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Methods for EEG Signal Classification
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Abstract—The reliable operation of brain–computer interfaces (BCIs)
based on spontaneous electroencephalogram (EEG) signals requires ac-
curate classification of multichannel EEG. The design of EEG repre-
sentations and classifiers for BCI are open research questions whose
difficulty stems from the need to extract complex spatial and temporal
patterns from noisy multidimensional time series obtained from EEG
measurements. The high-dimensional and noisy nature of EEG may limit
the advantage of nonlinear classification methods over linear ones. This
paper reports the results of a linear (linear discriminant analysis) and
two nonlinear classifiers (neural networks and support vector machines)
applied to the classification of spontaneous EEG during five mental
tasks, showing that nonlinear classifiers produce only slightly better
classification results. An approach to feature selection based on genetic
algorithms is also presented with preliminary results of application to
EEG during finger movement.

Index Terms—Brain–computer interface (BCI) , electroencephalogram
(EEG), feature selection, genetic algorithms (GA), neural networks, pattern
classification, support vector machines (SVM).

I. INTRODUCTION

Recently, much research has been performed into alternative
methods of communication between humans and computers. The
standard keyboard/mouse model of computer use is not only unsuitable
for many people with disabilities, but also somewhat clumsy for many
tasks regardless of the capabilities of the user. Electroencephalogram
(EEG) signals provide one possible means of human–computer
interaction, which requires very little in terms of physical abilities. By
training the computer to recognize and classify EEG signals, users
could manipulate the machine by merely thinking about what they
want it to do within a limited set of choices.

In this paper, we examine the application of support vector machines
(SVMs) to the problem of EEG classification and compare the results
to those obtained using neural networks and linear discriminant anal-
ysis. Section II provides an overview of classification methods applied
here. Section III presents data acquisition procedures and classifica-
tion results. Section IV summarizes the findings of this article and their
implications.

II. CLASSIFICATION METHODS

In this section, the classification methods applied in the Section III
are summarized. (See Hastieet al. [8] for a thorough development of
the classification algorithms and Whitley [23] for an introduction to
genetic algorithms.)
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A. Linear Discriminant Analysis

One way to classify data is to first create models of the probability
density functions for data generated from each class. Then, a new
data point is classified by determining the probability density function
whose value is larger than the others. Linear discriminant analysis
(LDA) is an example of such an algorithm. LDA assumes that each
of the class probability density functions can be modeled as a normal
density, and that the normal density functions for all classes have the
same covariance.

Say there areK classes. LetXk be ap�Nk matrix ofNk samples,
asp-dimensional columns, of data from classk. Define the prior prob-
abilities�k and means�k of each class, and the common covariance
matrix�, to be
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where1m is anm� 1 matrix of 1’s. Then, a new data pointx is clas-
sified by

argmax
k
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The resulting LDA decision boundaries between classes of data are
linear.

B. Neural Networks

Artificial neural networks are often used to develop nonlinear classi-
fication boundaries. Reasons for their common use include their ease of
application, their robustness to choices of parameter values, and their
similarity to other nonlinear regression methods.

Again, considerK classes. LetX be ap�N matrix ofN samples, as
p-dimensionalcolumns. LetY be aK�N matrix of indicator variables
designating the class corresponding to each sample inX. Let� be the
p + 1 � h matrix of hidden-layer weights, whereh is the number of
hidden units, and� be theh+1�K matrix of output-layer weights. The
hidden layer outputZ and the final network outputO are calculated as

Z = f(�TX)

O = f(�TZ)

wheref(a) = 1=(1 + e�a).
The error backpropagation learning algorithm is simply an iterative

gradient descent procedure to minimize the squared error(Y � O)2

summed over all outputs and samples. The gradient descent is per-
formed by updating the weights as

� =(Y �O) � O � (1�O)

�� = 
X (�� � Z � (1� Z))T

�� = 
Z�T

where
 is a small constant and the� operator denotes component-wise
multiplication. These update equations are iterated until the squared
error in the network output on a subset of untrained data is minimized.
The resulting weights are used to classify new data by picking the
output with the largest value.
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C. SVMs

Conventional neural networks can be difficult to build due to the need
to select an appropriate number of hidden units. The network must con-
tain enough hidden units to be able to approximate the function in ques-
tion to the desired accuracy. However, if the network contains too many
hidden units, it may simply memorize the training data, causing very
poor generalization. A primary motivation behind SVMs is to directly
deal with the objective of good generalization by simultaneously max-
imizing the performance of the machine while minimizing the com-
plexity of the learned model.

