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Abstract

Background: This study aimed to compare one state-of-the-art deep learning method and four classical machine

learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) from 18F-FDG

PET/CT images. Another objective was to compare the discriminative power of the recently popular PET/CT texture

features with the widely used diagnostic features such as tumor size, CT value, SUV, image contrast, and intensity

standard deviation. The four classical machine learning methods included random forests, support vector machines,

adaptive boosting, and artificial neural network. The deep learning method was the convolutional neural networks (CNN).

The five methods were evaluated using 1397 lymph nodes collected from PET/CT images of 168 patients, with

corresponding pathology analysis results as gold standard. The comparison was conducted using 10 times 10-fold cross-

validation based on the criterion of sensitivity, specificity, accuracy (ACC), and area under the ROC curve (AUC). For each

classical method, different input features were compared to select the optimal feature set. Based on the optimal feature

set, the classical methods were compared with CNN, as well as with human doctors from our institute.

Results: For the classical methods, the diagnostic features resulted in 81~85% ACC and 0.87~0.92 AUC, which were

significantly higher than the results of texture features. CNN’s sensitivity, specificity, ACC, and AUC were 84, 88, 86, and

0.91, respectively. There was no significant difference between the results of CNN and the best classical method. The

sensitivity, specificity, and ACC of human doctors were 73, 90, and 82, respectively. All the five machine learning

methods had higher sensitivities but lower specificities than human doctors.

Conclusions: The present study shows that the performance of CNN is not significantly different from the best classical

methods and human doctors for classifying mediastinal lymph node metastasis of NSCLC from PET/CT images. Because

CNN does not need tumor segmentation or feature calculation, it is more convenient and more objective than the

classical methods. However, CNN does not make use of the import diagnostic features, which have been proved more

discriminative than the texture features for classifying small-sized lymph nodes. Therefore, incorporating the diagnostic

features into CNN is a promising direction for future research.
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Background

In recent years, diagnosis of non-small cell lung cancer

(NSCLC) from PET/CT images became a popular

research topic [1–4]. Many studies focused on assessing

the efficacy of 18F-FDG PET/CT for diagnosing medias-

tinal lymph node metastasis [5–12], whereas the judg-

ment of metastasis was mostly based on thresholding

the image features such as maximum short diameter,

maximum standardized uptake value (SUVmax), or mean

standardized uptake value (SUVmean). Due to the limited

number of image features and the simplicity of feature

thresholding strategy, the diagnostic power of PET/CT

might not have been fully explored. According to a

recent summary [13] of the past 10 years for mediastinal

lymph node NSCLC diagnosis using 18F-FDG PET/CT,

the median sensitivity was only 62%, which means a

large portion of metastasis were false-negatively judged.

To improve the diagnosis sensitivity of mediastinal

lymph node NSCLC, more sophisticated classification

strategy is needed and computerized machine learning

algorithms could be of help.

Computer-aided diagnosis (CAD) methods of medical

images have been developed for decades [14], but many

methods were designed for imaging modalities other than

nuclear medicine, such as X-ray, CT, MR, and ultrasound.

It was not until the recent 5 years that PET/CT texture

features attracted increased research attention for tumor

diagnosis [15–18], radiotherapy response characterization

[19], and treatment outcome prediction [20]. Texture

features reflect the heterogeneity of tumor uptake which

could be helpful for differential diagnosis. However, due to

the influence of various factors including imaging proto-

col, lesion size, and image processing, the effectiveness of

PET/CT texture features is still under argumentation [21],

and standardization of texture feature calculation is highly

required [22]. For mediastinal lymph node NSCLC,

further study is needed to evaluate the diagnostic ability of

PET/CT texture features.

Along with the development of computer hardware

and the growth of medical image data, the applications

of deep learning technique for medical image CAD be-

came a hot research direction. This technique uses deep

artificial neural networks to learn the image appearance

patterns of interested objects based on a large training

data set. Deep learning has been reported to significantly

outperform classical machine learning methods for

object detection and classification and has been increas-

ingly used for medical image analysis [23]. So far, the

applications of deep learning for medical images include

the detection and segmentation of lesions from CT

images [24–26], colonoscopy videos [27], and histopath-

ology images [28, 29], but the applications on tumor

diagnosis are limited [30]. Compared to classical

machine learning methods, deep learning method does

not require segmentation of tumor, it simplifies the ana-

lysis procedure and avoids subjective user bias. To the

extent of our knowledge, there has not been any study

using deep learning technique for the classification of me-

diastinal lymph node NSCLC from FDG PET/CT images.

Based on the above considerations, this study aimed to

compare the performance of multiple machine learning

methods for classifying mediastinal lymph node NSCLC

from PET/CT images. The evaluated methods included

both classical feature-based methods and the state-of-the-

art deep learning approach. For the classical methods, the

texture features were compared with the features used by

human doctors for clinical diagnosis, such as tumor size,

CT value, SUV, image contrast, and intensity standard

deviation. The machine learning methods were also com-

pared with human doctors, so as to evaluate the value of

computerized methods for classifying mediastinal lymph

node NSCLC from FDG PET/CT images.

Methods

Data resources

The study was approved by our institutional research

ethics board. This was a retrospective per-node study.
18F-FDG PET/CT images of 168 patients were retrieved

from our hospital database within the period from June

2009 to September 2014. Lobectomy combined with

systematic hilar and mediastinal lymph node dissection

was performed in our institute. The locations of re-

moved lymph nodes were tracked on a per-station basis.

