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ABSTRACT: 

 

This study compares four machine-learning algorithms comprising of Classification And Regression Trees (CART), Random Forest 

(RF), Gradient Tree Boosting (GTB) and Support Vector Machine (SVM) for the classification of urban land-use and land-cover 

(LULC) features. Using multitemporal and multisensor Landsat data from 1984-2020 at 5-year intervals for the Greater Gaborone 

Planning Area (GGPA) in Botswana, the aim of the study is to determine the performance of the classifiers in the extraction of 

different urban LULC features as built-up, bare-soil, water, grass, shrubs and forest. The results show that for mapping built-up 

areas, RF and SVM presented the best results with overall accuracy of 85%. Bare soil is best mapped using RF and CART with 

accuracy of up to 98%, while SVM and GTB were most suitable for mapping water bodies. The suitable classifiers for mapping the 

vegetation classes were RF for grass (94.5%), SVM for shrubland (81.5%) and GTB for forest (84.3%). In terms of class specific 

accuracy, RF achieved the highest performance with average overall accuracy (OA) of 95.9%, SVM (95.8%), GTB (95.6%) and 

CART (95.1%). The same performance pattern was observed from the F1-score, True Positive Rate (TPR), False Positive Rate 

(FPR) and Area under ROC curve (AUC) metrices for the class classification accuracies. The overall accuracy for the eight-epoch 

years were RF (87.8%), SVM (87.5%), GTB (86.4%) and CART (85.3%). To improve on the urban LULC mapping, the study 

proposes the post-classification feature fusion of the best classifier results. 

 

 

 
 Corresponding Author 

1. INTRODUCTION 

The accurate extraction of land-use and land-cover (LULC) 

information in urban environments is important in the provision 

of the critical input for environmental planning and ecological 

management (Fan et al., 2007). For urban LULC mapping and 

change detection, remote sensing data provides the optimal 

spatial and temporal data sources. However, the extraction of 

urban LULC features is often a challenging task due to the high 

degree of interactions and complexities within the urban LULC 

classes or features in terms of their spectral, spatial and textural 

properties (Ouma and Tateishi, 2008; Blaschke et al., 2014). 

Due to these factors, the applications of traditional pixel-based 

classification approaches in urban LULC mapping often leads to 

unsatisfactory results (Johnson and Xie 2013).  

To overcome the drawbacks in pixel-wise classifications, 

Blaschke et al. (2014) proposed the Geographic Object-Based 

Image Analysis (GEOBIA) focusing on the segmentation of 

very high-spatial resolution (VHR) image data. Through 

GEOBIA segmentation, pixels are grouped into similar and 

semantically independent image segments or objects for feature 

extraction and classification. However, the GEOBIA approach 

only performs well only in VHR image data (Johnson and Xie 

2013).  

At medium-resolution and low-resolution image data, methods 

comprising of unsupervised algorithms, parametric supervised 

and machine learning methods have been proposed for LULC 

mapping (Orieschnig et al., 2021). Amongst others, the 

supervised classifiers comprise of maximum likelihood 

classifier, Mahalanobis distance, k-Nearest Neighbors (kNN), 

Support Vector Machine (SVM), Random Forest (RF), Decision 

Trees (DT), Spectral Angle Mapper (SAM), fuzzy logic, fuzzy 

Adaptive Resonance Theory-Supervised Predictive Mapping 

(Fuzzy-ARTMAP), Radial Basis Function (RBF), Artificial 

Neural Networks (ANN), Naive Bayes (NB), etc (Shih et al., 

2019). The unsupervised classifiers include among other 

methods: fuzzy c-means, k-means algorithm, Affinity 

Propagation clustering algorithm, ISODATA techniques 

(Maxwell et al., 2018).  

In particular, the application of machine leaning (ML) 

algorithms for LULC mapping have recently attracted 

considerable research interests. This is mainly because machine 

learning algorithms do not require hypotheses on the input data 

distribution and tend to yield better results than the traditional 

parametric classifiers (Johnson and Xie 2013). Different ML 

algorithms have been used for LULC mapping and modelling 

(e.g., Talukdar et al., 2020) and have also been compared (e.g., 

Camargo et al., 2019). However, each machine learning 

algorithm will yield different accuracy levels for specific case 

study and data and more so for specific LULC class or feature. 

