
Original Article

Comparison of Machine Learning Methods Using Spectralis OCT

for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis
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Abstract—Machine learning approaches in diagnosis and
prognosis of multiple sclerosis (MS) were analysed using
retinal nerve fiber layer (RNFL) thickness, measured by
optical coherence tomography (OCT). A cross-sectional
study (72 MS patients and 30 healthy controls) was used
for diagnosis. These 72 MS patients were involved in a 10-
year longitudinal follow-up study for prognostic purposes.
Structural measurements of RNFL thickness were performed
using different Spectralis OCT protocols: fast macular
thickness protocol to measure macular RNFL, and fast
RNFL thickness protocol and fast RNFL-N thickness
protocol to measure peripapillary RNFL. Binary classifiers
such as multiple linear regression (MLR), support vector
machines (SVM), decision tree (DT), k-nearest neighbours
(k-NN), Naı̈ve Bayes (NB), ensemble classifier (EC) and long
short-term memory (LSTM) recurrent neural network were
tested. For MS diagnosis, the best acquisition protocol was
fast macular thickness protocol using k-NN (accuracy:
95.8%; sensitivity: 94.4%; specificity: 97.2%; precision:
97.1%; AUC: 0.958). For MS prognosis, our model with a
3-year follow up to predict disability progression 8 years
later was the best predictive model. DT performed best for
fast macular thickness protocol (accuracy: 91.3%; sensitivity:
90.0%; specificity: 92.5%; precision: 92.3%; AUC: 0.913)
and SVM for fast RNFL-N thickness protocol (accuracy:
91.3%; sensitivity: 87.5%; specificity: 95.0%; precision:
94.6%; AUC: 0.913). This work concludes that measure-
ments of RNFL thickness obtained with Spectralis OCT
have a good ability to diagnose MS and to predict disability
progression in MS patients. This machine learning approach
would help clinicians to have valuable information.

Keywords—Multiple sclerosis, Machine learning, Optical
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory
demyelinating autoimmune disease of the central ner-
vous system (CNS) in which axonal loss is considered
the main cause of disability.61 Despite its high
heterogeneity and unpredictable course, this disease is
characterized by relapses with reversible neurological
problems. After each relapse, a gradual neurological
worsening is often observed.34

Axonal damage in MS patients is also widespread in
the neuroretina. The visual pathway is one of the most
affected systems, where inflammation, demyelination
and axonal degeneration cause visual symptoms. This
fact highlights the importance of studying neuroretina
as a possible MS biomarker.13,45 Optical coherence
tomography (OCT) is a non-invasive, objective and
reproducible method to monitor retinal damage. OCT
devices provide measurements of each retinal layer
and, therefore, show great potential for quantifying
axonal damage by measuring peripapillary retinal
nerve fiber layer (pRNFL) and macular RNFL
(mRNFL) thicknesses.30

The use of Fourier-domain OCT (FD-OCT) pro-
vided higher resolution in relation to time-domain
OCT (TD-OCT), which required long acquisition
times. FD-OCT is divided into spectral-domain OCT
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(SD-OCT) and swept-source OCT (SS-OCT). Current
SD-OCT and SS-OCT devices use lasers of different
wavelengths to acquire OCT images in the same way.
Some commercially available SD-OCT devices are
RTVue (Optovue, Fremont, CA, USA), Spectralis
OCT (Heidelberg Engineering, Heidelberg, Germany),
SOCT Copernicus (Optopol Technology, Zawiercie,
Poland), Cirrus HD-OCT (Carl Zeiss Meditec, Dublin,
CA, USA), and 3D OCT-1000 (Topcon, Paramus, NJ,
USA). And others with SS-OCT technology are Triton
SS-OCT (Topcon, Tokyo, Japan) and Plex Elite 9000
(Carl Zeiss Meditec, Dublin, CA, USA).

OCT technique allows correlating retinal neurode-
generation and MS disability.2,12,55 In this way, some
authors demonstrated its potential, in combination
with artificial intelligence (AI), as an early diagnostic
tool. Garcia-Martin et al.16 applied artificial neural
network (ANN) to pRNFL thickness in order to
analyse the ability of Spectralis OCT to diagnose MS.
Cavaliere et al.9 designed a computer-aided diagnosis
method using support vector machine (SVM) with
mRNFL and pRNFL measurements performed by
Triton SS-OCT from 48 MS patients and 48 healthy
controls. These database was also used by Garcia-
Martin et al.17 with a feed-forward neural network as a
deep learning technique. Pérez del Palomar et al.41

used machine learning techniques for MS diagnosis
using mRNFL and pRNFL thicknesses measured by
Triton SS-OCT. With a sample of 80 MS patients and
180 healthy controls, the results were promising with
an accuracy of 97.2% using decision tree (DT) and
mRNFL.

To analyse disability progression, there are two
approaches. The first approach is to observe whether
secondary-progressive (SPMS) development occurs in
patients with relapse-remitting type (RRMS) such that
the neurological state continues to worsen. The second
approach, which is widely used, is based on the vari-
ation of expanded disability status scale (EDSS). This
scale ranges from 0 (healthy control) to 10 (patient
died from MS).31,56 The disability progression depends
on the EDSS measurement as a reference and the
EDSS variation (DEDSS) over time, these standard
criteria represent a relevant worsening of disability
state.22

Most studies have based their prognosis on corre-
lations and statistical analysis. Rothman et al.47

showed that lower baseline macular volume was
associated with higher 10-year EDSS scores. Paying
attention to RNFL thickness, the study conducted by
Schurz et al.51 demonstrated how a pRNFL thinning
> 1.5 lm/year was related to a higher likelihood of

disability worsening. The same annual pRNFL thin-
ning rate was used to discriminate between stable and
progressing MS patients, and was associated with a 15-
fold increased risk of disability progression.8 More-
over, a baseline pRNFL thickness <88 lm was re-
flected in a 3-fold increased risk of EDSS progression.7

