages (divtime5b for one gene and multidivtime
for multiple genes) conducts the Bayes MCMC analysis
to approximate the posterior distributions of substitu-
tion rates and divergence times. The likelihood function
is approximated using a multivariate normal distribu-
tion of estimated branch lengths and is not calculated
from the sequence alignment (Thorne et al., 1998). Thus,
the substitution model does not enter the second stage
of the analysis.

The prior for substitution rates is specified by a re-
cursive procedure that proceeds from the root of the tree
toward the tips. The log rate of the current node or branch
follows a normal distribution centered around and con-
ditioned on the log rate of the ancestral node or branch
(Thorne et al., 1998; Kishino et al., 2001). The variance
of the distribution is given by vAt, the time duration At
between the nodes or branches multiplied by parameter
v, which controls how variable the rates are over time
(Thorne et al., 1998). The joint prior for all rates is thus
given by a gamma density for the rate at the root multi-
plied by all those conditional densities. The prior for di-
vergence times is specified using another recursive pro-
cedure (Kishino et al., 2001), starting from the root and
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FIGURE 3. Branch lengths estimated under the F84G model for the three codon positions without assuming the molecular clock. The tree is
unrooted, and the root is shown for clarity.
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moving toward the tips. A gamma density is used for the
age of the root. Then each path from an ancestral node to
the tip is broken into random segments, corresponding
to branches on the path, by using a Dirichlet density with
equal probabilities. When fossil calibration information
is available for an ancestral node, it is incorporated as
constraints on the node age. Several calibration nodes
are used (Table 3, Fig. 1).

The MCMC programs require specification of two
gamma prior distributions, for the age of the root and
for the rate at the root, which is also the overall prior
rate on the phylogeny. We found those two priors hard
to specify without reference to the sequence data being
analyzed; in theory there seems to be no need for speci-
fying those priors since the sequence data and the fossil
calibrations should determine the overall rate and the
age of the root. We used m = 70 million years (MY) and
o =35 MY for the mean and SD of the gamma prior
for the root date. We used the ML estimate of the sub-
stitution rate under the global clock as the prior mean
for the rate and set o to be half of the mean, so that
the gamma shape parameter o = (1/0)* = 4. Since both
the rate and the age are strictly positive, we believe it
is sensible to require the gamma distribution to have a
strictly positive mode, i.e., & > 1. However, for the data
analyzed in this study, relatively large changes to those
prior parameters made little difference to the posterior.
As aresult, our concerns above did not have much prac-
tical relevance. An additional gamma prior is specified
for parameter v, and we used m = 0.4 and o = 0.8. Since
the different codon positions clearly have different pat-
terns of rate variation (Fig. 3), we use different v values
for different codon positions (i.e., commonbrown is set
to 0).

Convergence of the MCMC algorithm was monitored
mainly through multiple independent runs for each anal-
ysis. Stable results, with the difference in posterior means
of divergence times <0.1 MY (or 0.5 MY at most) between
runs, were obtained using a burn-in of 20,000 iterations
and then sampling every 5 iterations, with 20,000 sam-
ples taken (a total of 20,000 + 20,000 x 5 iterations).

Longer chains were run for a few analyses and were
found to produce very similar results.

RESULTS
Likelihood Analysis under the Global and Local Clock Models

ML estimates of divergence times for the major nodes
in the tree of Figure 1 obtained under the global molecu-
lar clock are listed in Table 4. The JC (Jukes and Cantor,
1969) and F84G (Yang, 1994; Felsenstein 2002) models of
nucleotide substitution are used. Divergence times at the
seven calibration nodes (Fig. 1) are fixed at the midval-
ues in Table 3, and times for other nodes are estimated
by ML, as are other parameters in the model. When the
three codon positions are analyzed separately (analyses
b—d for JC and f-h for F84G in Table 4), date estimates
are highly variable among codon positions and between
the two models. For example, under JC estimated mouse
lemur divergence dates range from 11 to 24 MY. Under
F84G, those dates are more similar to each other, from 7
to 14 MY. When all three positions are analyzed together
without accounting for their differences (analyses a and
e [all] in Table 4), the estimates are averages over the
three positions. The combined analysis (analyses i and
j in Table 4) uses all three codon positions as well, but
accounts for their differences. Under JC, the model ac-
counts for differences in substitution rate at the three
codon positions, while under F84G the model also ac-
counts for differences in the transition/transversion rate
bias, in base compositions, and in the gamma shape pa-
rameter (Yang, 1996b). The mouse lemur divergence date
is estimated to be 21 MY under JC and 9 MY under F84G.
Both of these age estimates are surprisingly old, with the
date estimated under JC to be unrealistically ancient.