We removed the lymph nodes located on groups 1, 2R,

3, 4R, 7, 8, and 9R in the right lung and groups 4L, 5, 6,

7, 8, and 9L in the left lung, and put the lymph nodes

from the same nodal station into one sampling bag.

Pathological diagnosis of each specimen bag was made

by an oncological pathologist with 18 years of experience

based on hematoxylin-eosin staining. From the 168

patients, 1397 lymph nodes were confirmed cancerous

by pathology, and the number of negative and positive

samples were 1270 and 127, respectively. Detailed infor-

mation is listed in Table 1.

The PET/CT scans were applied within 1 week before

surgery. All patients fasted for more than 4 h before the

scan to keep the blood glucose below 6.0 mmol/L. The

patients were intravenously injected with 300–400 MBq
18F-FDG of ≥97% radiochemical purity synthesized by

the GE Minitracer cyclotron and Tracer Lab FX-FDG

Table 1 Patient and lymph node characteristic

Patients number (male/female/total) 91/77/168

Patient ages (min/max/median) 38/81/61

Lymph nodes number
(benign/malignant/total)

1270/127/1397

Lymph nodes short axis diameter
(≤2/≤4/≤7/≤10/>10 mm)

306/816/246/23/6
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synthesizer. After 1-h resting following the injection,

patients were scanned by the GE Discovery ST PET-CT

scanner. Whole-body CT scan was performed under

shallow breathing status. The CT scanner settings

were 120 kV, 140 mA, 0.5 s per rotation, 1.25:1 pitch,

3.75-mm slice thickness, 1.37-mm in-plane spatial

resolution, and 20–30-s scan time. PET scan was performed

in a 3D acquisition mode also under shallow breathing

status. Six or seven bed positions were scanned for each

patient with 2.5-min emission time per bed position. PET

images were reconstructed by iterative algorithm, using CT

image for attenuation correction.

Based on the PET/CT images, diagnosis of lymph

node metastasis status (positive or negative) was made

by four doctors from our institute, two of whom with

over 10 years experience. Final consensus was reached

after the discussion of all doctors. The doctors made

their diagnosis based on several factors including max-

imum short diameter, maximum standardized uptake

value (SUVmax), mean standardized uptake value (SUVmean),

visual contrast between the tumor, and its surrounding

tissues in the CT image, as well as the location in the lymph

node map [31].

Machine learning methods

This study compared four mainstream classical machine

learning methods and one deep learning method. The

classical methods included random forest (RF), support

vector machines (SVM), adaptive boosting (AdaBoost),

and back-propagation artificial neural network

(BP-ANN). We refer the readers to [32] for detailed

introduction of the classical methods. The four classical

methods were implemented using the functions of

MATLAB R2014b. This study used 10 times 10-fold

cross-validation to evaluate the machine learning

methods. For each of the cross-validations, the optimal

parameters of each method were determined based on

the nine folds of training samples, via grid search in the

parameter space. Therefore, each cross-validation might

have slightly different optimal parameters, and the aver-

age optimal values are reported here. The random forest

contained 100 decision trees on average. The depth of

each tree was controlled by a minimum leaf size of 1,

the number of features used for each decision split was

set to the square root of the total feature number. SVM

used a Gaussian radial basis function as the kernel func-

tion, and the sequential minimal optimization method to

find the separating hyperplane, its average kernel size

was 2.0. AdaBoost used shallow decision trees as the

weak classifiers, it included 300 shallow decision trees

with a maximum split number equal to 1, the average

learning rate was 0.1. ANN used two hidden layers with

50 and 26 neurons for the first and second layer,

respectively, there were 1000 epochs, and the average

learning rate was 0.04.

The deep learning method was the convolutional

neural network [33], which is a deep neural network

dedicated for image classification, it is also named the

ConvNets in some literatures. CNN has been proved to

significantly outperform the classical machine learning

methods for natural image classification. Unlike the clas-

sical methods which take the feature vectors as input,

CNN takes an image patch of n × n pixels as input. CNN

performs classification according to the appearance of

the image patch; it learns the patterns of patch appear-

ance from a large amount of training patches. The

outputs of CNN are the scores for different classes, and

the class with the highest score is deemed as the classifi-

cation result. For our application, the input of CNN is a

patch around the lymph node, the outputs are two

scores of being benign and malignant.

The architecture of CNN mimics the structure of

animal visual cortex. The input image patch is firstly

passed to several consecutive layers that convolute and

downsample the patch, followed by a flattening layer

which stretches the patch into a feature vector. After the

flattening layer, the subsequent layers (namely the fully

connected layers and the softmax layer) convert the fea-

ture vector into the output scores. In recent years, several

improved CNN architectures have been proposed, but

their overall architecture kept similar. This study used the

well-known AlexNet [34] architecture implemented using

the Keras library for Python. To avoid overfitting to our

data, the number of AlexNet layers was reduced to five.

Our CNN also incorporated L2 normalization, ReLU acti-

vation function, dropout regularization, categorical cross

entropy loss function, and Adadelta learning method. The

choice of CNN architecture will be further explained in

the “Discussion” section.

