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Abstract—We consider the downlink of a time-division du-
plexing (TDD) multicell multiuser MIMO system where the base
stations (BSs) are equipped with a very large number of antennas.
Assuming channel estimation through uplink pilots, arbitrary
antenna correlation and user distributions, we derive approxima-
tions of achievable rates with linear precoding techniques, namely
eigenbeamforming (BF) and regularized zero-forcing (RZF). The
approximations are tight in the large system limit with an
infinitely large number of antennas and user terminals (UTs),
but match our simulations for realistic system dimensions. We
further show that a simple RZF precoding scheme can achieve
the same performance as BF with a significantly reduced number
of antennas in both uncorrelated and correlated fading channels.

I. INTRODUCTION

The use of multiple antennas at the base stations (BSs) is

an integral part of future wireless cellular systems [1] as it

allows to serve multiple user terminals (UTs) simultaneously

on the same resource block and to counter inter- and intracell

interference [2]. However, these advantages come at the cost

of overhead for the acquisition of channel state information

(CSI) at the BSs. In frequency-division duplexing (FDD)

systems, this overhead scales linearly with the number of

antennas and renders the use of very large antenna arrays

essentially impossible [3]. In time-division duplexing (TDD)

systems where channel reciprocity can be exploited, the train-

ing overhead scales linearly with the number of UTs. Hence,

additional antenna elements can be added at no overhead cost

to significantly improve the system performance [4].

In [5], the idea of “massive MIMO” is pioneered and

several conclusions for a system with an unlimited number

of BS antennas are drawn. Theoretically, when the number

of antennas grows without bound, the effects of fast fading,

imperfect CSI and uncorrelated interference vanish and the

system performance is ultimately limited by pilot contami-

nation, resulting from the reuse of the same pilot sequences

in adjacent cells [6], [7], [8]. Moreover, the simplest forms

of precoding and detection, i.e., eigenbeamforming (BF) and

matched filtering (MF), become optimal and the transmit

power at BSs and UTs can be made arbitrarily small.

Several subsequent works study the extent to which the

above conclusions hold for a large but finite number of

antennas and more realistic channel models. In [9], a physical

channel model is considered where the number of degrees of

freedom the channel provides does not grow with the number

of antennas. Here, the main insight is that the performance

of massive MIMO might be rather limited by the physical

channel conditions than by the number of antennas. In a later

paper, the same authors analyze to which extent large antenna

arrays allow for transmit power reduction in an uplink single-

cell scenario [10]. They conclude that the transmit power

can be made inversely proportional to the square root of

the number of BS antennas without performance loss. The

convergence rate of the performance to its asymptotic limit is

studied in [11] and it is observed that generally more antennas

are needed to achieve close to optimal performance when

the pilot contamination effect is weak. In [12], the authors

define and distinguish “massive MIMO” from classical MIMO

schemes as a particular operating condition of cellular systems

where multiuser interference and noise are dominated by pilot

contamination. Whether a system is operated under “massive

MIMO conditions” depends consequently on several system

parameters, such as the number of BS antennas per UT and

the path loss. The authors also study how many more antennas

are needed with MF to achieve the same performance as

the minimum-mean-square-error (MMSE) detector in the up-

link. Finally, [13] proposes a TDD-based system architecture

assuming BS cooperation and zero-forcing precoding which

achieves massive MIMO spectral efficiencies with one order

of magnitude fewer antennas per UT per cell.

In this work, we study the massive MIMO downlink,

accounting explicitly for path loss, channel estimation, pilot

contamination and arbitrary antenna correlation. The same

model was analyzed in [12] for the uplink. We consider a

large system limit where the number of BS antennas N and

the number of UTs per cell K grow infinitely large at the

same speed and derive approximations of achievable rates for

different precoding strategies, i.e., BF and regularized zero-

forcing (RZF). These approximations are easy to compute

and shown by simulations to be accurate for realistic system

dimensions. Our results can hence be used for further system

optimization, which could not be carried out based on simula-

tions. We further demonstrate that a simple precoding scheme,

such as RZF, outperforms BF by far and achieves the same

performance with a much smaller number of antennas per UT.

Our work contains several novel contributions to the field of

large random matrix theory which are of independent interest.



II. SYSTEM MODEL

Consider a multi-cellular system consisting of L > 1 cells

with one BS and K UTs per cell. Each BS is equipped with

N antennas; the UTs have a single antenna. The focus of this

paper is on the downlink without any form of BS cooperation.