Likelihood ratio tests of the clock assumption indicates
clear rejection of the global clock for all three codon po-
sitions under both the JC and F84G models (results not
shown). Figure 3 shows the estimated branch lengths
for the three codon positions under the F84G model. At
the first and second positions, the mouse lemur lineages
seem to have relatively high rates, while the anthropoids

TABLE 4. ML estimates of divergence dates under the global clock using multiple calibrations.

JC F84G Combined
Node (a) all* (b) posl (c) pos2 (d) pos3 (e) all (f) pos1 (g) pos2 (h) pos3 ®]JC (j) F84G
40 dog/bear 449 38.7 31.5 51.9 43.3 37.2 29.1 42.6 459 39.2
43 human/chimp 8.4 6.7 8.3 9.1 8.0 6.8 8.4 6.9 8.5 7.4
45 hominoid 22.6 20.9 16.6 24.1 17.8 20.2 15.8 15.8 22.3 17.4
47 anthropoid 59.1 63.0 59.3 56.8 61.6 65.4 60.5 57.9 60.0 61.8
48 lorisiform 414 27.2 31.7 49.2 36.1 23.6 28.8 42.8 40.8 33.9
51 Lemuridae 414 38.8 36.7 40.8 31.1 34.3 35.8 23.7 40.6 28.3
52 southern clade 153 11.0 7.7 16.7 9.3 9.6 7.0 57 14.8 6.9
58 northern clade 18.7 13.7 6.9 20.3 10.8 11.5 54 5.8 17.9 7.4
59 mouse lemurs 225 16.2 11.2 244 13.1 13.8 10.0 7.3 21.7 9.4
61 Cheirogaleidae 39.1 33.4 24.0 42.7 30.7 30.0 22.5 26.5 38.9 27.0
65 lemuriform 62.5 60.3 61.6 62.5 59.1 59.5 64.0 53.8 62.2 58.0
66 Strepsirrhine 66.7 63.8 66.4 67.2 63.0 62.6 64.0 65.8 66.1 63.4

2All = concatenated sequences including all three codon positions.
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TABLE 5. ML estimates of divergence dates under local clock models with three rates.
JC F84G Combined?®
Node (a) all (b) posl (c) pos2 (d) pos3 (e) all () posl (g) pos2 (h) pos3 @ ]JC (j) F84G (%) pri (**) out
40 dog/bear 46.4 41.8 36.3 52.8 46.4 43.0 36.6 444 47.7 43.2 349 45.3
43 human/chimp 8.2 6.2 7.8 9.1 7.3 5.6 7.6 6.5 8.3 6.5 6.4 7.6
45 hominoid 20.1 17.7 13.1 21.8 14.5 14.6 10.5 14.7 19.7 14.2 141 16.6
47 anthropoid 53.6 58.0 54.3 50.5 58.0 61.7 54.8 54.7 54.4 57.6 58.2 74.8
48 lorisiform 448 31.0 38.7 52.1 41.1 29.3 36.9 45.6 44.6 38.9 34.0 48.6
51 Lemuridae 447 45.0 448 43.3 36.3 43.7 46.2 25.8 445 33.3 27.8 39.7
52 southern clade 8.3 7.6 6.4 9.0 6.4 79 6.4 3.5 8.5 5.2 4.3 6.1
58 northern clade 10.1 9.3 54 11.0 74 9.0 4.7 3.6 10.3 55 4.6 6.5
59 mouse lemurs 12.7 11.4 9.6 13.6 9.1 11.4 9.3 4.5 12.7 7.1 5.9 8.4
61 Cheirogaleidae 34.9 33.8 26.6 37.3 31.1 33.7 26.9 25.7 35.6 28.6 23.9 34.0
65 lemuriform 65.3 66.4 67.4 63.9 64.8 69.0 71.7 56.7 65.7 64.8 57.4 81.8
66 Strepsirrhine 69.7 69.1 71.7 69.4 68.8 71.8 71.7 68.8 69.7 69.9 63.5 90.8