For both training and testing stages, the inputs of

CNN were six axial image patches cropped from the CT

and PET SUV images. The six patches included three

patches for each image modality. The patches were

cropped around the lymph node center and resampled

into 51 × 51 pixels of 1.0-mm size. The three patches of

each modality included one slice centered at the lymph

node center and two others located 4 mm above and

below the lymph node center. Our parallel patch config-

uration was different from [25] which used orthogonal

patches of axial, coronal, and sagittal directions, because

we found that parallel patches resulted in higher AUCs

than the orthogonal patches.

To generate the patches, the center of each lymph

node was specified by the doctor. This was the only step

requiring user input. To cope with the subjective vari-

ance of the user input, as well as to expand the size of

the training set, data augmentation was performed for
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the training data. The image patches were translated and

rotated in 3D space around the lymph node center to

generate more pseudo training patches. Each patch was

translated along x, y, and z axes by Nt steps and rotated

about the three axes by Nr angles. In this study, the

translation steps were [−2,0,2] pixels and the rotation

angles were [−20°,0°,20°], i.e., Nt =Nr = 3. As a result,

each sample was extended to Nt ×Nt ×Nt ×Nr ×Nr ×Nr

= 36 = 729 samples after data augmentation; hence, the

total sample size was 1397 × 729 = 1,018,413. Such data

augmentation strategy was commonly used by the deep

learning methods.

To train the network, the momentum update method

[35] was used, with batch size of 64 and momentum

coefficient of 0.9. The initial learning rate η was 1e−9, with

a decreasing rate γ = 0.9 for each iteration. After 10

epochs, η decreased to a very small value close to 0, and

the learning process converged to a local minima, which

might not be the global minima. To step out of the local

minima, we reactivated the learning process by setting η

back to a larger value (η= 1e−11), then continue the learn-

ing with γ= 0.95 until convergence. We found such reactiva-

tion scheme essential for obtaining good CNN performance.

Input features for classical methods

In this study, the input features for the classical methods

included 13 diagnostic features and 82 texture features.

Please note that these features are only used for the classical

methods, because CNN does not take the features as input.

Definitions of the features are listed in Table 2. The

term “diagnostic feature” is to represent the features

used by human doctors for clinical diagnosis, such as

tumor size, SUV, CT values, and image contrast. In

Table 2, the features of Dshort, area, and volume are

related to lymph node size, CTmean corresponds to tissue

density, and SUVmean and SUVmax represent lymph node

metabolism level. CTcontrast is used to measure the

density difference between the lymph node and its vicin-

ity, since metastatic tumor tends to merge with its

surrounding tissue. SUVstd measures the variation of

metabolism level inside the lymph node, because some

malignant tumors may have necrotic cores. For the features

of CTmean, CTcontrast, SUVmean, SUVmax, and SUVstd, both

2D and 3D versions were calculated. 2D versions were

calculated based on the axial slice passing the lymph node

center, and 3D versions were computed based on the

reconstructed volumes. We incorporated the 3D features to

compensate for the limitation of the doctors’ visual inspec-

tion of planar images.

To calculate the 95 features, manual segmentation of

the lymph nodes was performed by two doctors for all

axial slices covering the entire node. The lymph nodes

were delineated based on the fusion of PET and CT im-

ages because the two modalities compensated each other

Table 2 The image features used in this study. For the column of “image modality”, the term “PET/CT” means the feature is calculated

for both PET and CT

Feature Image modality Spatial dimension Definition

Dshort PET/CT 1D Diagnostic feature, maximum short diameter
of the axial section

Area PET/CT 2D Diagnostic feature, area of the axial section

Volume PET/CT 3D Diagnostic feature, volume of the lymph node

CTmean CT 2D/3D Diagnostic feature, mean CT value inside the
lymph node

CTcontrast CT 2D/3D Diagnostic feature, the difference between CTmean

and the mean CT value of a 2-mm-thick tissue layer
surrounding the lymph node.

SUVmean PET 2D/3D Diagnostic feature, mean SUV inside the lymph node

SUVmax PET 2D/3D Diagnostic feature, max SUV inside the lymph node

SUVstd PET 2D/3D Diagnostic feature, standard deviation of SUV inside
the lymph node

1st-order texture features PET/CT 3D Six texture features calculated based on the pixel
intensity histogram, see the supplementary material
of [22] for detailed definition

2nd-order texture features PET/CT 2D Nineteen texture features calculated based on gray-level
co-occurrence matrix (GLCM), see the supplementary material
of [22] for detailed definition

High-order texture features PET/CT 3D Five texture features calculated based on neighborhood
gray-tone difference matrix (NGTDM) and 11 texture features
calculated based on gray-level zone size matrix (GLZSM), see
the supplementary material of [22] for detailed definition

For the column of “spatial dimension”, the term “2D/3D” means the feature is calculated for both 2D and 3D images
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for defining fuzzy boundaries. To reduce inter-rater vari-

ance, the final segmentation was proofread by a doctor

with over 10 years experience. From the segmented

slices, 3D volumes of lymph nodes were reconstructed.