The received signal yjm ∈ C of the mth UT in the jth cell is

given as

yjm =
√
ρ

L
∑

l=1

hH

ljmsl + qjm (1)

where hljm ∈ C
N

is the channel vector from BS l to UT

m in cell j, sl ∈ C
N

is the transmit vector of BS l, qjm ∼
CN (0, 1) models thermal noise at the receiver and ρ > 0 is

the transmit signal-to-noise ratio (SNR). We assume that the

transmit vectors sl are given as

sl =
√

λl

K
∑

m=1

wlmxlm =
√

λlWlxl (2)

where Wl = [wl1 · · ·wlK ] ∈ C
N×K

is a precoding matrix

and xl = [xl1 · · ·xlK ]
T ∈ C

K
contains the data symbols

xlm ∼ CN (0, 1) for the K UTs in cell l. The normalization

factors λl are defined as

λl =
1

E
[

1
K trWlW

H

l

] (3)

such that the average transmit power per UT is normalized to

E
[

ρ
K sHl sl

]

= ρ. We model the channel vectors hjlk as

hjlk = R̃jlkujlk (4)

where Rjlk
△

= R̃jlkR̃
H

jlk ∈ C
N×N

are deterministic transmit

covariance matrices and ujlk ∼ CN (0, IN ) are fast fading

channel vectors. The present channel model is quite general

as it allows us to consider a different antenna correlation

(including path loss) for each channel vector. This is relevant

for large antenna arrays where strong antenna correlation

arises from either insufficient antenna spacing or a lack of

scattering. In contrast to existing works on massive MIMO

(e.g., [13]), the matrices Rjlk do not need to have full rank.

A. Channel estimation

During an uplink training phase (whose length we ignore

in this work), the UTs in each cell transmit orthogonal pilot

sequences which allow the BSs to compute estimates ĥjjk of

their local channels hjjk. The same set of orthogonal pilot

sequences is reused in every cell so that the channel estimates

are corrupted by pilot contamination from adjacent cells [7],

[5]. Under these assumptions, BS j estimates the channel

vector hjjk based on the observation

yτ
jk = hjjk +

∑

l 6=j

hjlk +
1√
ρτ

njk (5)

where njk ∼ CN (0, IN ) and ρτ > 0 is the effective training

SNR. The MMSE estimate ĥjjk of hjjk is hence given as [14]

ĥjjk = RjjkQjky
τ
jk (6)

where

Qjk =

(

1

ρτ
IN +

∑

l

Rjlk

)−1

. (7)

In order to compute these estimates, the BSs need to have full

knowledge of the correlation matrices Rjlk. Since the channel

vectors are complex Gaussian, we can decompose the channel

as hjjk = ĥjjk + h̃jjk, where ĥjjk ∼ CN (0,Φjjk) and

h̃jjk ∼ CN (0,Rjjk −Φjjk) is the independent estimation

error, and where the matrices Φjlk are defined as

Φjlk = RjjkQjkRjlk. (8)

III. ACHIEVABLE DOWNLINK RATES WITH LINEAR

BEAMFORMING

Since the UTs are not assumed to have any channel esti-

mates, we provide an ergodic achievable rate based on the

techniques developed in [6]. To this end, we decompose the

received signal yjm as

yjm =
√

ρλjE
[

hH

jjmwjm

]

xjm +
√

ρλjh
H

jjmwjmxjm

−
√

ρλjE
[

hH

jjmwjm

]

xjm

+
∑

(l,k) 6=(j,m)

√

ρλlh
H

ljmwlkxlk + qjm (9)

and assume that the average effective channels
√

λjE
[

hH

jjmwjm

]

can be perfectly learned at the UTs.

Under this assumption, an ergodic achievable rate Rjm of

UT m in cell j is given as [6, Theorem 1]

Rjm = log2 (1 + γjm) (10)

where the associated signal-to-interference-plus-noise ratio

(SINR) γjm is defined as1

γjm =

λj

∣

∣E
[

hH

jjmwjm

]
∣

∣

2

1
ρ + λjvar

[

hH

jjmwjm

]

+
∑

(l,k) 6=(j,m) λlE

[

∣

∣

∣
hH

ljmwlk

∣

∣

∣

2
] .

(11)

Remark 3.1: Assuming a block-fading channel model with

coherence time T , one can account for the rate loss due to

channel training by considering the net ergodic achievable rate

(1−τ/T )Rjm for a given training length τ ∈ [K,T ] (ρτ would

depend also on τ ). However, the optimization of the training

length is not part of this paper and left to future work.