Further, in addition to the quality and quantity of the imagery, 

the choice of the suitable machine learning classifier is still a 

challenge as the classifier and its implementation and 

hyperparametrization may influence the LULC mapping results 

and so will the temporal variabilities and sensor characteristics 

(Nichols et al., 2019).  

For urban LULC classification, different studies have compared 

different machine leaning classifiers for their accuracy, but not 

necessarily in terms of their mathematical and functional 

approach and for the extraction of specific classes within a 

scene (Camargo et al., 2019). For example, Ghosh and Joshi 

(2014), in classifying urban landscapes using Landsat data, 

indicated that SVM and RF produced similar classification 
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results. Khatami et al. (2016) also found that SVM, RF and 

kNN outperformed the traditional supervised classifiers. 

Pouteau et al. (2011) compared RF, SVM, kNN, Naïve Bayes, 

C4.5 and Boosted Regression Tree for different datasets and 

concluded that kNN performed better for the classification of 

urban LULC from Landat-7 ETM+ data for different Landsat 

sites. Further, Heydari and Mountrakis (2018) compared five 

ML classification algorithms: SVM, kNN, Naïve Bayesian, Tree 

ensemble and artificial Neural Networks (ANN), with the 

conclusion that SVM and kNN were the best classifiers in the 

classification of Landsat data. From the review, RF, SVM and 

ANN models have been reported to provide higher overall 

accuracy in LULC modelling as compared to the traditional 

classification techniques (Carranza-García et al., 2019). The 

nonparametric ML algorithms are considered superior as they 

do not relay on a priori hypotheses of the input data distribution 

(Nery et al., 2016). However, results from different case studies 

have demonstrated that the performance of a given ML 

classifier is not only specific to the case study, but also 

influenced by the setup of the ML model and the quality of the 

training data. 

Further, while several studies have been conducted on urban 

LULC mapping using machine algorithms (Dutta et al., 2019), 

the performance of the models cannot be replicated from one 

case study to another, and most studies do not focus on 

classifier-class performance rather the emphasis is on the 

overall LULC classification accuracy. Secondly most of the 

studies are based on single-date imagery and not on the 

multitemporal imagery with varied sensor characteristics. 

Besides, previous studies have also pointed out that the 

performance of the ML classifiers in LULC classification are 

affected by the limitations in the spectral and spatial resolutions 

of the sensors especially at medium- and low-resolutions (Pal 

and Talukdar et al., 2018).  

With focus on the open-source solutions, this study evaluates 

the performs of CART, RF, gradient decision tree boosting 

(GTB) as decision-tree based machine learning classifiers, with 

SVM classifier as the benchmark ML classifier implemented in 

the Google Earth Engine (GEE) platform. ANN was not 

compared in the current study as its implementation requires 

external model training on the TensorFlow platform (Abadi et 

al., 2016), which requires additional cost-based components of 

Google Cloud. Thus SVM is considered for comparison in the 

current study as its results have been comparable to ANN 

(Carranza-García et al., 2019). 

For the mapping of built-up, water, grass, shrubs, forest and 

bare-soil urban LULC classes, the objectives of this study are: 

(1) to implement decision-tree based CART and ensemble RF 

and GTB classifiers and compare the results with SVM for 

urban LULC mapping from multitemporal and multisensor 

Landsat data from 1984 to 2020 at 5-year intervals, and (2) to 

evaluate the performance of the classifiers for different urban 

LULC classes at different temporal intervals from multisensor 

Landsat. Using medium-spatial resolution data, the main 

contribution of the current study is in the determination of the 

suitability of decision-tree based and SVM machine learning 

classifiers in the extraction in individual urban LULC classes 

from multisensor and multitemporal image data.  

2. STUDY AREA AND DATA 

2.1 Study area 

The GGPA is located between 20 30S and 24 45S and 25 

50E and 26 12E (Figure 1) and occupies an area of  961.73 

km2. Within the commuting radius of the Gaborone city, a 

dormitory of suburbs are rapidly developing which are mostly 

characterized by centripetal movement of rural–urban 

migrations. 

 

Figure 1. Location of study area and RGB image of the Greater 

Gaborone Planning Area (GGPA) in Botswana. 