The texture features were calculated following the

instructions of a recent survey of PET/CT image

characterization [22]. The texture features included 5

first-order features based on histogram analysis, 19

second-order features based on gray-level co-occurrence

matrix (GLCM), and 16 high-order features based on

neighborhood gray-tone difference matrix (NGTDM)

and gray-level zone size matrix (GLZSM). The same

texture features were calculated for both PET and CT,

with 41 features for each modality. To avoid implemen-

tation variance, we used the publicly available code

provided by the authors of [22]. Before texture calculation,

the images were resampled to 1.0 × 1.0 × 1.0 mm3 iso-

tropic voxel size. Different parameter values for calculat-

ing texture features were tested, the optimal values were

selected by maximizing the AUC result. We used 64 bins

for both PET and CT images, within CT HU range [−300,

1000] and PET SUV range [0, 20]. The pixel distances

were 1 pixel, since most of the lymph nodes had a diam-

eter shorter than 4 mm. The GLCM was calculated in 3D

space, and the average matrix of all 13 neighborhood

directions were used to calculate the features.

For comparison purpose, we subdivided the 95

features into four sets, i.e., D13 (13 diagnostic features),

T82 (82 textural features), A95 (the combination of all

95 features), and S6 (6 selected features from A95). S6

was derived using the sequential forward feature selec-

tion method as in. The feature selection strategy was fre-

quently used for classical machine learning methods like

SVM to reduce the feature set and to improve classifica-

tion accuracy. The four feature sets will be compared for

each classical method.

Validation strategy

For method validation, a nested cross-validation (CV)

was performed. We used the outer CV loop to train and

test the machine learning methods and used the inner

CV loop to tune the method parameters. The outer loop

contained 10 times 10-fold cross-validation, and the

inner loop contained ninefold cross-validation using the

training samples of the outer loop, a grid search was

conducted to derive the optimal parameters for each

method. To keep the balance between the positive and

negative samples, 120 positive and 120 negative samples

were randomly selected for each cross-validation. The

CV was conducted on a per-node basis, so that different

folds did not contain samples from the same lymph

node. However, such strategy may assign different lymph

nodes of the same patient to different folds. When this

happened, the samples were exchanged between the

folds so that all the samples of one patient only exist in

one fold. In this way, we ensured the training and testing

data do not contain samples from the same lymph node

or the same patient, meanwhile keeping a balanced

number of positive and negative samples in each fold.

For fair comparison, different machine learning methods

were trained with the same training sets and tested with

the same testing sets.

For each cross-validation, we calculated the perform-

ance values for the five machine learning methods and

the doctors. The performance values include sensitivity

(SEN), specificity (SPC), diagnostic accuracy (ACC), and

the area under the receiver operating characteristic

(ROC) curve (AUC). The corresponding pathology ana-

lysis results were deemed as gold standard. The SEN,

SPC, and ACC values were determined from the optimal

cut point of the ROC curve, i.e., the point closest to

(0,1). The doctors’ performance was also evaluated using

the same criterion. Because doctors only made binary

diagnosis (positive or negative), no AUC could be calcu-

lated for human doctors.

Comparison between different feature sets and different

methods was mainly performed based on the AUC and

ACC values. Because the doctors do not have AUC re-

sults, the comparison between doctors and machine learn-

ing methods was only based on the ACC values. Due to

the 10 times 10-fold CV, 100 groups of performance

values were calculated for each feature set and each

method; therefore, paired hypothesis tests of 100 samples

were performed. The p values were calculated using

paired t test if the samples were normally distributed;

otherwise, the Wilcoxon-signed rank test was used. Mul-

tiple comparison correction strategies were applied to

limit the accumulation of false positives of multiple tests.

We applied two types of widely used correction strategies,

i.e., the Bonferroni correction which controls false posi-

tives but potentially increases false negatives and the false

discovery rate (FDR) correction (at q = 0.05) which gener-

ates less false negatives at the cost of increased false

positives than the Bonferroni correction. The null hypoth-

eses were rejected at the level of p < 0.05 after correction.

We firstly compared the four feature sets (D13, T82,

A95, and S6) for each classical method and selected the

optimal feature set with the highest mean AUC across

100 CVs. Afterwards, the classical methods with their

optimal feature sets were compared with CNN and

human doctors.

Results

Table 3 reports the performance values of the machine

learning methods and human doctors. For the four clas-

sical methods, the results of each feature set are also

listed. All the performance values are listed as the means

and standard deviations of the 100 cross-validations.
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Feature comparison

The optimal feature set of each classical method was se-

lected according to the AUC and ACC values. Figure 1

plots the AUC and ACC values of different feature sets

of each method. As shown by Table 3 and Fig. 1, D13 is

the optimal feature set of each classical method, while

T82 is the worst one. For RF, SVM, and AdaBoost, T82

yields lower AUC and ACC than any other feature set

Table 3 Performance values of the machine learning methods and human doctors

For each classical method, the results of each feature set are listed. The row of best feature set is marked with gray background
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(p < 0.05 after both Bonferroni and FDR corrections).

For most cases, the differences are not evident between

D13, A95, and S6, except for A95 vs. D6 for SVM ACC.

However, for BP-ANN, the AUC and ACC of A95 is as

low as T82, implying that adding T82 to D13 dramatic-

ally deteriorates the performance of BP-ANN. Compar-

ing the four classical methods based on each feature set,

AdaBoost, SVM, and RF are better than BP-ANN, while

the difference between AdaBoost, SVM, and RF is not

evident. These findings agree with a comprehensive

study [36] of different classical machine learning

methods for quantitative radiomic biomarkers.