Also ganglion cell-inner plexiform layer (GCIPL)
showed promise for this purpose, where a baseline
GCIPL thickness < 70 lm was independently associ-
ated with long-term disability worsening in MS.26

Similar result was obtained by Bsteh et al.6 who set the
baseline macular GCIPL (mGCIPL) barrier at 77 lm
and the annual mGCIPL loss rate barrier at 1 lm.
Other authors reached the same conclusion, showing
that GCIPL thinning >1 lm/year represented an
increased risk of disability worsening.51

As shown above, several longitudinal studies
demonstrated the relationship between RNFL thick-
ness and disability progression. After proving the good
performance of AI with OCT data for the diagnosis of
this disease, the next step could be to apply AI using
OCT data for MS prognosis. However, more recent
studies have limited the data to those obtained using
the tests included in McDonald criteria such as mag-
netic resonance imaging (MRI) or evoked potential
(EP)53. Zhao et al.65 compared SVM, logistic regres-
sion (LR), random forest (RF) and several ensemble
classifiers (EC) to predict DEDSS up to 5 years after
the baseline using MRI data acquired in the first
2 years. The work performed by Yperman et al.62 used
RF and LR to predict disability progression after
2 years using 2-year EP time series. Seccia et al.52

predicted whether the disease would progress from
RRMS to SPMS applying different machine learning
approaches to MRI and Liquor analysis data from the
last available visit or the whole clinical history. An-
other study evaluated LR, SVM, DT and EC for MS
prognosis between 2-year follow-up and baseline also
using MRI data.27

As can be seen, previous studies predicted disability
progression in the short term and did not focus ma-
chine learning approaches on OCT data for MS
prognosis.40 However, we proposed the use of AI to
predict long-term disability state using OCT data. In
our previous work,36 RNFL thickness measured by
Cirrus HD-OCT showed a high performance for MS
prognosis. Along the same lines, in this work, different
AI approaches were applied to RNFL thicknesses
measured by Spectralis OCT in order to analyse which
acquisition protocol and which classifier works best for
predicting disability progression in the long term.
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MATERIAL AND METHODS

Study Population

The study procedure was approved by the Ethics
Committee of Clinic Research in Aragon (CEICA) and
by the Ethics Committee of Miguel Servet University
Hospital (Zaragoza, Spain). This work was performed
in accordance with the tenets of the Declaration of
Helsinki. All participants provided written informed
consent to participate in the study.

This work includes a cross-sectional study and a
longitudinal study. The cross-sectional study enrolled
72 MS patients (19 males and 53 females) and 30
healthy controls (5 males and 25 females). The age of
MS patients ranged from 25 to 72 years with a mean of
45.94 years, while for healthy controls if ranged from
26 to 73 with a mean of 48.78 years (see Table 1). MS
patients were diagnosed by a neurologist based on the

2010 revision of the McDonald Criteria 43. In the
longitudinal study, 72 MS patients were evaluated at
several visits until the 10-year follow-up was com-
pleted. The participants had no concomitant ocular
diseases, nor any history of retinal pathology or sys-
temic conditions that could affect the visual function.
All participants underwent neuro-ophthalmological
evaluations, including best-corrected visual acuity
(BCVA) to quantify the level of vision and EDSS to
register MS-associated disability.

The required inclusion criteria were: BCVA of 20/40
or higher, refractive error within ±5.00 diopters
equivalent sphere and ± 2.00 diopters astigmatism,
transparent ocular media (nuclear colour/opalescence,
cortical or posterior subcapsular lens opacity <1),
according to the Lens Opacities Classification System
III11. From these 102 subjects of white European ori-
gin, one randomly selected eye was analysed to avoid
potential bias by interrelation between eyes of the same

TABLE 1. General data and retinal nerve fiber layer (RNFL) data, measured by Spectralis optical coherence tomography (OCT),
from 72 patients with multiple sclerosis (MS) and 30 healthy controls.