 

2.2 Data 

Multitemporal Landsat data from Landsat 4 (L4-MSS), (Landsat 

5 (L5-TM), Landsat 7 (L7-ETM+) and Landsat 8 (L8 OLI) 

acquired between 1984-2020 were acquired for the study area at 

5-year temporal intervals. The study utilized the blue, green, 

red, NIR, SWIR1 and SWIR2 multispectral imagery as 

available for the respective study years from the USGS data 

portal (https://earthexplorer.usgs.gov/). The multitemporal and 

multisensor Landsat imagery were atmospherically corrected 

using the ATCOR2 tool and histogram equalization in ERDAS 

Imagine. The timeseries Landsat bands were mosaiced, 

composited, resampled to 30 m resolution, and clipped to the 

study area.  

The urban LULC classes comprised of built-up (residential, 

commercial, industrial and impervious surfaces); bare-land (soil 

cover), water, and vegetation cover (grass, shrubs and forest). 

Figure 2 presents the spectral reflectance trend for the six urban 

LULC classes in the Landsat’s visible, NIR and SWIR bands. 

The training and testing data samples were collected from visual 

identification and interpretations from the Landsat imagery, 

Google Earth high-resolution imagery and the historical LULC 

maps and based on the size and homogeneity of the study area. 

For each year, the training samples were collected in polygons 

with each polygon comprising of 50 pixels. For all the LULC 

classes except water, 120 polygons were used for training and 

50 polygons for validation of the results. For the water class, 

due to its being smaller in size, the training and validation 

comprised of 70 and 30 polygons respectively.  

 

Figure 2. Spectral profiles for urban LULC classes based on the 

Landsat sensors.  
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3. METHODS 

3.1 Methods 

Decision-tree based machine learning classifiers have been 

considered among the best classifiers. To increase their 

accuracy, the combination of decision-trees, ensembles, have 

been preferred. Random forests and boosting are among two 

strategies for combining decision trees. This section presents a 

brief background to the CART decision-tree, RF and GTB 

ensemble DTs and SVM machine learning algorithms.  

 

3.1.1 Classification and Regression Trees (CART): CART 

is a typical decision-tree (DT) model which explores the 

structure of data, while evolving to visualize decision rules for 

predicting a categorical (classification tree) or continuous 

(regression tree) outcome. The decision at each internal node 

(Figure 3), is assessed by information gain or entropy to 

compare the value of attributes in the data from the root to each 

of the leaves. The nodes of a DT tree have multiple levels with 

the top node as the root node. Depending on the test outcome, 

the classification algorithm branches towards the appropriate 

child node where the process of test and branching repeats until 

it reaches the leaf node. Figure 3 shows the classification tree 

structure for sample three class labels, two predictors within a 

rectangular partition feature space X. At the intermediate node, 

a classification goes to the left child if and only if the condition 

is satisfied. The leaf or terminal nodes correspond to the 

decision outcomes or the predicted class. CART has several 

advantages as simplicity in interpretation, fast to execute and 

shows better accuracy for image classification. However, the 

algorithm suffers from overfitting in the decision-tree. CART 

can also create over-complex trees which cannot generalize the 

data well. Because of their low variance and high predictive 

accuracy, in many domains the use of CART has largely been 

supplanted by resampling (“ensemble”) methods that address 

CART’s potential instability by averaging the results of many 

trees. 

 

 

Figure 3. CART: partitions (left) and decision-tree structure 

(right) for a classification tree model with three classes c1, c2 

and c3.  

3.1.2   Random Forest (RF): RF are an ensemble of k 

untrained decision trees with only a root node and M bootstrap 

samples. In its implementation, different parts of the training 

datasets are used to train the different DTs (Figure 4). For the 

classification of a new sample, the input vector of the sample is 

required to pass down with each DT of the forest. Each DT then 

considers a different part of that input vector and gives a 

classification outcome. The forest then chooses the 

classification of having the most ‘votes’ (for discrete 

classification outcome) or the average of all trees in the forest 

(for numeric classification outcome). To reduce the correlation 

between the estimators, RF are trained using a variant of the 

random subspace method, which is a method of training 

multiple RF models by randomly sampling the initial feature 

space. Since the RF algorithm considers the outcomes from 

many different DTs, it can reduce the variance resulting from 

the consideration of a single DT for the same dataset 

The advantage of RF is that it can produce stable, robust and 

accurate results even with minimal tuning of the 

hyperparameters. The algorithm is easy to parameterize, 

insensitive to overfitting and deals with outliers in training data, 

reporting the classification error and variable significance. 