Method comparison

Since D13 is the optimal feature set for all classical

methods, we used the performance values of D13 to

compare the classical methods with CNN and human

doctors. Figure 2 displays the mean values and confiden-

tial intervals of AUC and ACC of each method. It could

be observed that AdaBoost is the method of the highest

AUC, and CNN is the method of the highest ACC. BP-

ANN is the method of the lowest AUC and ACC, and it

is worse than any other method in terms of AUC. The

differences of AUC between BP-ANN and all other

methods were significant (p < 0.05) after FDR correction.

After the Bonferroni correction, the differences were

only significant between BP-ANN and RF and between

SVM and AdaBoost. SVM demonstrates no evident dif-

ferences with RF, AdaBoost, and CNN in terms of AUC

and ACC. Compared to ANN, SVM’s AUC value is sig-

nificantly higher (p < 0.05 after both Bonferroni and FDR

corrections), while the ACC value is higher but not

significant.

Because human doctors do not have AUC results, we

only compared the doctors with machine learning

methods based on ACC. Figure 2 indicates that CNN,

RF, and AdaBoost have better ACC than the doctors, but

the differences were not significant after the Bonferroni

Fig. 1 Comparison between different feature sets of the four classical machine learning methods, based on mean AUCs and mean ACCs of the

10 times 10-fold cross-validation. The error bars indicate 95% confidence interval. The p value between different feature sets are plotted as bridge

and stars, where two stars means p < 0.05 after both Bonferroni and FDR corrections, and one star means p < 0.05 only after FDR correction
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and FDR corrections. The p value between CNN and

human was less than 0.05 before correction; however, it

did not survive the FDR or Bonferroni correction. To

make further comparison, the ROC curves of all ma-

chine learning methods are plotted in Fig. 3, together

with the performance point of human doctors. The ROC

curve of each method is plotted as the average curve of

100 cross-validations. As revealed by Fig. 3, at the sensi-

tivity level of human doctors, CNN, RF, and AdaBoost

have better specificity than the doctors, and SVM has

close specificity to the doctors. However, when higher

sensitivity or higher specificity is considered, SVM

quickly catches up with CNN, RF, and AdaBoost. In con-

trast, the curve of BP-ANN is always below others.

Comparing the timing performance of the five

methods, SVM is the fastest, it took ~3 s to train for

each fold based on a A95 feature set, using a computer

with 2.2 GHz dual core i7 CPU. For the same training

data, RF and AdaBoost took ~6 and ~40 s, respectively.

BP-ANN took ~1 h to train using a CPU or ~2 min to

train using a GPU acceleration based on NVIDIA

Quadro K1100M graphics card. CNN was trained with

the GPU acceleration on a workstation with 449 G RAM

and NVIDIA Tesla K40C graphics card; it took ~10 min

for each fold of training. For testing, all the methods

took less than 1 s for a single cross-validation.

Discussion

Feature comparison

In recent years, an increasing number of publications

were using PET/CT texture features for tumor classifica-

tion. On the other side, some studies claim that texture

features are not reliable because their values are influ-

enced by factors irrelative to the tumor’s genuine property,

such as tumor size and image processing procedures [21].

In this study, we made efforts to follow the suggested

workflow of texture feature calculation by a recent review

study [22] and used their published code to avoid imple-

mentation bias. However, texture features still performed

significantly worse than the diagnostic features. The main

Fig. 2 Comparison between different machine learning methods and the human doctors, based on mean AUCs and mean ACCs of the 10 times

10-fold cross-validation. The error bars indicate 95% confidence interval. The p value between different methods are plotted as bridge and stars,

where two stars means p < 0.05 after both Bonferroni and FDR corrections, and one star means p < 0.05 only after FDR correction. Human doctor

has no AUC value

Fig. 3 The average ROC curves of different machine learning

methods. The black dot is the performance point of human doctors
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reason for the unsatisfactory performance of texture

features might be the small sizes of the lymph nodes.

According to Table 1, 80.3% of the tested lymph nodes

had a short axis diameter less than 4 mm. Small tumor

size means insufficient number of voxels for meaningful

heterogeneity measurement; therefore, the discrimina-

tive power of the texture features was compromised.

Because such small-sized lymph nodes dominate in a

clinical scenario, texture features might not be suit-

able for classifying a small size mediastinal lymph

node from PET/CT images.

Method comparison

As shown by the comparison of classical results,

AdaBoost, RF, and SVM performed better than ANN in

terms of both AUC and ACC. From a methodology as-

pect, AdaBoost and RF are both ensembles of decision

trees. We found that some other comparison studies

[36, 37] also demonstrated that ensemble methods out-

perform other classifiers. The mechanism of a decision

tree can utilize different features to compensate each

other, and the ensemble of decision trees combines mul-

tiple weak tree classifiers into a strong classifier. As a

result, the ensembles of decision trees can yield good

classification results based on an even weak feature set.

As shown by Table 3 and Fig. 1, when only T82 was

used as input features, AdaBoost and RF yielded better

AUC and ACC than SVM and BP-ANN. SVM belongs

to the kernel-based classifier family, which implicitly

maps the input features into a higher dimensional fea-

ture space using a kernel function that measures the dis-

tance between feature points in the mapped space. By

such kernel-based mapping, SVM is able to achieve

much better classification performance than conven-

tional linear classification methods. The choice of kernel

function greatly affects the performance of SVM, and

the nonlinear kernel function used in this study helped

SVM to maintain good performance even with subopti-

mal input features (A95 and S6).