? Analysis j* used only the three calibrations within primates, and j** used only the four calibrations outside primates.

have very high rates. At the third position, the rates are
more homogeneous among lineages, although mouse
lemur rates are high. We use information about branch
lengths to formulate a local clock model, in which the
hominoids and the mouse lemur lineages have separate
rate parameters r; and r,, while all other “background”
branches have the default rate 1y (see Fig. 1). To examine
the sensitivity of date estimation on assumptions about
rates, we also considered a few variations of the three-
rates model: a two-rates model with one rate for the an-
thropoids and another rate for all other branches, a four-
rates model with an additional rate for branches in the
clade (Hippopotamus(Physeter, Balaenoptera)), and a five-
rate model with a further rate for the Daubentonia branch
(see Fig. 3).

ML estimates of divergence times under the local clock
model with the three branch rates described above are
shown in Table 5. The estimated substitution rates are
listed in Table 6. Compared with the time estimates under
the global clock (Table 4), estimates under the local clock
are considerably less variable among the three codon po-
sitions. For example, the estimated mouse lemur diver-
gence times range from 10 to 14 MY over the three codon

positions under JC (Table 5), while the range was from
11 to 24 MY under the global clock (Table 4). As the local
clock model accounts for the high rates in the anthro-
poids (particularly at positions 1 and 2) and in mouse
lemurs (particularly at position 3), the divergence times
for those lineages become younger. In contrast with the
global clock models, the local clock model appropriately
interpreted the long branches in those clades as high rates
rather than ancient divergences. This effect is particularly
apparent at the first and third positions. For compari-
son, we also fitted the two-, four- and five-rates models,
as mentioned above, under F84G. The two-rates model
produced similar date estimates for the anthropoids to
the three-rates model but produced much older dates for
the mouse lemur divergence (18.2, 14.0, and 8.2 MY for
the three codon positions compared with 11.4,9.3,and 4.5
MY, respectively, under the three-rates model of Table 5).
The four- and five-rates models produced date estimates
that are virtually identical to the three-rates model of Ta-
ble 5. Based on those results, we make two observations:
(1) the mouse lemurs have high rates (r, > o in Table 6)
and incorrectly forcing them to have the same rate as
the background branches biases date estimates; and (2)

TABLE 6. ML estimates of substitution rates for the three branch classes (x10~# substitutions/site/year). One rate is estimated for each
analysis under the global clock model. The local clock model assumes three rates: r; for the hominoids, r, for the mouse lemurs, and r, for all
other branches. In the combined global clock analysis, three rates (r®, r@, r®) are estimated for the three codon positions. In the combined local
clock analysis, nine rates are estimated, with r;-k)( j=0,1,2,k =1,2,3) the rate in branch group j at codon position k.

JC F84G Combined

Model (a) all (b) pos1 (c) pos2 (d) pos3 (e) all () pos1 (g) pos2 (h) pos3 @ ]JC (j) F84G
Global clock 0.276 0.167 0.058 0.698 0.792 0.218 0.088 4.238 PO =0.158 0.238
7@ =0.051 0.084

7@ =0.721 3.352

Local clock 7o = 0.239 0.133 0.041 0.632 0.595 0.166 0.061 3.598 7" =0.131 0.175
1 =0.392 0.281 0.117 0.887 1.077 0.456 0.205 4.705 P =0.281 0.465

7, =0.583 0.273 0.078 1.419 1.147 0.294 0.106 6.801 7 =0.259 0.499

?? = 0.040 0.061

72 =0.113 0.195

7P =0.044 0.100

7Y =0.634 3.136

PP = 0.884 4.337

4.266
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slight overparameterization in the four- and five-rates
models does not affect date estimation too much.