MS patients (n = 72) Healthy controls (n = 30) p-value

General data

Age [years] 45.94 ± 10.85 48.78 ± 14.70 0.247

Sex [M–F] 19–53 5–25

BCVA [Snellen] 0.90 ± 0.24 1.00 ± 0.11 0.020

Fast macular thickness protocol

Total volume [mm3] 0.78 ± 0.16 0.96 ± 0.11 < 0.001

Central fovea th. [lm] 12.32 ± 2.78 12.40 ± 1.77 0.818

Inner nasal th. [lm] 19.83 ± 4.86 22.50 ± 2.70 < 0.001

Outer nasal th. [lm] 39.89 ± 13.68 52.53 ± 6.82 < 0.001

Inner superior th. [lm] 21.32 ± 4.18 24.43 ± 2.11 < 0.001

Outer superior th. [lm] 31.15 ± 7.36 38.50 ± 5.10 < 0.001

Inner temporal th. [lm] 17.65 ± 2.06 17.97 ± 1.52 0.488

Outer temporal th. [lm] 18.31 ± 2.14 19.67 ± 1.94 < 0.001

Inner inferior th. [lm] 22.50 ± 4.46 27.13 ± 3.20 < 0.001

Outer inferior th. [lm] 31.69 ± 8.13 40.70 ± 7.95 < 0.001

Fast RNFL thickness protocol

Mean th. [lm] 84.39 ± 15.15 101.37 ± 8.60 < 0.001

Temporal th. [llllm] 59.53 ± 16.69 73.13 ± 12.85 < 0.001

Superotemporal th. [lm] 115.36 ± 23.50 134.77 ± 19.87 0.001

Inferotemporal th. [lm] 118.78 ± 27.44 146.40 ± 19.00 < 0.001

Nasal th. [lm] 67.56 ± 18.39 75.63 ± 12.73 0.005

Superonasal th. [lm] 90.38 ± 21.85 118.20 ± 27.33 < 0.001

Inferonasal th. [lm] 96.51 ± 26.95 115.00 ± 17.88 < 0.001

Fast RNFL-N thickness protocol

Mean th. [lm] 83.77 ± 17.69 101.55 ± 9.69 0.172

PMB th. [lm] 44.73 ± 12.91 55.83 ± 8.84 < 0.001

N/T ratio 1.29 ± 0.46 1.14 ± 0.35 0.082

Superonasal th. [lm] 96.62 ± 27.13 107.34 ± 22.90 0.010

Nasal th. [lm] 67.61 ± 19.73 79.62 ± 15.36 < 0.001

Inferonasal th. [lm] 100.68 ± 28.01 118.14 ± 24.77 0.005

Inferotemporal th. [lm] 114.25 ± 29.19 147.72 ± 23.17 < 0.001

Temporal th. [lm] 55.15 ± 14.87 73.03 ± 13.35 < 0.001

Superotemporal th. [lm] 112.79 ± 28.63 135.28 ± 18.39 < 0.001

p value, based on Wilcoxon test, is used to compare data between MS patients and healthy controls. Statistically significant differences

(p < 0.05) are represented in bold.

BCVA best-corrected visual acuity, th thickness, PMB papillomacular bundle, N/T nasal/temporal.
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subject. In subjects with exclusion criteria in one eye,
the other eye was selected.

OCT Evaluation

Structural measurements of RNFL were performed
using the Spectralis OCT (Heidelberg Engineering,
Inc., Heidelberg, Germany). The Spectralis OCT uses a
blue quality bar in the image to indicate signal
strength. The quality score ranges from 0 (poor qual-
ity) to 40 (excellent quality). Only images with quality
higher than 25 were analysed. A real-time eye-tracking
system measures eye movements and provides feed-
back to the scanning mechanism to stabilize the retinal
position on the B-scan. This system enables sweep
averaging at each B-scan location to reduce speckle
noise. The average number of scans to produce each
circular B-scan was nine. The TruTrack eye tracking
technology (Heidelberg Engineering) recognizes, locks
onto, follows the patient’s retina during scanning and
automatically places follow-up scans to ensure accu-
rate monitoring of disease progression.19 All scans
were obtained by operators with extensive experience
in the use of the OCT device. Databases were per-
formed in accordance to the quality control criteria
(OSCAR-IB) and the Advised Protocol for OCT Study
Terminology and Elements (APOSTEL) criteria.14,50

This OCT device allows to measure the RNFL
thickness in different areas depending on the protocol
used (see Fig. 1). Spectralis OCT directly provides
RNFL thickness data from OCT images. This auto-
mated segmentation was performed with the manu-
facturer’s software Heidelberg Eye Explorer (HEYEX)
which consist of a multilayer segmentation algorithm
(Heidelberg Engineering). Fast macular thickness pro-

tocol: a map around the fovea showing the total vol-
ume and the mRNFL thickness in nine sectors (central
fovea, inner nasal, outer nasal, inner superior, outer
superior, inner temporal, outer temporal, inner inferior
and outer inferior). Three concentric circles (1 mm,
3 mm and 6 mm) define these nine macular sectors
established by the Early Treatment Diabetic
Retinopathy Study (ETDRS). Fast RNFL thickness

protocol: a 3.5 mm diameter circle scan centred on the
optic disc showing the mean pRNFL thickness and the
pRNFL thickness in six sectors (superonasal, nasal,
inferonasal, inferotemporal, temporal and superotem-
poral). This protocol also generates a database with
pRNFL thickness measurements at all 768 points
registered during circular peripapillary scan acquisi-
tion. The image sweep is done from temporal to tem-
poral. Fast RNFL-N thickness protocol: like fast
RNFL thickness protocol, a map around the optic disc
with the mean pRNFL thickness and the pRNFL
thickness in six sectors, and also the 768 sector pRNFL

thicknesses. Two extra data are the papillomacular
bundle (PMB) thickness and nasal/temporal (N/T)
ratio. In this protocol, unlike fast RNFL thickness
protocol, the sweep is done from nasal to nasal.

Statistical Analysis

Statistical analysis was performed with Matlab
(version 2020b, Mathworks Inc., Natick, MA). The
Kolmogorov-Smirnov test was used to analyse the
normality of numerical variables. Comparison between
groups was performed using the Wilcoxon test as an
alternative to the Student’s t-test due to the non-nor-
mality of the variables. A p-value < 0.05 was consid-
ered statistically significant.

Machine Learning Pipeline

The aim of this work was to diagnose MS disease
and predict the disability progression in MS patients
using clinical data and OCT data in combination with
machine learning techniques. To solve these problems,
it is necessary to divide the method into five steps: data
preprocessing, Variable selection, model building,
cross-validation and model assessment (see Fig. 2).

Data Preprocessing

Data preprocessing is a very important step in ma-
chine learning. Data cleaning, missing data resolution
and data balancing are included here. We had to
eliminate those subjects with incomplete data and re-
move from the study those variables that had not been
collected in a large number of subjects.