ANN and CNN both belong to the neural networks

family, but ANN performed worse than CNN. We only

used two hidden layers for ANN; it seems that the im-

perfect performance of ANN might be due to the insuffi-

cient number of layers. However, as we tested different

layer numbers (from one hidden layer to seven hidden

layers), the best number was two instead of seven.

Although it is generally assumed that deeper networks

perform better than shallower ones, such assumption is

valid when there is enough training data, while the train-

ing method should also be good at learning deep net-

works. In this study, the training data of BP-ANN is not

abundant enough to support a deeper ANN, and the

back-propagation method is not suitable for training

deep networks [33]. In contrast, CNN is well designed

for learning deep networks, and it also uses data aug-

mentation to increase the training set.

Compared with human doctors from our institute, all

the five machine learning methods had higher sensitivity

but lower specificity than human doctors. Doctors

tended to underestimate the malignant tumors because

most of the lymph nodes in this study were small in size.

The machine learning methods gained better sensitivities

than human doctors at the cost of losing specificities.

When ACC was used as more balanced criteria than

sensitivity and specificity, RF, AdaBoost, and CNN were

better than human doctors, but the difference was not

significant after Bonferroni and FDR corrections.

In many recent publications of medical image analysis,

CNN was reported to outperform classical methods for

imaging modalities other than PET/CT. In this study,

CNN is not significantly better than RF, AdaBoost, or

SVM, because it has not fully explored the functional

nature of PET. Before the image patches are input to

CNN, the pixel intensities are normalized to a range of

[−1, 1], thus the discriminative power of SUV is lost dur-

ing the normalization. It was surprising to find that

without the important SUV feature, the difference

between CNN and the best classical methods is not evi-

dent. CNN utilizes the image appearance pattern around

the lymph node. The appearance pattern includes infor-

mation of local contrast, nearby tissues, boundary sharp-

ness, and etc. Such information is different from but as

powerful as the diagnostic features like SUV, tumor size,

and local heterogeneity. To illustrate the discriminative

power of the image appearance pattern, we extracted the

intermediate feature vector produced by the internal

flattening layer of the CNN. This was a vector of 512

features, which could be considered as a sparse repre-

sentation of the image patch’s appearance. We used the

512 features as the input of the classical methods. For

RF, the 512 features resulted in AUC and ACC of 0.89

and 80.8%, respectively. For SVM, the AUC and ACC

were 0.89 and 80.6%, respectively. These results were

much higher than the AUC and ACC of T82, and they

were even close to the results of D13. Unlike the texture

features, the appearance patterns of CNN are not

affected by the size of the lymph nodes, because they are

computed from the entire image patch which includes

both the lymph node and its surrounding tissues. There-

fore, the image appearance pattern can be a promising

substitute for the texture features, as well as a good

compensation to the diagnostic features.

This study used the AlexNet for CNN architecture,

but with a reduced number of layers. The reason for

using less neuron layers was to avoid overfitting to the

training data. Although we used 729 times data augmen-

tation, the total number of training data for each cross-

validation was still not abundant compared to many
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other deep learning applications. This was also the rea-

son that we did not use the more advanced CNN archi-

tectures like VGGNet [38], GoogleNet [39], and ResNet

[40] which were designed for a much larger training set.

In future work, if we can collect more data from multi-

centers, deeper CNN architectures will be explored.

Recently, there are some studies using a small set of

medical images to fine-tune the deep network learned

from a large natural image set, in order to solve the

problem of insufficient medical training data [41]. How-

ever, it is to be investigated if this method could perform

well on PET images, since the appearance of PET is

quite different from natural images.

In this study, image patches of both modalities (PET

and CT) were mixed into the same network. Such mixed

setting may potentially limit the performance of CNN,

because the PET and CT patches contained different

types of diagnostic information. It should be more ap-

propriate to process the PET and CT patches with sepa-

rated subnetworks and combine the results of different

subnetworks at the output layers. However, there is

currently no such architecture for dual-modality PET/CT

images, we will leave this issue for future research.

Conclusions

In conclusion, this study revealed that the diagnostic fea-

tures are more discriminative than the texture features,

mainly because the calculation of texture features is not

reliable due to the small lymph node size. CNN is a

recently popular method which utilizes image appear-

ance patterns for classification. In this study, the

performance of CNN is not significantly different from

the best classical methods, even though it did not use

the important diagnostic features like SUV and tumor

size. Moreover, CNN does not take hand-crafted features

as input, it eliminated the needs for tumor segmentation

and feature selection, making the whole process much

more convenient and less prone to user bias. CNN also

avoids using the debated texture features which are

affected by tumor size. Our future direction will focus

on improving the CNN performance by incorporating

diagnostic features into the network, as well as designing

more dedicated network structure for dual-modality

PET/CT images. This study was a single-center retro-

spective study. For the future, we are planning to collect

multi-center data to conduct more generalize evaluation,

as well as to explore the potential of deep learning with

more training data.

Acknowledgements

This research was supported by the general program of National Natural

Science Fund of China (Grant No. 61571076),the youth program of National

Natural Science Fund of China (Grant No. 81401475), the general program of

National Natural Science Fund of China (Grant No. 81171405), the general

program of National Natural Science Fund of China (Grant No. 81671771),

the general program of Liaoning Science & Technology Project (Grant No.

