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Abstract— We consider an example of a second order
nonlinear system with large parametric uncertainties. The two
parameters of the system are assumed to belong to a finite
set. The goal is to guarantee (practical) convergence of the
system output to a given constant reference signal. Feedback
linearization-based candidate controllers with pole placement
are designed for each possible set of parameters. After that,
we consider the design of a high-level logic-based supervisor to
organize switching between these candidate controllers. Three
different approaches are used and compared.

I. PROBLEM FORMULATION

Consider the following second order system in strict-
feedback form, investigated in [2, pp. 76–82] (see also [3]),

ẋ1 = p∗1x
3
1 + p∗2x2, ẋ2 = u, y = x1 − r, (1)

wherex1 andx2 are the state variables,p∗1 andp∗2 are the
unknown parameters,u is the control input,r is the constant
reference, andy is the output error.

For all p∗ = (p∗1, p
∗
2) ∈ P = {−1,−0.9, . . . , 0.9, 1} ×

{−1, 1} ⊂ R2, a dynamic feedback control law needs to
be designed to ensure that the solutions of the closed-loop
system are bounded and for any given toleranceε0 > 0 and
any givenr ∈ R : lim supt→∞ |y(t)| ≤ ε0.

In the next section, for each possible set of parame-
ters we design a candidate controller to ensure acceptable
performance of the closed-loop system, provided the real
parameters are known. Then, we complete the control
design by deriving a high-level system that is responsible for
supervision of switching between the candidate controllers.

II. DESIGN OF CANDIDATE CONTROLLERS

When the parameters are known, the control design could
be carried out using feedback linearization followed by pole
placement. We transform the system into the normal form
by employing the new state variablesy and v = p∗1x

3
1 +

p∗2x2, so thatẏ = v and v̇ = 3p∗1(y + r)2v + p∗2u.
The control law

u = −[ω2y + 2ηωv + 3p∗1(y + r)2v]/p∗2,

whereω > 0 and η > 0 are chosen to ensure acceptable
transient performance, leads to the closed-loop system

ẏ = v, v̇ = −ω2y − 2ηωv. (2)
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Whenp∗ is unknown, we switch between the following42
candidate controllers

u = u(j) = −[ω2y+2ηωv(j)+3p
(j)
1 (y+r)2v(j)]/p

(j)
2 , (3)

wherev(j) = p
(j)
2 x2 + p

(j)
1 (y + r)3, j ∈ J = {1, . . . , 42},

p(j) = (p(j)
1 , p

(j)
2 ) ∈ P, andP =

⋃
j∈J {p(j)}.

Next, we design a supervisor to decide when, and to
which particular controller, to switch.

III. SWITCHING LOGIC DESIGNS

We define below three different ways to organize the
switching. First, we follow the scale-independent hysteresis-
based logic design [3] (extending S.A. Morse’s supervisory
control idea), then the Lyapunov function and HGO-based
one [1], and, finally, combine these two procedures.

A. Scale-independent hysteresis switching

First, we design a multi-estimator [2]. The hardest part
of this approach is to verify that the so-called “ij-injected
system” is strongly detectable with a known gain function.
Second, this gain function is used to define “performance
indices” µ(i), i ∈ J .

Switching is organized as follows. We start with initial
valuej = 1 (u = u(1)) at t = 0 and fort > 0 continuously
check the inequalityµ(j)(t) ≤ (1 + h)mini∈J {µ(i)(t)},
whereh > 0 is a fixed hysteresis constant. As soon as the
inequality fails, we redefinej = argmini∈J {µ(i)(t)} and
switch the candidate controller in the loop tou = u(j).

It was shown in [2] that the solutions of the closed-loop
hybrid system are well-defined, switching has to stop in
finite time (with some valuej = i0 ∈ J and it is possible
but not necessary thati0 = i∗), all signals are bounded, and
limt→∞ |y(t)| = 0.

B. Lyapunov-based controller falsification

An alternative approach to switching was recently pro-
posed by the authors [1] for a class of nonlinear systems that
includes (1) as a special case. For this particular example
there is no need to use continuous sliding mode control as
in [1] and (3) can be used instead.

We need to define the Lyapunov function candidate for
the “perfectly supervised” system. Assumingη > 0.25, let

V (y, v) = ω(1 + η)y2 + yv + v2/ω,

so that along the trajectories of (2)

V̇ = −W = −ω2y2 − (4η − 1)v2.