Further, RF is able to process multidimensional features from 

both continuous and categorical datasets. The biggest 

disadvantage of random forests is that the analysis, which 

aggregates over the results of many bootstrap trees, does not 

produce a single, easily interpretable tree diagram. Deep DTs 

can cause overfitting of the training data, resulting into the 

variation in the classification outcome for any small change in 

the input training data. The This implies the DTs are sensitive to 

the training data, which makes them error-prone to the test 

dataset. 

 

Figure 4. Classification concept based on RF ensemble. 

 

3.1.3   Gradient Tree Decision Boosting (GTB): The 

algorithm attains its classification accuracy by the iterative 

combination of weak learner ensembles into stronger ensemble 

of trees through stepwise minimization of the loss function 

based on the gradient descent optimization (Friedman 2002). 

GTB like RF, aggregates an ensemble of decision trees (Figure 

5). GTB however confines individual trees to a weaker 

prediction model hence limiting the complexity of the decision 

trees. As shown in Figure 5, the model constructed by weaker 

prediction Fm can be modified to become stronger by adding 

new tree (Fm+1). In the next iteration step a new model Fm+1 is 

constructed using m+1 trees and it corrects its predecessor Fm. 

Fm+1 is then boosted to model Fm+2 in next iteration step and the 

consecutive error correction ultimately leads to a model 

providing the most accurate classification. 
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Figure 5. Visualizing gradient tree decision boosting. 

The difference between GTB and other ensemble learning 

algorithms, is that it fits the residual of the regression tree at 

each iteration using negative gradient values of loss. GTB 

complements the weak learning DTs, thus improves the ability 

of representation, optimization, and generalization. GTB can 

capture higher-order information, is invariant to scaling of 

sample data and can effectively avoid overfitting by weighting 

combination scheme.  

3.1.4 Support vector machine (SVM): In classifying linear 

and non-linear data, the SVM algorithm first maps the n-feature 

data items into an n-dimensional feature space. An optimal 

decision hyperplane that separates the data items into two 

classes is established such that the marginal distance between 

classes is maximized and the classification errors are 

minimized. The class marginal distance is the distance between 

the decision hyperplane and its nearest instance which is a 

member of that class, and the classification is performed when 

the hyperplane differentiates any two classes by the maximum 

margin as illustrated in Figure 6.  

If x is the input feature vector, w is the weight vector and b is 

the bias, the aim of training in SVM model is to determine the w 

and b so that the hyperplane separates the data and maximizes 

the margin 
2

1/ w . Vectors ix  for which 
iy ( ) 1T

iwx b+ =  will 

be termed support vector. The main advantage of the SVM is in 

the ability to overcome the high dimensionality problem, with a 

high discriminative power for classification. 

 

 

Figure 6: Maximum margin-minimum norm classifier in SVM 

with optimal decision hyperplane for non-separable classes. 

3.2 Performance Evaluation 

From the classification confusion matrix, the Producer 

Accuracy (PA), User Accuracies (UA), True Positive Rate 

(Recall/Sensitivity (TPR)), False Negative Rate (FNR), True 

Negative Rate (Specificity (TNR)) and False Positive Rate 

(FPR) are used to determine the feature extraction accuracies. 

The overall accuracy (OA), Kappa coefficient and F1-score (F-

measure) were used to compare the overall classification 

performances by the machine learning algorithms.  

TP
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TP FN
=

+
  (1) 

FN
FNR

TP FN
=

+
  (2) 

TN
TNR

TN FP
=

+
  (3) 

FP
FPR

TN FP
=

+
  (3) 

1 1

* 2
1 2*

Recall Precision

UA PA
F

UA PA − −
= =

+ +
 (4) 

In addition, the Receiver Operating Characteristic (ROC) curve 

is derived to evaluate the prediction performance based on the 

sensitivity and specificity, and the area under the ROC curve 

(AUC) is also calculated. For statistical significance detection, 

the differences in the classification accuracy between the 

classifiers was evaluated using pairwise z-score test. The z-test 

was applied to the OA results for testing statistical significance 

at a significance level of 5%. If z > 1.96, the test is significant, 

leading to the conclusion that the obtained results from the 

compared classifiers differ from each other. 