2015020040), the cultivating program of Major National Natural Science Fund

of China (Grant No. 91546123), and the Basic Research Funding of Dalian

University of Technology (Grant No. DUT14RC(3)066). The authors thank Dr.

Larry Pierce for sharing the publicly available codes for computing PET/CT

texture features.

Authors’ contributions

LY, WL, and HW together developed the study concept. HW programmed the

methods for cross-validation and diagnostic feature calculation, and wrote the

manuscript. WL prepared the data samples. ZZ conducted research on CNN,

calculated the texture features and collected the validation results of all tested

methods. ZC fine-tuned parameters of classical ANN method. YL, PL, WW, and

LY collected the patient images, made the doctor diagnosis, conducted the

pathology analysis, specified the lymph node center, and performed

image segmentation. LY also critically reviewed the manuscript. All authors

approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in

accordance with the ethical standards of the institutional and/or national

research committee and with the 1964 Helsinki declaration and its later

amendments or comparable ethical standards. For this type of study, formal

consent is not required.

Author details
1Department of Biomedical Engineering, Faculty of Electronic Information

and Electrical Engineering, Dalian University of Technology, No. 2 Linggong

Street, Ganjingzi District, Dalian, Liaoning 116024, China. 2Department of

Biomedical Informatics and the College of Health Solutions, Arizona State

University, 13212 East Shea Boulevard, Scottsdale, AZ 85259, USA. 3Center of

PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, 150

Haping Road, Nangang District, Harbin, Heilongjiang Province 150081, China.
4HIT–INSA Sino French Research Centre for Biomedical Imaging, Harbin

Institute of Technology, Harbin, Heilongjiang 150001, China.

Received: 12 October 2016 Accepted: 19 January 2017

References

1. McField D, Bauer T. A review of noninvasive staging of the mediastinum for

non-small cell lung carcinoma. Surg Oncol Clin N Am. 2011;20:681–90.

2. Silvestri GA, Gould MK, Margolis ML, Tanoue LT, McCrory D, Toloza E, et al.

Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based

clinical practice guidelines (2nd edition). Chest. 2007;132:178S–201S.

3. Broderick SR, Meyers BF. PET staging of mediastinal lymph nodes in thoracic

oncology. Thorac Surg Clin. 2012;22:161–6.

4. Kim SK, Allen-Auerbach M, Goldin J, Fueger BJ, Dahlbom M, Brown M, et al.

Accuracy of PET/CT in characterization of solitary pulmonary lesions. J Nucl

Med. 2007;48:214–20.

5. Li X, Zhang H, Xing L, Ma H, Xie P, Zhang L, et al. Mediastinal lymph nodes

staging by 18F-FDG PET/CT for early stage non-small cell lung cancer: a

multicenter study. Radiother Oncol. 2012;102:246–50.

6. Schmidt-Hansen M, Baldwin DR, Hasler E, Zamora J, Abraira V, Roque IFM.

PET-CT for assessing mediastinal lymph node involvement in patients with

suspected resectable non-small cell lung cancer. Cochrane Database Syst

Rev. 2014;11:CD009519.

7. De Leyn P, Vansteenkiste J, Cuypers P, Deneffe G, Van Raemdonck D,

Coosemans W, et al. Role of cervical mediastinoscopy in staging of non-

small cell lung cancer without enlarged mediastinal lymph nodes on CT

scan. Eur J Cardiothorac Surg. 1997;12:706–12.

8. Zheng Y, Sun X, Wang J, Zhang L, Di X, Xu Y. FDG-PET/CT imaging for

tumor staging and definition of tumor volumes in radiation treatment

planning in non-small cell lung cancer. Oncol Lett. 2014;7:1015–20.

9. Edet-Sanson A, Dubray B, Doyeux K, Back A, Hapdey S, Modzelewski R, et al.

Serial assessment of FDG-PET FDG uptake and functional volume during

radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC).

Radiother Oncol. 2012;102:251–7.

Wang et al. EJNMMI Research  (2017) 7:11 Page 10 of 11



10. Wang J, Welch K, Wang L, Kong FM. Negative predictive value of

positron emission tomography and computed tomography for stage

T1-2N0 non-small-cell lung cancer: a meta-analysis. Clin Lung Cancer.

2012;13:81–9.

11. Liao CY, Chen JH, Liang JA, Yeh JJ, Kao CH. Meta-analysis study of lymph node

staging by 18F-FDG PET/CT scan in non-small cell lung cancer: comparison of

TB and non-TB endemic regions. Eur J Radiol. 2012;81:3518–23.

12. Ambrosini V, Fanti S, Chengazi VU, Rubello D. Diagnostic accuracy of FDG

PET/CT in mediastinal lymph nodes from lung cancer. Eur J Radiol.

2014;83:1301–2.

13. Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et

al. Methods for staging non-small cell lung cancer: diagnosis and

management of lung cancer, 3rd ed: American College of Chest Physicians

evidence-based clinical practice guidelines. Chest. 2013;143:e211S–50S.

14. Gonçalves VM, Delamaro ME. A systematic review on the evaluation and

characteristics of computer-aided diagnosis systems. Revista Brasileira De

Engenharia Biomedica. 2014;30:355–83.