In the sequel, we consider two different linear beam-

forming techniques: eigenbeamforming (BF) and regularized

zero-forcing (RZF). The precoding matrices Wj under both

schemes are respectively defined as

WBF
j

△

= Ĥjj (12)

WRZF
j

△

=
(

ĤjjĤ
H

jj + Fj +NαIN

)−1

Ĥjj (13)

1var [x]
△

= E

[

(x− E[x]) (x− E[x])H
]

for some random variable x.



where Ĥjj =
[

ĥjj1 · · · ĥjjK

]

∈ C
N×K

, Fj ∈ C
N×N

is a deterministic Hermitian nonnegative definite matrix and

α > 0 is a regularization factor. As the choice of Fj and α is

arbitrary, they could be optimized (see e.g., [6, Theorem 6]).

However, this is not part of the present work. We denote by

γMF
jm and γRZF

jm the SINR under BF and RZF, respectively.

IV. ASYMPTOTIC ANALYSIS

In this section, we present our main technical results. All

proofs are provided in [15]. As the achievable rates Rjm are

difficult to compute for finite system dimensions, we consider

in this work the large system limit, where N and K grow

infinitely large while keeping a finite ratio K/N . This is in

contrast to [5] which assumes that K remains fixed while N
grows without bound. We will retrieve the results of [5] as a

special case. The large system limit implicitly assumes that

the coherence time of the channel scales linearly with K (to

allow for orthogonal pilot sequences of the UTs in a cell).

However, as we use the asymptotic analysis only as a tool

to provide approximations for finite N,K, this does not pose

any problem. In the remainder of this section, we will derive

approximations γ̄jm of the SINR γjm for both BF and RZF,

such that

γjm − γ̄jm −→ 0. (14)

Since the logarithm is a continuous function, (14) implies that

Rjm − log2 (1 + γ̄jm) −→ 0. (15)

The results must be understood in the way that, for each

given set of system parameters (N,K), we provide a SINR

approximation γ̄jm which becomes increasingly tight as N
and K grow. As we will show in Section V by simulations,

the approximations are very tight even for realistic system

dimensions and hence of practical value. Having explicitly

computable approximations of achievable rates allows one to

compare the impact of different system parameters (antenna

correlation, path loss, precoding vectors, etc.) without the need

for lengthy Monte Carlo simulations. Our analysis circumvents

the problem of computing the expectations in (11) explicitly

by providing asymptotic approximations of all terms which

are tight in the large system limit. As a nice by-product, our

asymptotic SINR approximations are also valid for the case

where each UT knows the channels ĥjlk and even for the case

of perfect CSI.

In the sequel, the notation “N → ∞” denotes K,N → ∞
such that lim supK/N < ∞. Moreover, we assume that the

following conditions hold ∀ j, l, k:

A 1: lim supN‖Rjlk‖ < ∞, lim infN
1
N trRjlk > 0.

Our first result provides an asymptotic approximation γ̄BF
jm

of the SINR with BF γBF
jm:

Theorem 1 (Eigenbeamforming):

γBF
jm − γ̄BF

jm −−−−→
N→∞

0

where γ̄BF
jm is defined as in (16) (top of the next page) and

λ̄j =

(

1

K

K
∑

k=1

1

N
trΦjjk

)−1

, 1 ≤ j ≤ L.

By letting K/N → 0, we obtain the following corollary

which provides the ultimately achievable SINR with infinitely

many antennas:

Corollary 1 (BF with an unlimited number of antennas):

γ̄BF
jm −−−−−−−−−−→

N→∞, K/N→0

λ̄∞
j β2

jjm
∑

l 6=j λ̄
∞
l |βljm|2

where βljk = limN
1
N trΦljk, whenever the limit exists, and

λ̄∞
j =

(

1
K

∑K
k=1 βjjk

)−1

.

Remark 4.1: If the UTs are identically distributed in each

cell, the power normalization factors λ̄∞
j are equal and our

result coincides with [5].