 

4. RESULTS 

4.1 PA and UA for urban LULC class mapping  

4.1.1 Urban built-up: Figure 7 shows that the PA values are 

generally higher and more consistent than the UA measures. 

From 1984 to 2020, the average PA measures for the built-up 

areas were determined as: RF had the highest average of 98.5%, 

followed by SVM (96.5%), GTB (96.3%) and lastly CART 

(95.8%).  Considering the UA measure, SVM and RF had the 

highest values of 85.3% and 85% respectively, while CART and 

GTB also had nearly the same UA values of 79.9% and 79.6% 

respectively. The results imply that the average PA was 14.3% 

higher than the average UA, with SVM and RF as the best 

classifiers for mapping urban built-up areas. 

 

  

Figure 7. PA and UA results for urban built-up. 

4.1.2 Bare soil: In mapping the bare-soil cover, all the 

classifiers achieved lower PA as compared to the UA values 

(Figure 8). This could be attributed to the spectral confusion of 

bare-soil with the impervious surfaces including buildings and 

roads. For mapping bare-soil, RF attained average PA of 87.8% 

which was 1.5%, 3.5% and 6.3% respectively higher than SVM, 

GTB and CART. The UA for bare soil was highest for RF 

(98.4%), followed by CART (98%), SVM (96.5%) and GTB 

(95.3%). From the UA results, bare-soil within urban areas can 

be accurately mapped using RF and CART classifiers.  
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Figure 8. PA and UA results for mapping of bare-soils. 

4.1.3 Water: The water bodies were classified with a 

consistently higher average PA accuracy of 95.4% using RF 

(Figure 9). From the PA accuracy results in the extraction of 

water bodies, GTB performed better than CART and SVM by 

2.5%, whose performances were averagely equal at 89%. 

According to UA measures, results depict SVM (99.6%) and 

GTB (98.6%) as having stable and higher accuracies compared 

to RF (97%) and CART (96.4%). Thus, for mapping of water 

bodies within urban areas the UA results shows that SVM is the 

most suitable machine learning classifier. Comparatively, the 

UA results are observed to be more consistent and higher with 

time and sensor.  

  

Figure 9: PA and UA results for water body mapping. 

4.1.4 Vegetation classes: The results for the mapping of the 

vegetation classes (grass, shrubland and forest cover) are 

presented in Figure 10. Grass was mapped with the highest PA 

average of 88% and UA of 92.3%. For the mapping of grass 

within the urban scene, CART represented the highest PA of 

91% while RF had the highest UA of 94.5%. This implies that 

in reference to ground truth, RF is considered as the most 

suitable classifier for the extraction of grass cover within the 

case study area.  

Shrubland and forest cover were respectively mapped with 

average PA of 80.5% and 82.1%. The corresponding UA were 

80.2% and 83.2%. For mapping of shrublands, SVM 

consistently had the highest average PA (83.8%) and UA 

(81.5%). To map forest cover within the urban environment, the 

results in Figure 10 shows that RF had the highest PA (83.3%) 

while GTB had the highest UA (84.3%). Compared in terms of 

the UA measures, RF was the most suitable for the extraction of 

grass, SVM was the most optimal for mapping shrubland while 

GTB was more suitable for detecting forest cover. 

 

  

  

  

Figure 10. PA and UA results for vegetation classes. 

For the six classes, urban built-up was mapped with highest 

average PA (96.8%), water (91.3%), grass (88%), bare-soil 

(84.4%), forest (82.1%) and shrubs (80.5%). However, 

measured using the average UA the results were: water (97.9%), 

bare-soil (97.0%), grass (92.3%), dense forest (83.2%), built-up 

(82.4), and shrubs (80.3%). The lowest average PA (77.5%) and 

lowest average UA (78.5%) were obtained using CART for the 

classification of shrubs. The average highest UA of 99.6% was 

achieved using SVM in the classification of water, whereas the 

highest average PA (98.5%) was from RF in the classification 

of urban built-up areas.  

The results from the PA and UA analysis shows that the 

mapping of urban LULC classes and the performance of the 

classifiers are influenced by the sensor spectral resolution and 

time of image acquisition as characterized by the atmospheric 

conditions. The PA and UA metrices are further analyzed in 

terms of overall accuracy (OA), F1-score, TPR, FPR and the 

AUC.  