The SVM optimization problem is

min
�;�

1

2
k�k2 + 


N

i=1

�i

subject to�i � 0; yi h(xi)
T � + �0 � 1� �i:

This is transformed into a convex quadratic programming problem that
is solved with standard techniques. The result is a discriminant function
f(x) = h(x)T�+�0 which, when combined with the optimized value
for �, becomes

f(x) =

N

i=1

�iyiK(x; xi) + �0

whereK(x; xi) is a kernel function [4] that is the same as the dot
product ofh(x) andh(xi). This kernel trick allowsh(x) to be very
high-dimensional, sinceh(x) need not ever be computed.

Cover’s theorem on the separability of patterns [7] essentially says
that data cast nonlinearly into a high-dimensional feature space is more
likely to be linearly separable there than in a lower-dimensional space.
Even though the SVM still produces a linear decision function, the
function is now linear in the feature space, rather than the input space.
Because of the high dimensionality of the feature space, we can ex-
pect the linear decision function to perform well, in accordance with
Cover’s theorem. Viewed another way, because of the nonlinearity of
the mapping to feature space, the SVM is capable of producing arbi-
trary decision functions in input space, depending on the kernel func-
tion. Mercer’s theorem [6], [16] provides the theoretical basis for the
determination of whether a given kernel functionK is equal to a dot
product in some space, the requirement for admissibility as an SVM
kernel. Two examples of suitable kernel functions are the polynomial
kernelK(xi; xj) = (xTi xj + 1)

p
and the radial basis function (RBF)

kernelK(xi; xj) = exp(�(1=2�2)kxi � xjk
2).

The best way to apply SVMs to the multiclass case is an ongoing re-
search problem. The DAGSVM method, proposed by Plattet al., [21],
is based on the notion of decision directed acyclic graphs (DDAGs). A
given DDAG is evaluated much like a binary decision tree, where each
internal node implements a decision between two of thek classes of
the classification problem. In the DAGSVM algorithm, each decision
node uses a1�v�1 SVM to determine which class to eliminate from
consideration. A separate classifier must be constructed to separate all
pairs of classes.

D. Feature Selection With Genetic Algorithms

High-resolution analysis of spatial, temporal, and spectral aspects of
the data, and allowing for their interactions, leads to a very high-dimen-
sional feature space. Leveraging a higher percentage of potential fea-
tures in the measured data requires more powerful signal analysis and
classification capabilities. The selection of a subset of features that are
most useful to the classification problem often increases classification
accuracy on new data. One approach to feature selection that makes no
assumptions of relationships among features involves the use of genetic
algorithms (GA) to search the space of feature subsets [22], [25].

Fig. 1. System architecture for mining the EEG feature space. The space
of feature subsets is searched in a “wrapper” fashion, whereby the search is
directed by the performance of the classifier, in this case an SVM.

Section III summarizes results using a system consisting of feature
composition, feature selection, and classification. A diagram of the
system is shown in Fig. 1. The feature selection part includes an SVM
for classifying the data and the genetic algorithm. SVMs involve fewer
parameters than neural networks, have built-in regularization, are
theoretically well-grounded, and, particularly important for ultimate
real-time use in a BCI, are extremely fast.

Individuals in the population were binary strings, with 1 indicating
that a feature was included, 0 indicating that it was not. We used a GA to
search the space of feature subsets for two main reasons. First, exhaus-
tive exploration of search spaces with greater than about 20 features is
computationally intractable (i.e.,220 possible subsets). Second, unlike
gradient-based search methods, the GA is inherently designed to avoid
the pitfall of local optima.

III. RESULTS

A. Linear Versus Nonlinear Classification of Cognitive Tasks

The data used in this study were from the work of Keirn and Aunon
[11], [12] and collected using the following procedure. Subjects were
placed in a dim, sound controlled room and electrodes were placed at
positions C3, C4, P3, P4, O1, and O2 as defined by the 10-20 system
of electrode placement [9] and referenced to two electrically linked
mastoids at A1 and A2. The impedance of all electrodes was kept below
five Kohms. Data were recorded at a sampling rate of 250 Hz with a
Lab Master 12-bit A/D converter mounted in an IBM-AT computer.
Before each recording session, the system was calibrated with a known
voltage. The electrodes were connected through a bank of Grass 7P511
amplifiers with analog bandpass filters from 0.1–100 Hz. Eye blinks
were detected by means of a separate channel of data recorded from
two electrodes placed above and below the subject’s left eye. An eye
blink was defined as a change in magnitude greater than 100�V within
a 10-ms period.