Given a binary classification problem, the data are
class-imbalanced when the majority of the subjects
represent one class. In this way, many classification
algorithms have low predictive accuracy for the infre-

cFIGURE 1. Schematic representation of Spectralis OCT
acquisition protocols on a right eye retina. Fast macular
thickness protocol measures total volume and macular RNFL
(mRNFL) thickness in nine sectors (CF central fovea, IN inner
nasal, ON outer nasal, IS inner superior, OS outer superior, IT
inner temporal, OT outer temporal, II inner inferior, OI outer
inferior). Fast RNFL thickness protocol measures
peripapillary RNFL (pRNFL) thickness by providing mean
pRNFL thickness (G) and pRNFL thickness in six sectors NS
superonasal, N nasal, NI inferonasal, TI inferotemporal, T
temporal, TS superotemporal. This protocol also generates
768 pRNFL thickness measurements with a circular sweep
from temporal to temporal (counterclockwise). Fast RNFL-N
thickness protocol differs from the previous one in two
aspects: it adds papillomacular bundle (PMB) thickness and
nasal/temporal (N/T) ratio, and the circular sweep is
performed from nasal to nasal (clockwise). OD right eye,
OCT optical coherence tomography, RNFL retinal nerve fiber
layer.
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quent class. The problem of class imbalance is closely
related to cost-sensitive learning, in which the costs of
errors, per class, are not equal. It is much worse to
falsely diagnose a MS patient as healthy control (false
negative) than to misdiagnose a healthy control as MS
patient (false positive). A false negative could result in
the loss of life, so is much more expensive than a false
positive.

In order to improve the classification performance
of class-imbalanced data, synthetic minority over-
sampling technique (SMOTE) was used. SMOTE is
widely used to balanced clinical data in machine
learning approaches.60 This method works by resam-
pling the minority class so that the resulting dataset
contains an equal number of positive and negative
subjects. To increase the sample of the minority class,
SMOTE synthesises new cases. To do so, a data point
is randomly selected from the minority class and its k-
nearest neighbours (k-NN) are determined. Following
the consensus, 5 neighbours were used. The new syn-
thetic subject is a combination of the randomly se-
lected data point and its neighbours.24

Variable Selection

In the development of predictive models, the selec-
tion of relevant variables has several advantages such
as reducing overfitting, improving predictive accuracy
and reducing computational cost. In machine learning,
a rule of thumb is to have a number of subjects per
class of at least ten time the number of variables.39 To
perform this variable selection, least absolute shrink-

age and selection operator (LASSO) and sequential
forward selection (SFS) were used to remove the
irrelevant variables. LASSO regression imposes a
constraint on the model variables that produces
regression coefficients so that some of these variables
are reduced to zero and removed from the dataset,
retaining only the good features of the data.57 SFS
method is based on trying to minimize the objective
function called misclassification rate over all possible
subsets of features. To minimize this rate, this
sequential forward algorithm incorporates features
while evaluating the objective function until adding
more features does not decrease the objective func-
tion.54

Model Building

The predictive models were developed for two pur-
poses: MS diagnosis and MS prognosis. The classifiers
used for model building were implemented in Matlab
(version 2020b, Mathworks Inc., Natick, MA) using
the Statistics and Machine Learning Toolbox. Classi-
fier performance was optimised by hyperparameter
optimization, which attempts to minimise the cross-
validation loss.

Multiple Linear Regression Multiple linear regression
(MLR) is used to estimate the relationship between one
or more explanatory variables and a response variable
by fitting a linear equation to observed data. MLR can
be very useful in understanding the role that predictors

FIGURE 2. Machine learning pipeline of the proposed method consists of five steps: data preprocessing, variable selection, 10-
fold cross-validation, model building and model assessment.
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play in the predictive model.38 This is the simplest
linear model to be tested in a binary classification
problem.32

Support Vector Machine In a binary classification
problem, SVM seeks the optimal hyperplane that
separates two different classes with the maximum
margins. SVM supports the mapping of predictor data
using kernel functions with an optimised kernel scale
value to increase the separability of the hyperplane for
non-separable problems.58 In case of non-separable
classes, this classifier imposes a penalty factor, called
box constraint, whose aim is to avoid overfitting. This
classifier has been extensively tested in the literature,
both for MS diagnosis9,41 and MS prognosis.65

K-Nearest Neighbours The k-NN algorithm is one of
the most used classifiers in machine learning.10,21,33

This algorithm consists in associating the training data
with a distance function and the class choice function
based on the classes of nearest neighbours. Before
classifying a new subject, it should be compared with
another subject using a similarity measure. Its k-
nearest neighbours are considered and the class that
appears most among them is assigned to the new
subject. In general, a number of neighbours greater
than one is used, since such a small number could lead
to overfitting. The neighbours are weighted by the
distance from the new subjects to be classified.63

Decision Tree In the DT classifier, a tree is developed
and it contains a predefined target variable. The
structure of a DT contains a root node, several internal
nodes and several leaf nodes. This tree is traversed
from root to leaf for decision making and this process
is carried out until the criteria are met.10 The minimum
number of leaf node observations and the minimum
number of branch observations are the parameters
with which the depth of the trees can be controlled.
The ability of DT to accurately classify between MS
patients and healthy controls and to predict the short-
term course of MS has also been previously investi-
gated.3,63

Naı̈ve Bayes Based on Bayesian theory for density
estimation, the Naı̈ve Bayes (NB) classifier assumes
that predictor variables are independent of each other.
This assumption of independence increases the sim-
plicity of the model. Kernel density estimation, defined
by the smoothing parameter called bandwidth, is one
of the most commonly used data distributions. The
choice of this hyperparameter determines the
smoothness of the density plot, so it is preferable to
choose a bandwidth as small as the data allow. The
performance of the NB algorithm is comparable to

that of the DT due to its high accuracy and speed, as
well as fast training and low computational complex-
ity.20