The combined analysis of the three positions under
the local clock models (analyses i and j in Table 5) is ex-
pected to be the most reliable as the model accounts for
the local branch rates as well as the different substitution
rates at the three codon positions. Given that we have
no external means (i.e., no fossil data) for testing the
veracity of mouse lemur age estimates, it is interesting
to contrast age estimates of the mouse lemurs with
those for the human—chimpanzee divergence, for which
the fossil record is quite informative. The estimates
for mouse lemur divergence are 12.7 MY (with a 95%
confidence interval [CI] of 9.4-16.1 MY) under the JC
model (analysis i in Table 5) and 7.1 MY (95% CI of
5.2-9.1 MY) under F84G (analysis j in Table 5). The age
estimates for the human-chimpanzee divergence are
8.3 MY (95% CI of 7.6-9.0 MY) under JC and 6.5 MY
(95% CI of 5.4-7.7 MY) under F84G. (The confidence
intervals were calculated by a normal approximation
to the ML estimates and are too narrow as the model
ignores uncertainties in fossil calibration dates.) We
note that the age estimates for the human—chimpanzee
divergence are compatible with current interpretations
of the fossil record (Brunet et al., 2002), suggesting that
the method might be robust. Furthermore, it is notable
that mouse lemurs, whose morphological differences
are hard to discern, appear to be as old or even older
than the human—chimpanzee divergence.

To see how robust the date estimates in the combined
analysis are to assumptions about the rates, we also fitted
a few variations to the three-rates model, as mentioned
above, under F84G. The four- and five-rates models pro-
duced date estimates very similar to those of Table 5 un-
der the three-rates model, with date differences within

1 MY. The improvement in the log likelihood, compared
with the three-rates model, is 0.1 and 8.2 for the four-
and five-rates models, respectively. The two-rates model
forcing the mouse lemurs to have the same rate as the
background branches produced older estimates for the
mouse lemur divergence (11.6 MY compared with 7.1 MY
of Table 5, analysis j). The log likelihood is worse that that
for the three-rates model by 22.4. Although we examined
only a few rate models, those results appear to suggest
that three rates are necessary to capture the main features
of rate variation in these data.

Besides the nucleotide-based models discussed in this
study, an alternative approach to dealing with hetero-
geneity among the codon positions is to use models
of codon substitution (Goldman and Yang, 1994; Muse
and Gaut, 1994). Codon models naturally accommodate
differences between the three codon positions as they
make use of the genetic code and account for synony-
mous and nonsynonymous rate differences. Application
of the codon model (Goldman and Yang, 1994) with the
three branch rates produced date estimates similar to
those of the combined nucleotide-based analysis. The
estimates for the mouse lemur and human—chimpanzee
divergence dates were 8.4 MY and 6.9 MY, respectively,
compared with 7.1 MY and 6.5 MY in the combined
nucleotide-based analysis (Table 5, analysis j, F84G). The
estimate of the nonsynonymous/synonymous rate ratio,
@ = 0.0325, is much less than 1, consistent with the ex-
treme rate differences among codon positions (Table 6).

Bayes Analysis

Bayes posterior means of divergence times are listed
in Table 7. The 95% credibility intervals are calculated as
well, but are presented for a few models only. The prior

TABLE 7. Bayes estimates of divergence times (including some 95% credibility intervals).

JC F84G Combined®

Node? (a) all (b) pos1 (c) pos2 (d) pos3 (e) all (f) pos1 (g) pos2 (h) pos3 (i) ]JC (j) F84G i i