Subjects were asked to perform five separate mental tasks. These
tasks were chosen to invoke hemispheric brainwave asymmetry. The
subjects were asked to first relax as much as possible. This task
represents the baseline against which other tasks are to be compared.
The subjects were also asked to mentally compose a letter to a friend,
compute a nontrivial multiplication problem, visualize a sequence of
numbers being written on a blackboard, and rotate a three-dimensional
solid. For each of these tasks, the subjects were asked to not vocalize
nor gesture in any way. Data were recorded for 10 s for each task, and
each task was repeated five times. The data from each channel were
divided into half-second segments overlapping by one quarter-second.
After segments containing eye blinks were discarded, the remaining
data contained at most 39 segments. Sixth-order autoregressive (AR)
models were formed for each channel independently for the data
within each segment. Therefore, data in each segment were reduced
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TABLE I
PERCENTAGE OFTEST DATA CORRECTLY CLASSIFIED BROKEN DOWN BY

TASK. THE SVM IN THESEEXPERIMENTSUSED THESET OF PARAMETERS

WHICH RESULTED IN THE HIGHEST CORRECTRATE OF CLASSIFICATION

AMONG ALL SVMS TESTED

from 750 dimensions (125 samples� 6 channels) to 36 dimensions
(6 AR coefficients� 6 channels).

In testing the classification algorithms, five trials from one subject
were selected from one day of experiments. Each trial consisted of
the subject performing all five mental tasks. Classification experiments
were performed with LDA, neural networks, and SVMs. The neural
networks consisted of 36 inputs, 20 hidden units, and five output units
and were trained using backpropagation with
 = 0:1. Training was
halted after 2000 iterations or when the generalization began to fail,
as determined by a small set of validation data chosen without replace-
ment from the training data. SVMs were tested with polynomial kernels
of degrees two, three, five, or ten, or RBF kernels with� =0.5, 1.0, or
2.0. The SVMs were trained and tested using Platt’s sequential min-
imal optimization (SMO) and DAGSVM algorithms [19]–[21]. The
best SVM results were obtained using the RBF kernel with� = 0:5.

The training data was selected from the full set of five trials as fol-
lows. One trial was selected as test data. Of the four remaining trials,
one was chosen to be a validation set, which was used to determine
when to halt training of the neural networks and which values of the
kernel parameters and regularization parameter to use for the SVM
tests. Finally, the remaining three trials were compiled into one set of
training data. The experiments were repeated for each of the 20 ways
to partition the five trials in this manner and the results of the 20 ex-
periments were averaged to produce the results shown in Table I. This
choice of training paradigm is based on earlier results [1].

Table I shows that classification of half-second windows indepen-
dently results in classification accuracies of approximately 45%, 53%,
and 52% for LDA, neural networks, and SVM, respectively. When the
classifier outputs are averaged over 20 consecutive windows, these ac-
curacies increase to 66%, 69%, and 72%, respectively. There is little
difference in the results of the two nonlinear methods. The nonlinear
methods do perform better than the linear LDA method, but only by
3%–6% when averaging over consecutive windows. Examining the re-
sults by task shows that the largest differences between linear and non-
linear methods occur for the resting and rotation tasks, suggesting that
EEG for these tasks are more difficult to distinguish than for other tasks.

B. Feature Selection of Finger Movement Tasks

Blankertzet al. [3] collected data during a “self-paced key typing”
task, which includes 413 prekey press epochs of EEG recorded from
one subject. Six electrodes at F3, F4, C3, C4, CP3, and CP4 were
chosen because they overlay bilateral sensorimotor cortex, presumably
involved in the premotor aspects of this key pressing task. Each trial
was partitioned into 11 500-ms windows shifted by 100 ms over the en-
tire epoch, zero-meaned the signals, zero-padded them to length 1024,
and computed their power spectra at 1-Hz frequency resolution. The
power spectra were averaged over the standard EEG frequency bands
of delta (2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta1 (13–20 Hz),
beta2 (20–35 Hz), and gamma (35–46 Hz).