Ensemble Classifier Another possibility is to combine
several algorithms using ensemble methods. EC gen-
erates several base classifiers from which a new clas-
sifier is derived which works better than any
constituent classifier. The motivation is to combine
weak models to produce a powerful ensemble.24 Lo-
gitBoost was used as the ensemble aggregation algo-
rithm to train the set of boosted classification trees.
There are several hyperparameters to optimize the
performance of this classifier: number of learning cy-
cles, learning rate and minimum number of leaf node
observations.5 In this structure, the number of learning
cycles corresponds to the number of classification
trees. The learning rate limits the contribution of each
new classification tree added in the algorithm. These
type of ensemble learning approaches showed good
performance in previous studies with the same pur-
poses as this work.36,65

Long Short-Term Memory Recurrent neural network
(RNN), particularly those that work by learning se-
quences, such as long short-term memory (LSTM), are
very useful in the context of disability course predic-
tion. In previous works comparing several classifiers
with this objective, this method showed the best
results.36,52 LSTM models are able to work with long-
range dependencies and non-linear dynamics. Another
sequence models, such as Markov models, conditional
random fields and Kalman filters, deal with sequential
data but fail to learn the long-range dependencies.
However, this RNN can learn representations and can
discover unexpected structures.28 The LSTM neural
network implemented in this work had the following
structure: a sequence input layer, a bidirectional
LSTM layer with predefined hidden layers containing
the information recalled between time steps, a fully
connected layer, a softmax layer and a final classifi-
cation output layer. The input layer inputs the features
into the network. The size of the fully connected layer
correspond to the number of classes. Finally, softmax
layer converts a vector of real values into a vector of
probabilities. This structure can be improved by opti-
mising the number of hidden layers, the epochs and the
mini-batch size. A mini-batch is a subset of the training
set used to evaluate the gradient of the loss function
and update the weights. An epoch is the complete
passage of the algorithm over the entire training set
using mini-batches.
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Cross-Validation

Since our dataset was not large enough to use hold-
out validation, k-fold cross-validation was used to re-
duce the risk of overfitting. In addition, this method
ensures that the result is independent of the initial
division.46 The data set was randomly divided into
equal k-fold, using 1-fold as a test set and the
remaining folds as training set. This process is repeated
k-times until each fold has been used as a test set and
the overall performance is calculated by the combina-
tion of these k-iterations. A 10-fold cross-validation
was used, as it is the general recommendation in the
machine learning field due to its balance between
performance and computational cost.20

Data normalization was performed to improve the
quality of our dataset. The normalization used for
numerical variables consists of the normalization of
the training set (mean of 0 and standard deviation of 1)
and the normalization of the test set using the mean
and standard deviation of the training set. With this
method, the classification algorithms do not have ac-
cess to future information. Since these algorithms work
with numerical variables, categorical variables, such as
sex, MS subtype, optic neuritis antecedent and relapse
in preceding year, had to be encoded into numerical
values using one-hot encoding.44

Model Assessment

Confusion matrix was used as a performance mea-
surement because it is extremely useful to determine
accuracy, sensitivity, specificity, precision and negative
predictive value (NPV). First, four parameters have to
be defined: true positives (TPs) are the positive data
correctly classified and true negatives (TNs) are the
negative data correctly classified, false positives (FPs)
are the negatives classified as positives and false neg-
atives (FNs) are the positives classified as negatives.
Accuracy provides the percentage of correctly classi-
fied subjects. Sensitivity is used to determine the pro-
portion of positives that are correctly identified and
specificity is used to determine the proportion of neg-
atives that are correctly identified. Precision expresses
the percentage of the predicted positives that are
actually positive and NPV is the percentage of the
predicted negatives that are actually negatives.

AccuracyðaccÞ ¼ TPþ TN

TPþ TNþ FPþ FN
; ð1Þ

Sensitivity sensð Þ ¼ TP

TPþ FN
; ð2Þ

Specificity specð Þ ¼ TN

TNþ FP
; ð3Þ

Precision precð Þ ¼ TP

TPþ FP
; ð4Þ

NegativepredictivevalueðNPVÞ ¼ TN

TNþ FN
; ð5Þ

There are more parameters to evaluate a binary
classification. F1 score is the harmonic mean of pre-
cision and sensitivity and Fowkles–Mallows index
(FM) is the geometric mean of precision and sensitiv-
ity. However, these parameters do not take into
account TN and give equal importance to precision
and sensitivity when, in practice, different misclassifi-
cations cause different costs. For example, a FN (MS
patient classified as healthy control) is worse than a FP
(healthy control classified as MS patient). To solve
that, we used Matthews correlation coefficient (MCC),
which is a correlation coefficient between actual values
and predicted values. It ranges from -1 to 1, where 0
indicates a random classification. Since there is no
perfect way to describe the confusion matrix by a
single number, this parameter is one of the most
informative because it takes into account true and false
positives and true and false negatives.

F1 score ¼ 2
Prec � Sens
Precþ Sens

; ð6Þ

FM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Prec � Sens
p

; ð7Þ

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p ;

ð8Þ

Another interesting parameter is Cohen’s kappa
coefficient (j), which is used to determine the degree of
agreement between actual and predicted values. It is a
more robust measure because it takes into account the
possibility of a correct classification by chance.

j ¼ Acc�Randomacc

1�Randomacc
; ð9Þ

RandomAcc ¼ TNþ FPð Þ TNþ FNð Þ þ ðFNþ TPÞðFPþ TPÞ
ðTPþ TNþ FPþ FNÞ2

;

ð10Þ

The receiver operating characteristic (ROC) curve, a
graph that illustrates the diagnostic ability of a classi-
fication algorithm, was also analysed. The ROC curve
is drawn by plotting the true positive rate (TPR) or
sensitivity against the false positive rate (FPR) as the
discrimination threshold is varied. The area under the
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curve (AUC) provides a measurement of performance
at all possible classification threshold.