40 dog/bear 50.2 (43.9,56.0) 424 36.7 54.9 49.9 (40.0,59.4) 433 34.7 46.4 51.3 452(34.9,55.8) 414 463
43 human/chimp  8.5(7.2,9.9) 6.8 8.0 9.9 8.1 (6.0,10.2) 7.1 59 6.9 92 71(.1,9.3) 71 83
45 hominoid 18.4 (16.3, 20.6) 16.8 16.0 20.0 16.2(13.1,19.5) 15.6 19.2 15.2 185 15.2(12.1,18.6) 15.1 16.8
47 anthropoid 55.3 (49.6, 61.6) 58.8 56.1 51.1 59.4 (49.8,69.8) 60.4 56.0 60.5 53.3 61.1(50.1,73.0) 59.6 65.9
48 lorisiform 47.4 (39.6, 55.7) 33.6 46.4 487 41.7(31.1,53.2) 299 40.4 45.1 45.0 40.5(29.3,53.0) 38.8 45.1
51 Lemuridae 37.6 (30.7,44.9) 438 46.9 35.0 37.0(28.0,47.3) 45.0 45.4 30.0 35.8 35.3(26.2,46.1) 33.2 399
52 southern clade 7.2 (5.0,9.8) 10.8 13.3 8.9 9.0 (5.4,13.8) 14.6 14.4 6.7 74  7.6(4.6,12.0) 71 8.6
58 northern clade 8.9 (6.3,11.9) 15.2 17.5 10.8 10.9 (6.8, 16.2) 19.1 20.5 6.8 9.3 8.0(5.0,12.7) 75 9.2
59 mouse lemurs  11.0 (7.9, 14.5) 17.6 21.5 13.2 13.1 (8.3,19.2) 23.1 25.8 08.5 11.3 10.0 (6.4,15.4) 94 114
61 Cheirogaleidae 27.1 (21.3, 33.5) 34.1 34.9 29.0 31.1(22.2,41.1) 38.0 38.6 29.5 274 30.3(21.9,40.5) 28.8 34.1
65 lemuriform 61.1 (53.1, 69.5) 66.2 68.8 55.7 65.4(54.1,764) 66.8 63.7 60.5 57.8 66.9(55.2,78.3) 63.5 753
66 Strepsirrhine 68.0 (60.3, 76.4) 71.0 74.9 61.7 70.4(59.2,81.00 72.0 69.1 71.5 63.3 73.3(62.2,83.6) 69.8 822
35C4 53.7 (50.2, 57.6) 54.6 53.5 52.1 53.1(50.1,57.5) 53.6 53.6 52.5 53.3 53.1(50.1,57.5) 42.8 53.5
36 C5 35.1 (33.0, 38.8) 35.8 36.3 36.2 35.1(33.0,39.1) 36.3 36.4 34.8 35.5 34.8(33.0,38.7) 222 349
37 Cé6 53.1 (51.0,57.2) 54.1 54.4 54.1 56.1(51.4,59.8) 54.5 54.4 56.6 53.1 56.0(51.3,59.7) 464 56.3
41 C7 62.1 (56.8, 64.8) 56.2 57.9 60.1 60.6 (52.7,64.8) 555 55.6 59.0 59.9 58.8(49.7,64.6) 54.2 60.0
44 C1 11.6 (10.9, 11.9) 11.1 10.7 11.6 11.1 (9.3,11.9) 10.7 10.3 10.1 11.7 10.8(8.7,11.9) 108 12.8
46 C2 33.1(32.0, 35.9) 34.0 34.1 33.8 33.6(32.0,37.0) 347 35.0 34.6 33.1 33.9(32.0,37.4) 339 332
67 C3 78.1 (70.7, 86.3) 81.6 83.7 69.6 83.6(73.9,89.6) 79.1 75.6 84.4 73.1 86.1(78.0,89.8) 825 96.9

3C1-C7 are calibration nodes.

b Analysis j* used only the three calibrations within primates, and j** used only the four calibrations outside primates.
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mean rate at the root (rtrate) for the separate analysis of
the three codon positions are the ML estimates under the
global clock (Table 6). The SE of the rate is set to be half
of the mean.

Similar to the likelihood analysis, there is consider-
able variation in date estimates among the three codon
positions when they are analyzed separately. For exam-
ple, the estimates for the mouse lemur divergence date
range from 13 to 22 MY under JC and from 8 to 26 MY un-
der F84G over the three codon positions. There are also
differences between the Bayes and ML estimates. For the
first and second positions, the Bayes estimates of mouse
lemur dates (for nodes 59, 52, and 58 in Fig. 1) are all
much larger than the ML estimates under the local clock
models and are closer to the ML estimates under the
global clock, although the two methods are more similar
at the third position. The reasons for these differences are
not clear. Based on our ML analysis using variations of
the three-rates model discussed above, we speculate that
the Bayes model of stochastic rate evolution might have
difficulty in accommodating rapid rate changes at the
first two positions (see Fig. 3). However, this interpreta-
tion is not consistent with the robustness, to be discussed
below, of the Bayes date estimation to changes to parame-
ter v, which controls how variable the rates are over time.