4.2 Class classification metrics results 

Table 1 presents the average metrics in terms of OA, F1-score, 

TPR, FPR and AUC measures for each class. For classification 

of built-up area, RF had the highest OA (96.4%) which was 

comparable to SVM at 96.2%, and the same trend was observed 

for the F1-score, TPR and the AUC values. However, CART, 

performing at equal OA as GTB, had the least FPR compared to 

all the classifiers in mapping the built-up areas (Table 1). RF 

mapped water bodies with the highest OA, F1-score, TPR and 

AUC scores for the study period. However, GTB outperformed 

all the classifiers.   

The vegetation classes were mapped with relatively lower 

accuracy as compared to the other urban LULC classes. The 

results show that RF is the best classifier for mapping grass, 

SVM being the most suitable for mapping shrubland and GTB 

the most suitable for mapping forest cover. RF is recorded to be 

best classifier for detecting bare-soil at 97.5%, which is 1.5% 

more than the least accuracy from CART. For the overall 

average mapping of the LULC classes in Table 1, RF achieved 

the highest performance with OA of 95.9%, SVM (95.8%), 

GTB (95.6%) and CART (95.1%). The same performance 

pattern was observed from the overall average F1-score, TPR 

and AUC except for the FPR where CART tended to have lower 

FPR values compared to the better performing classifiers per 

LULC class. 
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Table 1. All-years average LULC class classification accuracy 

metrics. 

4.3 Overall urban LULC mapping accuracy 

Computed from the confusion matrix, the overall accuracy 

results are presented in Figure 11, indicating that for all the 

years and classes, RF performed better than all the classifiers 

with average OA of 87.8%. It is however observed that only 

SVM marginally outperformed RF in 1990,1995 and 2000. 

Despite the average OA for SVM being close to RF at 87.5%, 

the performance of RF is considered better than SVM, first 

based on the class accuracy metrices presented above, and the 

fact that the performance of RF is more stable across the classes 

and the different Landsat sensors as compared to SVM which 

exhibited non-uniform performances in the different years. With 

the most consistent performance across the years and data, GTB 

was the third best classifier with average OA of 86.4% and the 

least performing classifier is CART with 85.3%. Apart from the 

marginally lower performance of CART as compared to GTB in 

1990 and 1995, both GTB and CART classifiers exhibited fairly 

stable performance across the years and the sensors as 

compared to SVM. 

 

 

Figure 11. Average overall accuracy performance of the 

classifiers. 

 

The results for the Kappa coefficient values describing the 

combined patterns of the yearly PA and UA are presented in 

Table 2. The least Kappa coefficient was observed in 1984 same 

as in the OA results in Figure 11 and this is attributed to the low 

spectral resolution in the MSS sensor with fewer spectral bands 

leading to spectral overlaps among the spectral classes. The 

2020 results were slightly better than those of 1984, however 

lower than the rest of the years for Landsat TM and ETM+. This 

can be attributed to the narrower bandwidths in the L8-OLI as 

compared to Landsat TM and ETM+. Overall RF and SVM 

achieved equal average Kappa index accuracy of 0.85, while 

GTB and CART respectively achieved average Kappa indices 

of 0.84 and 0.82. The OA, Kappa coefficient and F1-score 

analyses show that the RF has the highest accuracy of all 

classifiers applied in this study. 

 

 

Table 2. Average Kappa coefficients for the classifiers per year. 

4.4 z-score comparison of the classifiers 

The results for the inter-comparison of the significance of the 

machine learning classifiers using the pairwise z-score test, such 

that z-score >1.96 is considered statistically different at 5% 

level of significance is presented in Table 3. The results shows 

that there is no significant difference between the classifiers in 

terms of the overall accuracy of performance. The notable 

significant difference is between CART and RF with a z-score 

>1 and p-value=0.093. The least observed difference is between 

RF and SVM at p-value=0.437.  

 

Table 3. z-scores and p-values for classifier model pairs. 

4.5 ROC for model performance evaluation 

The area under ROC for all the prediction models is 

summarized in Table 1 and Figure 12. The ROC also indirectly 

indicates the differences in the optimal hyperparameters as set 

in the respective machine learning models. On average for all 

the classes, the RF model had the highest area under ROC curve 

among all prediction models. In Figure 12, RF depicts higher 

average AUC of 0.910, which is 0.057, 0.064 and 0.071 

respectively higher than SVM, GTB and CART classifiers in 

mapping the urban LULC classes. The results in Figure 12 are 

the average results after tuning the classifier parameters to yield 

the best results for a given year and for the urban LULC classes.  