MS Diagnosis Model

AMS diagnosis model was developed using the data
from 72 MS patients and 30 healthy controls evaluated
in our cross-sectional study. For this model, we used
three datasets, one per each protocol. Dataset 1: gen-
eral data and fast macular thickness protocol (13 fea-
tures). Dataset 2: general data and fast RNFL
thickness protocol (778 features). Dataset 3: general
data and fast RNFL-N thickness protocol (780 fea-
tures).

This cross-sectional study was class-imbalanced, so
SMOTE was used to resample healthy controls class.
In this way, the data turned out to be 72 MS patients
and 72 healthy control, a total of 144 subjects. It can
be seen that these three datasets contained too many
variables compared to the number of subjects per class,
so it was necessary to perform variable selection.
LASSO was applied to reduce the datasets to five, six
or seven variables, depending on the dataset (see
Fig. 3). As previous works also demonstrated,29,36,37

the reduced datasets after applying LASSO showed a
better model performance. Finally, the six classifiers
were tested using the 10-fold cross-validation for
model assessment. The LSTM was not used in this
model because it is designed to work with time series.

MS Prognosis Model

Here, the data from our longitudinal study were
used to develop a model capable or predicting the
long-term course of disability state in MS patients. The
72 MS patients were evaluated in seven visits: a base-
line visit followed by five annual visits and a final visit
10 year after the start of the follow-up. This model was
carried to know the disability state of MS patients in
the future, distinguishing between patients whose dis-
ability state will get worse and patients whose disability
state will remain in a similar neurological state. We
established, following the standard definition of dis-
ability progression,22 that a MS patient gets worse
when the criteria shown in Table 2 are met between the
target future time and the time the prediction is made.
In contrast, MS patients whose EDSS values do not
meet the standard criteria are considered patients who
remain in a similar disability state. We proposed to
make a prediction as soon as possible, for this reason,
we developed a first model using the data from the first

2 years of the follow-up to predict the disability state
9 years later. These two data points are the minimum
necessary for the classifiers to have a sequence to work
with. We developed a second model using data from
the first 3 years to evaluate whether delaying the pre-
diction by 1 year leads to an increase in the model
performance. With this second model, the disability
state is predicted 8 years later.

Taking into account these considerations, MS
patients turned out to be 32 patients with disability
progression and 40 patients without disability pro-
gression in both models. Therefore, we used six data-
sets, one per protocol in each model. Dataset 4: general
data, MS data and fast macular thickness protocol (19
features with 2-year follow-up). Dataset 5: general
data, MS data and fast RNFL thickness protocol (784
features with 2-year follow-up). Dataset 6: general
data, MS data and fast RNFL-N thickness protocol
(786 features with 2-year follow-up). Dataset 7: general
data, MS data and fast macular thickness protocol (19
features with 3-year follow-up). Dataset 8: general
data, MS data and fast RNFL thickness protocol (784
features with 3-year follow-up). Dataset 9: general
data, MS data and fast RNFL-N thickness protocol
(786 features with 3-year follow-up).

As in MS diagnosis model, SMOTE was applied to
resample the minority class, in these models, it was the
patients with DEDSS ‡ criteria. Therefore, the class-
balanced data was 40 patients with DEDSS ‡ criteria
and 40 patients with DEDSS< criteria. Another point
was the variable selection, in this longitudinal study we
had fewer subjects so we had to minimize the number
of features, reducing the risk of overfitting and
increasing the interpretability. As can be seen in Fig. 4,
thanks to LASSO regression, the datasets were reduced
to four or even three features.

After the variable selection process, all seven clas-
sifiers were evaluated, using 10-fold cross-validation,
to determine their capability to predict the long-term
course of disability state in MS patients.

RESULTS

Several classifiers were tested to analyse the model
performance of these two predictive models using three
Spectralis OCT acquisition protocols. The accuracy
obtained for all classification algorithms are sum-
marised in Fig. 5.
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FIGURE 3. Variable selection for multiple sclerosis (MS) diagnosis model after applying least absolute shrinkage and selection
operator (LASSO) to balanced data with 72 MS patients and 72 healthy controls. Raw dataset 1 included general data and fast
macular thickness protocol (13 features), raw dataset 2 included general data and fast retinal nerve fiber layer (RNFL) thickness
protocol (778 features), and raw dataset 3 included general data and fast RNFL-N thickness protocol (780 features). CF central
fovea, OS outer superior, II inner inferior, OI outer inferior.
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FIGURE 4. Variable selection for multiple sclerosis (MS) prognosis models after applying least absolute shrinkage and selection
operator (LASSO) to balanced data with 40 MS patients with DEDSS ‡ criteria and 40 MS patients with DEDSS < criteria. Raw
dataset 4 included general data, MS data and fast macular thickness protocol (19 features with 2-year follow-up); raw dataset 5
included general data, MS data and fast retinal nerve fiber layer (RNFL) thickness protocol (784 features with 2-year follow-up): and
raw dataset 6 included general data, MS data and fast RNFL-N thickness protocol (786 features with 2-year follow-up). Raw dataset
7 included general data, MS data and fast macular thickness protocol (19 features with 2-year follow-up); raw dataset 8 included
general data, MS data and fast retinal nerve fiber layer (RNFL) thickness protocol (784 features with 2-year follow-up): and raw
dataset 9 included general data, MS data and fast RNFL-N thickness protocol (786 features with 2-year follow-up). Values 0, 1 and 2
on the x-axis represent the years of the 10-year follow-up. EDSS expanded disability status scale, ON outer nasal, IS inner superior,
CF central fovea, IT inner temporal.