When all three codon positions are analyzed with-
out accounting for their differences (analyses a and e in
Table 7), the Bayes estimates are similar to the ML esti-
mates. The mouse lemur divergence time is estimated to
be 11 MY and 13 MY under JC and F84G, respectively,
while the corresponding ML estimates are 11 MY and
9 MY. Date estimates from the combined Bayes analysis
that accounts for the heterogeneity of the three codon
positions are presented (analyses i and j) in Table 7 for
JC and F84G, respectively. In general, those estimates
are very similar to corresponding estimates from the
ML analysis (Table 5, analyses i and j). Under F84G,
the Bayes method estimated the divergence time of the
mouse lemurs to be 10 MY with a 95% CI of (6.4 MY,
15.4 MY), slightly older than the ML estimate under the
same model (8.5 MY; analysis j in Table 5). The Bayes es-
timate for the human—chimpanzee divergence is 7.1 MY
(6.1 MY, 9.3 MY), identical to the ML estimate. In gen-
eral, the date estimates from the combined analysis are
remarkably similar for the two methods. The likelihood
confidence intervals are too narrow but overlap consid-
erably with the Bayes credibility intervals.

DISCUSSIONS
Limitations of the Likelihood Local-Clock Models

The likelihood models implemented in this paper have
a number of limitations, some of which are noted here.
First, assignment of branches on the phylogeny to the k
rate groups has to be done by the researcher. The models
are thus suitable for estimating and testing rates for well-
defined phylogenetic clades or lineages but are difficult
to use if the rate changes affect many branches scattered
across the tree. The latter situation is much easier to deal
with in the Bayes framework using a prior probabilistic

model of rate change (Thorne et al., 1998). In the analysis
of the mitochondrial data, we estimated branch lengths
without the clock to help specify branch rate classes.
Since the hypotheses about rates are derived from the
data, it is inappropriate to use the x? approximation to
perform the likelihood ratio test to test them, due to the
problem of multiple comparisons. We do not consider
this a serious problem in this study since our interest is
not in testing rate hypotheses but in estimation of diver-
gence times and substitution rates. Second, the likelihood
models implemented here consider calibration dates as
fixed points and do not account for uncertainties in the
fossil record. As a result, the variances of parameter es-
timates are underestimated and the confidence intervals
are too narrow. Explicitly modeling uncertainties in cal-
ibration information is possible in theory but introduces
high-dimensional integrals in the likelihood calculation,
which does not seem feasible computationally. Third, our
implementation is restrictive in that the same number of
branch rate classes are assumed for all genes. For exam-
ple, in our combined analysis, we assumed three rate
classes for every locus: the mouse lemurs, the anthro-
poids, and all the other lineages. In real data, a two-rate
model might fit one locus while a three-rate model might
fit another. We also assume that data are available for ev-
ery species at each locus. However, when heterogeneous
multilocus data are combined, some species might be
missing at some loci. These restrictions are implementa-
tion details and can be relaxed in theory.

Effects of Priors, Model Assumptions, and Calibrations
on Date Estimation

We changed the means and SDs for the gamma priors
for the age of the root and the rate at the root, finding that
the posterior date estimates are rather stable. For exam-
ple, doubling the age of the root (so that m = 140 MY
and o = 70 MY) changed the posterior means of diver-
gence times by no more than 0.2 MY. The posterior time
estimates are also very insensitive to the parameters in
the gamma prior for the Brownian motion parameter v,
except when v is forced to be extremely small so that
a molecular clock is effectively assumed. Similar robust-
ness has been reported in a recent study by Springer et al.
(2003) estimating divergence times in mammals. It is un-
clear whether robustness is generally the case. Further-
more, some prior model assumptions are made in the
program and are not evaluated. For example, assump-
tions about the shape of the tree (how starlike the tree
is) in the prior for divergence times might affect time
estimation. The specific model of rate evolution might
not be very important according to the comparisons of
Aris-Brosou and Yang (2002), as long as the rate change
is appropriately accounted for by the model.