On the other hand, along the trajectories of (1), (3),

V̇ + W = ω2y2 + 4ηv2 + yv̇ + (2/ω)vv̇ + 2ω(1 + η)vy,

and so the inequalitẏV +W ≤ 0 must be satisfied, provided
the right controller is in the loop (i.e.j = i∗). Furthermore,
if it is satisfied withu = u(j) for somej 6= i∗, then the
output vanishes at least as fast as whenu = u(i∗).

The inequality cannot be checked directly because neither
v = ẏ nor v̇ is available to measure. So we estimate them
using the third-order high-gain observer (HGO)

˙̂z1 = ẑ2+
3(y−ẑ1)

ε
, ˙̂z2 = ẑ3+

3(y−ẑ1)
ε2

, ˙̂z3 =
y−ẑ1

ε3
, (4)

whereε > 0 is a sufficiently small tuning parameter. The
estimates provided by this HGO are close to the derivatives
of y as soon as peaking is over. Therefore, we start with
j = 1 (u = u(1)) at t = 0 and wait for a certain dwell-time
τ > 0 (another sufficiently small parameter to be tuned),
that must be greater then the peaking time. After that, we
continuously check the inequality

ω2y2 +4ηẑ2
2 +yẑ3 +(2/ω)ẑ2ẑ3 +2ω(1+η)ẑ2y ≤ a0, (5)

wherea0 > 0 is a small parameter aimed at dealing with
possible non-vanishing small observation errors. As soon
as the inequality fails, we increase the value ofj by 1 and
switch to the next candidate controller in the loopu = u(j).
The procedure is repeated thereafter.

Following [1], it could be shown that there existsτ̄ such
that for anyτ ∈(0, τ̄) there exists̄ε such that forε∈(0, ε̄)
there are no more then(i∗−1) switchings and all the trajec-
tories of the closed-loop system are bounded, enter in finite
time an invariant set where|y(t)|≤ε0 and stay thereafter.

C. Combined approach

Clearly, it is not hard to invent a combination of the two
logics described above. We will explain why this is a good
idea and show that it does lead to a superior performance.
However, we would like to remark that other combinations
are possible as well.

We start withj = 1 as above and wait for the dwell-time
τ > 0. After that, we continuously check the inequality (5).
Once it fails, we remove the indexj from J and redefine
j = argmini∈J {µ(i)(t)} as in section III-A. New controller
u = u(j) is put in the loop and used for the dwell-time
period and for as long as the inequality is satisfied.

IV. SIMULATION RESULTS

The results forr = 1.0, ω = 1.0 andη = 0.7 are shown
in the figure. For each row, the switching logic described in
section III-A (h = 0.01 andλ = 0.5), in section III-B(τ =
0.03, ε = 0.001, and a0 = 0.01), and in section III-C is
used, correspondingly. We show the system’s regulated state
x1(t) (column 1), the generated control inputu(t) (column
2), and the index,j(t), of the controller put in the loop
(column 3).

The figure represents the worst possible case for the
Lyapunov-based logic. Here, the correct controller is the last
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one (i∗ = 42) and this leads to 41 switchings. The scale-
independent hysteresis switching logic, on the contrary, pro-
duces only one switching. Notice, however, that staying too
long with j = 1 results in the worst transient performance
and a control effort that is twice as large. The performance
obtained combining the two approaches is remarkable in
this case. There is only one switching as well and it is to
the correct controller.

Other cases are not shown here due to space limi-
tation. However, we would like to summarize what we
have observed. The Lyapunov-based logic results in many
switchings but produces better transient performance and
smaller control effort than in the case of the one switching
with the hysteresis-based logic. The best performance with
just a few switchings is obtained by combining the two.

V. CONCLUSION

We have considered the design of an output feedback
control law for a second order parametrically uncertain non-
linear system. It was possible to design a high-gain observer
and Lyapunov-based switching regulator, following the idea
recently proposed in [1], as well as a multi-estimator and
scale independent hysteresis logic-based regulator [3]. The
former has the following advantages: lower dynamic order;
the ability to determine quickly whether the wrong regulator
is currently in the loop so that switching is in order; and cal-
culation of the gain function is not needed. The latter has the
ability to determine which regulator is most likely the right
one, independently of which one is currently in the loop.
Therefore, a combination of these two approaches seems to
hold a promise of superior performance. Simulation results
confirm this intuitive idea and suggest the need to determine
the intersection of the classes of nonlinear systems studied
in [3] and [1].
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