TABLE 2. Standard criteria for disability progression in multiple sclerosis patients based on expanded disability status scale
(EDSS).

Reference EDSS Criteria

0 An increase of 1.5 or more points in EDSS (DEDSS ‡ 1.5)

1 to 5.5 An increase of 1 or more points in EDSS (DEDSS ‡ 1)

6 and up An increase of 0.5 or more points in EDSS (DEDSS ‡ 0.5)
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MS Diagnosis Model

After balancing the cross-sectional data by
SMOTE, variable selection was performed using data
from 72 MS patients and 72 healthy controls. As can
be seen in Fig. 3, the result obtained with LASSO was
as follows: five features (total volume, CF, OS, II and
OI) for dataset 1, six features (points 129, 194, 257,
301, 460 and 568) for dataset 2, and seven features
(points 144, 236, 290, 305, 315, 431 and 602) for da-
taset 3. The location of all these features is shown in
Fig. 1.

For dataset 1, the best accuracy (95.8%) was
obtained using k-NN with 4 as number of nearest
neighbours and Euclidean distance as distance metric
between neighbours. Looking at Table 1, the variables
chosen by LASSO showed a statistically significant
difference (p< 0.05) between MS patients and healthy
controls. In case of dataset 2, k-NN and EC correctly
classified 134 out of 144 (4 FPs and 6 FNs, see con-
fusion matrix in Fig. 6), giving an accuracy of 93.1%.
The optimal hyperparameters were: 3 nearest neigh-
bours with cosine distance metric for k-NN, and 100
learning cycles, 0.487 learning rate and the minimum
of 1 leaf node observation for EC. Finally, for dataset
3, the best classifier was EC with an AUC of 0.951 (see
ROC curve in Fig. 7). In this case, its optimal config-
uration was 65 classification trees, a learning rate of
0.033 and a minimum of 4 observations per leaf node.
It can be seen that AUC is equal to accuracy since raw
data was balanced in the data preprocessing step.

MS Prognosis Model

For MS prognosis, two predictive models were
proposed: the first used data from the first two years of
follow-up to predict disability state 9 years later and
the second added one more data point to predict dis-
ability progression 8 years later. With this second
model, it can be assessed whether delaying the pre-
diction by 1 year increases the model performance.
After resampling the minority class, the class-balanced
data was 40 MS patients with DEDSS ‡ criteria and 40
MS patients with DEDSS < criteria.

For clinical data and fast macular thickness proto-
col, variable selection turned out to be four features
(EDSS, visual EDSS, ON and IS) for the first model
(dataset 4) and three features (EDSS, CF and IT) for
the second model (dataset 7). As can be seen in Fig. 4,
EDSS was chosen for both models. The difference
between patients with disability progression and
without disability progression was significant for
EDSS and visual EDSS at the three data points, while
for ON, IS, CF and IT was significant only at the
baseline (see Table 3). For datasets with fast RNFL
thickness protocol, four features (EDSS, visual EDSS,
points 214 and 248) were selected in dataset 5 using 2-
year follow-up and four features (EDSS, points 134,
214 and 409) in dataset 8 using 3-year follow-up. In
these two datasets, both EDSS and point 214 were in
the feature selection performed by LASSO. Finally,
with data from fast RNFL-N thickness protocol,
variable selection was almost the same for both mod-
els: four features (visual EDSS, points 7, 269 and 638)
to predict disability progression 9 years later (dataset
6) and four features (EDSS, points 7, 269 and 638) to
predict 8 years later (dataset 9).

First, we evaluated the ability of these classifiers to
predict whether or not a MS patient will get worse
using data from three Spectralis OCT acquisition
protocols collected at the first 2 years (see Fig. 5 for
accuracy of all classifiers). The best result was an
86.3% accuracy obtained by DT in dataset 4 (mini-
mum of 1 observation per leaf node and 10 observa-
tions per branch) and in dataset 5 (minimum of 4
observations per leaf node and 10 observations per
branch). As can be seen in the confusion matrices,
there were 3 FNs in dataset 4 compared to 5 FNs in
dataset 5. For dataset 6, the best classifier was also DT
with an accuracy of 80.0% and its hyperparameters
were a minimum of 6 leaf node observations and 10
branch observations.

Second, adding an additional data point to the
previous model, we tested whether delaying the pre-
diction by 1 year results in an increase in the model
performance. For dataset 7, the predictions generated
by DT were correct in 73 of 80 cases (3 FPs and 4 FNs,
see confusion matrix in Figure 6) giving an accuracy of
91.3%. The same accuracy and AUC were obtained
for dataset 8 using SVM whose optimal structure was a
box constraint of 0.431 and a kernel scale of 0.109.
Finally, k-NN correctly classified 68 out of 80 MS
patients using dataset 9 with an AUC of 0.850 (see
Fig. 7). The hyperparameter optimization showed 4
neighbours as the optimal number of nearest neigh-
bours and Euclidean distance as the distance metric
between them.

bFIGURE 5. Accuracy of different classifiers for multiple
sclerosis (MS) diagnosis and MS prognosis models.
Datasets 1, 4 and 7 (brown colour) correspond to clinical
data and fast macular thickness protocol. Datasets 2, 5 and 8
(grey colour) correspond to clinical data and fast retinal nerve
fiber layer (RNFL) thickness protocol. Datasets 3, 6 and 9 (blue
colour) correspond to clinical data and fast RNFL-N thickness
protocol. The tested algorithms were: MLR multiple linear
regression, SVM support vector machine, k-NN k-nearest
neighbours, DT decision tree, NB Naı̈ve Bayes, EC ensemble
classifier, LSTM long short-term memory, neural network.
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DISCUSSION