The nucleotide substitution model had larger effects
on the time estimates for both the ML and the Bayes
methods, although the patterns are different. For ML,
there is little difference between JC and F84G at the first
and second positions (Tables 4 and 5). However, big dif-
ferences exist at the third position, especially concerning
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the mouse lemur divergence; for example, the mouse
lemur divergence was dated at 24 MY under JC and
7.2 MY under F84G for the clock analysis and at 11 MY
and 4.5 MY for the local-clock analysis. For the Bayes
method, differences existed between the two models for
all three codon positions, although they are not so large
as in the ML analysis (Table 7). We do not understand the
pattern but suspect that the large differences between JC
and F84G seen in the ML analysis of the third codon
position might be partly due to the extremely high di-
vergence (Table 2). JC is clearly ineffective in correcting
for multiple hits. However, F84G is unlikely to fit the
data perfectly and might be sensitive to violations of as-
sumptions at such high divergences. It may be noted that
F84G does not always produce older date estimates than
JC (through more effective correction for multiple hits),
as can be expected if a fixed substitution rate were used
to calculate dates under both models. As substitution
rates are estimated under each model, the differences in
date estimation between the two models are due to the
relative distances from the internal nodes to the tips and
to the positions of the nodes relative to the calibration
points (Yang, 1996a).

Clearly the ages of nodes close to calibration points
should be estimated more reliably than the ages of nodes
far away. In all our analyses (Tables 4, 5, 7), the es-
timated dates for the human—chimpanzee divergence,
which is close to calibration points within primates, are
much more stable than those for the mouse lemur diver-
gences, which are more distant from calibration points.
To evaluate this effect further, we performed the com-
bined analysis using only the three calibration points
within primates or only the four calibration points out-
side primates. The results are listed as analyses j* and
i** in Table 5 for ML and in Table 7 for the Bayes anal-
ysis, which clearly demonstrated the importance of cal-
ibration information in both methods. For example, in
the likelihood analysis, the dog/bear divergence date
changed from 43 MY to 34 MY when the calibration infor-
mation outside primates was withheld (compare analy-
sesjand j* in Table 5), while withholding primate calibra-
tion information caused big changes in the hominoid and
anthropoid divergence dates (compare analyses jand j**
in Table 5). Similar effects are seen in the Bayes analysis
(Table 7). The results of cross-calibration are particularly
interesting. For example, when only the three primate
calibration nodes, C;, C; and Cj3, are used, the poste-
rior means of the ages of the four calibration nodes out-
side primates (Cy4, Cs, Cs, and C7) are all too young, with
Cy4, Cs, and Cg outside their ranges (Table 3). Similarly,
when Cy4, Cs, Cs, and C7 outside primates are used, the
dates for C; and C3 are outside their ranges. Notably,
the mouse lemur divergence dates are all quite stable for
the three sets of calibration information (analyses j, j*,
and j** in Table 7).

Combined versus Separate Analysis

In the molecular phylogenetics literature, there has
been a lingering debate concerning whether heteroge-

neous data sets should be analyzed separately or in a
combined data set when phylogenetic trees are recon-
structed. The “combined” analysis in that debate means
merging and mixing data sets without accounting for
their heterogeneity and thus differs from the combined
analysis advocated in this study. Such a debate does not
appear necessary as neither the separate analysis nor the
“mixed” analysis is a good method; a proper analysis
should combine data sets but at the same time account
for their differences. The advantages of a combined anal-
ysis in complicated estimation problems are well recog-
nized. In the date-estimation problem, the model can “ex-
plain” the data of a single gene rather easily; a high rate
and a recent divergence might fit the data just as well
as a low rate and an early divergence. A single gene can
thus be misleading about divergence times. In our anal-
ysis, date estimates varied considerably among the three
codon positions. Combining multiple genes that have
different patterns of rate change will introduce internal
constraints on the model, allowing extraction of informa-
tion about the common parameters, i.e., the divergence
times. We suggest that there is no question that multi-
ple gene data sets should be combined, although with
the strong proviso that the heterogeneity of the different
data sets be accounted for. Indeed combined analysis of
multiple genes and simultaneous use of multiple cali-
bration points appear to provide the best approach to
divergence date estimation when the molecular clock is
violated.
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