Next we provide an asymptotically tight approximation γ̄RZF
jm

of the SINR under RZF γRZF
jm :

Theorem 2 (Regularized Zero-Forcing):

γRZF
jm − γ̄RZF

jm −−−−→
N→∞

0

where γ̄RZF
jm is defined as in (17) (top of the next page) and

λ̄l =
K

N

(

1

N
trTl −

1

N
tr

(

Fj

N
+ αIN

)

T̄′
l

)−1

ϑljm =
1

N
trΦljmTl

ϑ′
ljmk =

1

N
trΦljmT′

lk

µljmk =
1

N
trRljmT′

lk

−
2Re

(

ϑ∗
ljmϑ′

ljmk

)

(1 + δlm)− |ϑljm|2 δ′lmk

(1 + δlm)
2

and where

• Tl = T(α) and δl = [δl1 · · · δlK ]T = δ(α) are given by

Theorem 3 for S = Fj/N , D = IN and Rk = Φllk ∀k,

• T̄′
l = T′(α) is given by Theorem 4 for S = Fj/N ,

Θ = IN , D = IN and Rk = Φllk ∀k,

• T′
lk = T′(α), δ′lk = [δ′l1k · · · δ′lKk]

T
= δ

′(α) are given

by Theorem 4 for S = Fj/N , Θ = Φllk, D = IN and

Rk = Φllk ∀k.

Theorems 3 and 4 can be found in the Appendix.

Remark 4.2: The expression of γ̄RZF
jm can be significantly

simplified under a less general channel model, e.g., no antenna

correlation, Wyner-type models with a simple path loss factor,

no estimation noise (ρτ → ∞). Due to the page restriction,

we only provide the most general form.

For an infinitely large number of antennas per UT, we get

the following SINR with RZF:



γ̄BF
jm =

λ̄j

(

1
N trΦjjm

)2

1
Nρ + 1

N

∑

l,k λ̄l
1
N trRljmΦllk +

∑

l 6=j λ̄j

∣

∣

1
N trΦljm

∣

∣

2 (16)

γ̄RZF
jm =

λ̄jδ
2
jm

1
Nρ (1 + δjm)

2
+ 1

N

∑

l,k λ̄l

(

1+δjm
1+δlk

)2

µljmk +
∑

l 6=j λ̄l

(

1+δjm
1+δlm

)2

|ϑljm|2
(17)
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Fig. 1. 7–cell hexagonal system layout. The distance between two adjacent
cells is normalized to 2. There are K = 10 UTs uniformly distributed on a
circle of radius 2/3 around each BS.

Corollary 2 (RZF with an unlimited number of antennas):

γ̄RZF
jm −−−−−−−−−−→

N→∞, K/N→0

λ̄∞
j β2

jjm

∑

l 6=j

(

α+βjjm

α+βllm

)2

λ̄∞
l |βljm|2

where βljk = limN
1
N trΦljk, whenever the limit exists, and

λ̄∞
j =

(

1
K

∑K
k=1

βjjk

(α+βjjk)
2

)−1

.

Remark 4.3: Even for λ̄∞
j = λ̄∞

k ∀k, the SINR under

RZF and BF with an unlimited number of antennas are

not necessarily identical (cf. Corollary 1). This is because

the received interference power depends on the correlation

matrices Φllm of the UTs in the neighboring cells. This is

in contrast to the uplink [12] where the matched filter and the

MMSE detector have the same asymptotic performance.

V. NUMERICAL EXAMPLES

In order to validate the accuracy of the asymptotic rate

approximations for finite N,K, we consider an hexagonal

system with L = 7 cells as shown in Fig. 1. The inner cell

radius is normalized to one and we assume a distance-based

path loss model with path loss exponent β = 3.7. To allow

for reproducibility of our results, we distribute K = 10 UTs

uniformly on a circle of radius 2/3 around each BS and do

not consider shadowing. We further assume a training SNR

ρτ = 6 dB and transmit SNR ρ = 10 dB. For RZF, we use a

regularization factor α = 1/ρ and Fj = 0 (this is similar to
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0

2

4

6
RZF

BF

Number of antennas N

A
v
er

ag
e

ra
te

p
er

U
T

(b
it

s/
s/

H
z)

No Correlation

Physical Model

Simulation

Fig. 2. Average per-user rate versus number of antennas N for the RZF and
BF precoders. Solid and dashed lines depict the asymptotic approximations,
markers the simulation results.

MMSE precoding). Average rates are then calculated for the

UTs in the center cell.

First, we consider a simple channel model without antenna

correlation, i.e., R̃jlk = d
−β/2
jlk IN , where djlk is the distance

between BS j and the kth UTs in cell l (cf. (4)). For

an unlimited number of antennas, BF achieves an ultimate

rate of 7.2 bits/s/Hz while RZF achieves 7.08 bits/s/Hz. In

Fig. 2, we show the achievable rates under both precoding

techniques and their approximations by Theorems 1 and 2 as

a function of the number of antennas N . Both results match

very well, even for small N . We can observe that RZF achieves

significant performance gains over BF as it reduces multiuser

interference. In the present setting, RZF allows us to reduce

the number of antennas roughly by a factor 4 to achieve BF-

performance. Nevertheless, even for N = 400 both precoders

are far away from their ultimate performance limits.