The GA was implemented with a population of 20, 2-point crossover
probability of 0.66, and mutation rate of 0.008. Crossover and mu-
tation were applied uniformly to each generation’s selected individ-

Fig. 2. Classification accuracy (population fitness) evolves over iterations
(generations) of the genetic algorithm. Thin line—average fitness of the
population. Thick line—fitness of the best individual in the population.

uals. Roulette-wheel selection was used, which only probabilistically
chooses higher-ranked individuals. We searched over the eleven time
windows and six frequency bands, while constantly including all six
electrodes in each case. Thus, the dimensionality of the searchable fea-
ture space was 66 (11� 6). The evaluation of each individual (feature
subset) in the GA population consisted of training and testing the SVM
with � = 0:2 using 10� 10 fold cross validation and averaging clas-
sification accuracy as the individual’s fitness measure.

The GA evolves a population of feature subsets whose corresponding
fitness (classification accuracy) improves over iterations of the GA
(Fig. 2). Note that although both the population average and best indi-
vidual fitness improve over successive generations, the best individual
fitness does so in a monotonic fashion. The best fitness obtained was a
classification accuracy of 76%. It was stable for over 50 generations of
the GA. The standard deviation of the classification accuracy produced
by the SVM was typically about 6%.

Fig. 3 shows the feature subset exhibiting the highest classification
accuracy. The feature subset included features from every time window
and every frequency band. This suggests that alternative methods that
include only a few time windows or frequencies may be missing fea-
tures that could improve classification accuracy. Furthermore, all fre-
quency bands were included in the third time window, suggesting that
early wide-band activity may be a significant feature of the process for
deciding finger laterality.

Although the best classification accuracy (76%) was considerably
higher than chance, it was much lower than the approximately 95%
classification accuracy obtained by Blankertzet al. [3]. One possible
reason is that we used data from only a small subset of the electrodes
recorded (6 of 27) in order to reduce computation time by restraining
the dimensionality of the feature vector presented to the SVM.

Optimizing classification accuracy was not, however, our primary
goal. Instead, we sought insight into the nature of the features that
would provide the best classification accuracy. The feature selection
method showed that a diverse subset of spectrotemporal features in
the EEG contributed to the best classification accuracy. However, most
BCIs that use EEG frequency information in imagined or real move-
ment look only at alpha (mu) and beta bands over one or a few time
windows [17], [18], [24]. Furthermore, the system is amenable to on-
line applications. One could use the full system, including the GA, to
learn the best dissociating features for a given subject and task, then
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Fig. 3. Features selected for the best individual. Black indicates the feature was
included in the subset, white indicates it was not. Time windows correspond to
number of 100 ms shifts from epoch onset, i.e., time window 1 is early in the
epoch, time window 11 ends 120 ms before the key press.

use the trained SVM with the best dissociating features in real-time.
Thus, preliminary results from the research suggests that BCI perfor-
mance could be improved by leveraging advances in machine learning
and artificial intelligence for systematic exploration of the EEG feature
space.

IV. CONCLUSION

SVMs provide a powerful method for data classification. The SVM
algorithm has a very solid foundation in statistical learning theory, and
guarantees to find the optimal decision function for a set of training
data, given a set of parameters determining the operation of the SVM.
The empirical evidence presented here shows that the algorithm per-
forms well on the tested EEG classification problems, though LDA and
conventional neural networks do not perform much worse.

The genetic algorithm study showed interesting changes in the subset
of most significant features during a trial. These preliminary results
must be explored further with additional data sets and variations in the
parameters of the genetic algorithm, including the population size and
the mutation and crossover rates. Population-wide measures, such as
number of features chosen in common, should be examined. Compar-
ison with standard, fixed feature selection practices, such as selection
of the alpha and beta bands, should be performed. The present study
describes results from only one subject. Additional, unpublished re-
sults demonstrate very different optimal feature subsets for different
subjects doing the same task.

Signal transformations used here consist of either AR coefficients
or power spectra. Other transformations show promise in isolating
key components in signals. Independent-components analysis (ICA),
which has been used to extract artifacts from EEG [10], may produce
representations that increase classification accuracy. Recent results
show that maximum noise fraction and cascade correlation analysis
lead to accurate classification of two mental tasks [2], [13].
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