15. Chicklore S, Goh V, Siddique M, Roy A, Marsden P, Cook GJR. Quantifying

tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J

Nucl Med Mol Imaging. 2013;40:133–40.

16. Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG PET/CT-based textural

characterization of head and neck cancer for radiation treatment planning.

IEEE Trans Med Imag. 2009;28:374–83.

17. Rui X, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, et al. Texture

analysis on 18F-FDG PET/CT images to differentiate malignant and benign

bone and soft-tissue lesions. Jpn Circ J. 2014;58:95–9.

18. Gao X, Chu C, Li Y, Lu P, Wang W, Liu W, et al. The method and efficacy of

support vector machine classifiers based on texture features and multi-

resolution histogram from (18)F-FDG PET-CT images for the evaluation of

mediastinal lymph nodes in patients with lung cancer. Eur J Radiol.

2015;84:312–7.

19. Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, Naqa IE. Combined

PET/CT image characteristics for radiotherapy tumor response in lung

cancer. Radiother Oncol J European Soc Therapeutic Radiol Oncol.

2012;102:239–45.

20. Lian C, Ruan S, Denœux T, Jardin F, Vera P. Selecting radiomic features from

FDG-PET images for cancer treatment outcome prediction. Med Image Anal.

2016;32:257–68.

21. Brooks FJ, Grigsby PW. Low-order non-spatial effects dominate second-

order spatial effects in the texture quantifier analysis of 18F-FDG-PET

images. Plos One. 2015;10:1–17.

22. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization

of PET/CT images using texture analysis: the past, the present… any future?

European Journal of Nuclear Medicine and Molecular Imaging, 2016. 44(1):

p. 1-15.

23. Shen D, Wu G, Suk H-I. Deep Learning in Medical Image Analysis[J]. Annual

Review of Biomedical Engineering, 2017, 19(1). doi:10.1146/annurev-bioeng-

071516-044442.

24. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry KM, et al. Improving computer-

aided detection using convolutional neural networks and random view

aggregation. IEEE Trans Med Imag. 2016;35:1170–81.

25. Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, et al. A new 2.5 D

representation for lymph node detection using random sets ofdeep

convolutional neural network observations[C]//International Conference on

Medical Image Computing and Computer-Assisted Intervention, Boston,

MA, USA. Springer International Publishing, 2014: 520-7.

26. Tajbakhsh N, Gotway MB, Liang J. Computer-aided pulmonary embolism

detection using a novel vesselaligned multi-planar image representation

and convolutional neural networks[C]//International Conference on Medical

Image Computing and Computer-Assisted Intervention, Munich, Germany.

Springer International Publishing, 2015: 62-69.

27. Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in

colonoscopy videos using shape and context information. IEEE Trans Med

Imag. 2016;35:630–44.

28. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, et al. Stacked sparse

autoencoder (SSAE) for nuclei detection on breast cancer histopathology

images. IEEE Trans Med Imag. 2016;35:119–30.

29. Xu Y, Zhu JY, Chang EI, Lai M, Tu Z. Weakly supervised histopathology

cancer image segmentation and classification. Med Image Anal.

2014;18:591–604.

30. Cheng J, Ni D, Chou Y, Qin J, Tiu C, Chang Y, et al. Computer-aided diagnosis

with deep learning architecture: applications to breast lesions in US images

and pulmonary nodules in CT scans. Scientific Reports. 2016;6:1–13.

31. Vallieres E, Shepherd FA, Crowley J, Van Houtte P, Postmus PE, Carney D, et

al. The IASLC Lung Cancer Staging Project: proposals regarding the

relevance of TNM in the pathologic staging of small cell lung cancer in the

forthcoming (seventh) edition of the TNM classification for lung cancer. J

Thorac Oncol. 2009;4:1049–59.

32. Francis T. Machine Learning: An Algorithmic Perspective. 2nd ed. 6000

Broken Sound Parkway,Suite 300: Chapman and Hall/CRC, Taylor & Francis

Group; 2014. p.39-280.

33. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

34. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep

convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:2012.

35. Qian N. On the momentum term in gradient descent learning algorithms.

Neural Netw. 1999;12:145–51.

36. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning

methods for quantitative radiomic biomarkers. Scientific Reports. 2015;5. doi:

10.1038/srep13087.

37. Fernandezdelgado M, Cernadas E, Barro S, Amorim D. Do we need

hundreds of classifiers to solve real world classification problems. J Mach

Learn Res. 2014;15:3133–81.

38. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition [J]. arXiv preprint arXiv:1409.1556v6, 2015.

39. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going

deeper with convolutions[C]//Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Boston, MA, USA. 2015: 1-9.

40. He K, Zhang X, Ren S, Sun J. Deep residual learning for image

recognition[C]//Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Las Vegas, Nevada, USA. 2016: 770-8.

41. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al.

Convolutional neural networks for medical image analysis: full training or

fine tuning? IEEE Trans Med Imag. 2016;35:1299–312.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Wang et al. EJNMMI Research  (2017) 7:11 Page 11 of 11

http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1038/srep13087

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Data resources
	Machine learning methods
	Input features for classical methods
	Validation strategy

	Results
	Feature comparison
	Method comparison

	Discussion
	Feature comparison
	Method comparison

	Conclusions
	Acknowledgements
	Authors’ contributions
	Competing interests
	Ethics approval and consent to participate
	Author details
	References