Next, we consider a physical channel model with a fixed

number of dimensions P as in [9]. For a uniform linear

array, the matrices R̃jlk = d
−β/2
jlk [A 0N×N−P ], where A =

[a(φ1) · · · a(φP )] ∈ C
N×P

is composed of the “steering

vectors” a(φ) ∈ C
N

defined as (i =
√
−1)

a(φ) =
1√
P

[

1, e−i2πc sin(φ), . . . , e−i2πc(N−1) sin(φ)
]T

(18)



where c is the antenna spacing in multiples of the wavelength

and φp = −π/2+(p−1)π/P, p = 1, . . . , P , are the uniformly

distributed angles of transmission. We assume that the physical

dimensions P scale with the number of antennas as P = N/2
and c = 0.3. Since 1

N trAAH = 1, the ultimately achievable

rates under this channel model are equal to those of the channel

model without antenna correlation. For comparison, we depict

in Fig. 2 also the achievable rates and their approximations

for this channel model. Interestingly, while the shapes of

the curves for both precoders are similar to those without

antenna correlation, it becomes clear that a lower rank of the

correlation matrices (or fewer channel degrees of freedom)

severely degrades the performance.

VI. CONCLUSIONS

We have studied the downlink performance of linear pre-

coders in multicell multiuser TDD systems with a large num-

ber of BS antennas. Assuming a large system limit, we have

derived approximations of achievable rates for BF and RZF,

which are shown to be tight for realistic system dimensions.

Our results indicate that with RZF, the number of antennas

can be significantly reduced to achieve the same performance

as the simple BF scheme. Since massive MIMO TDD-systems

are a promising future cellular network architecture, it seems

necessary to verify the theoretical performance predictions by

channel measurements and prototypes.

APPENDIX

Theorem 3 ([16, Theorem 1]): Let D ∈ C
N×N

and S ∈
C

N×N
be Hermitian nonnegative definite matrices and let

H ∈ C
N×K

be a random matrix with columns hk =
1√
N
R

1

2

k uk, where uk ∈ C
N

are random vectors of i.i.d.

elements with zero mean, unit variance and finite 8th order

moment, and Rk ∈ C
N×N

are deterministic covariance

matrices. Assume that D and the matrices Rk, k = 1, . . . ,K,

have uniformly bounded spectral norms (with respect to N ).

Let N,K → ∞, such that lim sup K
N < ∞. Then, for any

ρ > 0,

1

N
trD

(

HHH + S+ ρIN
)−1 − 1

N
trDT(ρ)

a.s.−−→ 0

where T(ρ) ∈ C
N×N

is defined as

T(ρ) =

(

1

N

K
∑

k=1

Rk

1 + δk(ρ)
+ S+ ρIN

)−1

and δ(ρ) = [δ1(ρ) · · · δK(ρ)]
T

is the unique solution to

δk(ρ) =
1

N
trRkT(ρ), k = 1, . . . ,K

satisfying δk(ρ) ≥ 0 ∀k.

Theorem 4: Let Θ ∈ C
N×N

be a Hermitian nonnegative

definite matrix with uniformly bounded spectral norm. Under

the same conditions as in Theorem 3,

1

N
trD

(

HHH + S+ ρIN
)−1

Θ
(

HHH + S+ ρIN
)−1

− 1

N
trDT′(ρ)

a.s.−−→ 0

where T′(ρ) ∈ C
N×N

is defined as

T′(ρ) = T(ρ)ΘT(ρ) +T(ρ)
1

N

K
∑

k=1

Rkδ
′
k(ρ)

(1 + δk(ρ))
2T(ρ)

with T(ρ) and δk(ρ) as defined in Theorem 3 and δ
′(ρ) =

[δ′1(ρ) · · · δ′K(ρ)]
T

given by

δ
′(ρ) = (IK − J(ρ))

−1
v(ρ)

[J(ρ)]kl =
1
N trRkT(ρ)RlT(ρ)

N (1 + δl(ρ))
2

[v(ρ)]k =
1

N
trRkT(ρ)ΘT(ρ)

where J(ρ) ∈ C
K×K

and v(ρ) ∈ C
K

.
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