5. DISCUSSIONS 

As adopted in previous studies, for example in Sun et al. (2020), 

the current study utilized User’s Accuracy, Producer’s 

Accuracy, OA, Kappa coefficient and F1-score to evaluate the 

accuracy of the classifiers. In addition, AUC, TPR and FPR 

were also used to compare the LULC mapping results. The 

results from Landsat MSS and OLI sensors are observed to be 

lower than from TM and ETM+ by at least 5% in overall 
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accuracy. This, for the mapping of urban LULC features, are 

related to the low spectral resolution in Landsat-MSS sensor 

and to the narrower spectral bandwidths in the Landsat-OLI 

sensor as compared to the Landsat-TM and -ETM+ sensors. The 

overall results show that the maximum accuracy measured by 

the accuracy metrices is in the case of the RF classifier 

(OA=87.8% and Kappa=0.852) which is comparable to the 

SVM classifier results (OA=87.5% and Kappa=0.849). The 

noted difference between RF and SVM is that the performance 

of RF is more stable for all the years and not significantly 

influenced by the spectral and radiometric differences in the 

Landsat sensors. The stability of the RF classifier has been 

reported to be based on its increased number of trees, as well as 

the bagging and random concepts resulting into its efficiency 

and precision (Talukdar et al., 2020).  

 

Figure 12. Average ROC curves for the classifiers. 

GTB with OA=86.4% and Kappa=0.836, and CART with 

OA=85.3% and Kappa=0.822 presented the least performances 

compared to RF and SVM. However, both classifiers were 

stable in performance with minimal variability in the 

multitemporal classification accuracy. The lower performance 

by CART has been attributed to the decision trees being too 

sensitive to small changes in the training datasets and tends to 

overfit the model (Prasad et al., 2006). The results of the current 

study also point to the fact that CART is sensitive to variable 

input data which is attributed to the classifier having a single 

threshold for defining a node for splitting data into subsets. 

Based on its extended feature set (Georganos et al., 2018), GTB 

results were observed to be more stable with sensor and time, 

and exhibited the same performance trend as RF. 

The superior performances of RF and SVM have also been 

attributed to the fact that the classifiers tend to be tolerant to 

noise (Breiman et al., 2001) and are significantly more robust 

towards both random and systematic noise of training data 

(Pelletier et al., 2017; Camargo et al., 2019). SVM performance 

was most effected by the radiometric and spectral resolution 

differences of the sensors as it recorded both the least and 

highest accuracy metrics results respectively in 2000 and 2005. 

This implies that the SVM requires continuous readjustment of 

the kernel function to minimize the classification errors 

(Pelletier et al., 2017). The performance of the classifiers are 

influenced by not only the data and case study, but also by the 

functionalities of the machine learning model. For example, 

simple decision-trees based classifiers like CART are not only 

sensitive to changes in the training datasets but also tend to 

overfit the model (Prasad et al., 2006). SVM on the other hand 

is effective in high dimensional spaces and performs adequately 

in situations where a clear margin of separation exists between 

classes and is computationally efficient. However, it requires a 

long training time for large datasets and is not intuitive, easy to 

understand or fine-tune (Huang et al., 2002). 

Figure 13 presents a visual comparison of the results of the 

classifiers for the different classes in 2020 in relation to the 

ground-truth reference imagery from Google Earth. It is 

observed that all the classifiers mapped the correct shape and 

structural patterns for the different classes. SVM tended to 

underestimate the built-up areas, while GTB classified some 

urban areas as bare soils. RF and CART mapped the urban area 

with nearly the same degree of compactness. In mapping water 

bodies, RF and SVM were able to differentiate the land-water 

interfaces better than the other classifiers which tended to map 

the bare soils around the water bodies as built-up areas. RF 

detected the shape of the dam water body more accurately. 

Finally for the vegetation cover in 2020, it is observed in Figure 

13 that RF and GTB mapped the forest and bare soil areas with 

the same degree of compactness, while SVM and CART tended 

to map the forest area as mixed with shrubs. The visual 

inspection results shows that the classifiers tend to have closely 

related results in terms of shape, however with different areal 

coverages.  

 

Figure 13. Image based ground-truth comparison of classification results for different LULC classes and at different locations within 

the study area for 2020.  

Several studies have reported that for the same data and year of 

study, the performance of different classifiers in mapping of 

different LULC classes are not the same (Abadi et al., 2016). In 

the current study, this variation is also observed in the results 
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for the compared classifiers and the six urban LULC classes. 

Though not presented in this evaluation, it is also observed that 

the surface areas under each LULC class from a given classifier 

do not match each other. This is despite the fact that the 

classifier hyperparameters are tuned to yield the best results for 

the same study year. Deng et al. (2008) further reported that the 

LULC class areas also varied in the different Landsat sensor 

satellite data, and attributed this to the atmospheric, illumination 

and geometric variations. The observed differences are therefore 

attributed to the differences in the individual model parameter 

settings and classifier model functional approach (Talukdar et 

al., 2020). The differences in the accuracies have also been 

attributed to differences in the methods, time and space 

(Rodriguez-Galiano and Chica-Rivas, 2014). 

Despite the observed marginal differences in the classification 

results, the study showed that the accuracies of the classifiers 

were similar at 5% level of significance. Hackman et al. (2017) 

argued that the advanced classification machine learning 

algorithms may not always have advantages when they were 

applied to process multispectral image data, and therefore focus 

should be on the abilities of the classifiers to extract specific 

LULC classes. With overall accuracies at less than 90% for all 

the classifiers, the study found that the high degrees of urban 

LULC interactions and mixing influences the classification 

results as the training classes consists of fractions of noise or 

impure pixels (Su et al., 2020).  

To increase the overall accuracy of urban LULC mapping using 

the ML methods, focus should be on extraction of individual 

features and their post-classification feature fusion with the 

proposed multi-feature fusion concept depicted in Figure 14 and 

the ML-fused results compared in Figure 13. The multi-feature 

fusion is based on the concept of feature in-feature out (FEI-

FEO) fusion where the extracted features are combined under 

mutual exclusivity boundary condition (Durrant-Whyte, 1988). 

The FEI-FEO is such that the most optimal outputs (features) 

from the classifiers represents different parts of the scene and 

are combined to obtain the complete scene global features. The 

fusion strategy results are found to be more accurate with 

compact LULC classes.  

 

 

Figure 14. Multi-feature classification and fusion strategy. 

 

6. CONCLUSIONS 

This study was carried out, first to examine the accuracy of 

CART, RF and GTB and SVM machine classifiers for urban 

LULC mapping from multitemporal and multisensor Landsat 

data from 1984 to 2020 at half-decadal intervals. The results 

showed that for mapping built-up areas, RF and SVM presented 

the highest overall accuracy at above 85%. Bare-soil is best 

mapped using RF and CART with accuracy of 98%. SVM and 

GTB were most suitable for mapping water bodies, while the 

optimal classifiers for extracting the vegetation classes were 

grass (RF at 94.5%), shrubland (SVM at 81.5%) and forest 

(GTB at 84.3%). RF achieved the highest class-based 

performance with average overall accuracy (OA) of 95.9%, 

followed by SVM (95.8%), GTB (95.6%) and finally CART 

(95.1%). The same performance pattern was observed from the 

overall F1-score, True Positive Rate (TPR), Area under ROC 

curve (AUC) and False Positive Rate (FPR) metrices for the 

class specific classification accuracies. In terms of the combined 

average overall accuracy for the eight-epoch years, RF and 

SVM performed at the same level yielding the highest overall 

accuracy OA of 87.8% and 87.5% respectively. GTB and 

CART overall accuracy results were respectively at 86.4% and 

85.3%. The z-score statistic revealed that in terms of the overall 

performance of the classifiers, the results were not statistically 

different. The results of the study shows that the accuracy of 

urban features cannot be generalized and depends on the sensor 

spectral resolutions, and is influenced by the temporal, 

atmospheric, illumination and geometric variations. The 

proposed post-classification feature fusion will increase the 

accuracy of urban LULC mapping especially for multisensor 

and multitemporal data. Further comparisons of the classifiers 

with neural network based models, and their applications in 

different case studies with varied number of training and 

validation data is recommended for future research.  
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