In MS, many factors influence the development and
progression of this disease so that even large correla-
tional studies have come to weak conclusions.48

Therefore, it is time to take advantage of the potential

of data-driven ML analysis. Most ML approaches
were based on the MRI examination to diagnose MS
or to predict disease progression, following the
emerging use of image analysis.1 However, we propose
a ML approach to diagnose MS and provide long-term
predictions of disability progression based on RNFL

FIGURE 6. Confusion matrix of the best classifier for each predictive model using different datasets. Top: results for multiple
sclerosis (MS) diagnosis. Middle: results for MS prognosis with 2-year follow-up. Bottom: results for MS prognosis with 3-year
follow-up. The best classifier and several parameters to analyse the model performance for each dataset were shown in Table 4.
(DEDSS expanded disability status scale variation).
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thickness measured by OCT. This imaging technique
has some advantages over MRI since it is a fast, cost-
effective and non-invasive test.

Paying attention to the statistical analysis of raw
data between MS patients and healthy controls (see
Table 1), the difference was significant in almost all
features (not for CF and IT) for fast macular thickness
protocol, in all features for fast RNFL thickness pro-
tocol and in most features (not for mean thickness and
N/T ratio) for fast RNFL-N thickness protocol. In
relation to general data, the difference was also sig-
nificant in BCVA. As previous studies have shown,4,15

axonal loss affects the entire pRNFL, with the tem-
poral quadrant being the most affected area in MS
patients. It can also be observed that mRNFL showed
a significant decrease in this disease. Fig. 3 shows the
variables selected by LASSO to develop the MS diag-
nosis model after balancing our raw data. As expected,
the general trend was that both volume and thickness
were higher in healthy controls than in MS patients. It
is well known that RNFL thinning occurs as part of
normal aging,59 but an additional thinning occurs as a
pathological consequence of MS. In the early stages of
the disease, demyelination and axonal transection oc-
cur. And, as the pathology progresses, inflammation
and axonal degeneration predominate.25,35

In our MS diagnosis model, the best accuracy was
obtained with fast macular thickness protocol (data-
base 1), very similar to that obtained with fast RNFL-
N thickness protocol (database 3). And the best clas-
sifiers for this purpose were k-NN and EC (see Ta-
ble 4). This result (acc: 95.8%; AUC: 0.958) was better
than that obtained in previous works by Garcia-Mar-
tin et al. who also used Spectralis OCT: an AUC of

0.94518 and an accuracy of 88.5%16 using ANN.
Compared to studies that used SS-OCT Triton to
measure RNFL, Pérez del Palomar et al.41 obtained an
accuracy of 97.2% using DT, Cavaliere et al.9 90.6%
using SVM and Garcia-Martin et al. 17 97.9 using
ANN. In our previous work36, the best result was an
accuracy of 87.7% using also EC with Cirrus HD-OCT
data.

For MS prognosis, MS patients of our longitudinal
study were divided into two classes based on standard
criteria for disability progression (Table 2). Table 3
shows the statistical analysis of clinical data and
RNFL data performed between 32 MS patients with
disability progression and 40 MS patients without
disability progression at the first 3 year of our follow-
up (the first two for the first model and the first three
for the second model). For MS data, the difference was
significant in EDSS and visual EDSS at the 3 years. In
fast macular thickness protocol, the difference turned
to be significant in all features at baseline, while only in
total volume, OS and OI at visits 1 and 2. In fast
RNFL thickness protocols, the difference between
classes was found to be significant in mean thickness,
T, ST, N, SN at baseline; in mean thickness, ST and
SN at year 1; and in ST at year 2. Finally, for fast
RNFL-N thickness protocol, the difference was sig-
nificant in mean thickness, SN, N, IT and ST at
baseline, and in IT and ST at years 1 and 2. With these
results, it could be said that the difference in RNFL
thickness was higher at the baseline visit of our 10-year
follow-up.

After applying LASSO regression to the class-bal-
anced data (40 MS patients with DEDSS ‡ criteria and
40 MS patients with DEDSS< criteria), the variable

FIGURE 7. Receiver operating characteristic (ROC) curve with area under curve (AUC) of the best classification algorithm for
multiple sclerosis (MS) diagnosis and MS prognosis using different datasets. The best classifier and several parameters to analyse
the model performance for each dataset were shown in Table 4.
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selection was shown in Fig. 4. On the one hand, EDSS
and visual EDSS were chosen and it can be seen how
MS patients with DEDSS< criteria had higher values
while the progression was very similar in both groups.
On the other hand, the RNFL data of the three
Spectralis OCT protocols chosen showed the same
overall behaviour. RNFL thickness was higher in MS
patients with DEDSS ‡ criteria and these patients
experienced a greater RNFL thinning because in MS
patients without disability progression RNFL thick-
ness was constant or subtly decreased. In this way, we
corroborate the conclusion obtained in one of our
previous works,35 establishing that axonal damage
occurs cumulatively from the onset of MS and that
most of the RNFL thinning occurs before the
appearance of significant disability. MS patients with
disability progression show a RNFL thinning while
MS patients without disability progression (patients
with greater disability) had this thinning in the past
(during the early stages of disability).

In our first MS prognosis model with a 2-year fol-
low-up, the best accuracy was 86.3% and it was
obtained with fast macular thickness protocol (dataset
4) and with fast RNFL thickness protocol (dataset 5)
using DT in both cases. Using an additional data point
to the first model, we developed our second MS
prognosis model with a 3-year follow-up. In this sec-
ond model, the performance increased compared to the
first model: an accuracy of 91.3% with fast macular
thickness protocol (dataset 7) and DT, and with fast
RNFL thickness protocol (dataset 8) and SVM. This
result obtained in the prediction of disability progres-
sion 8 years later (acc: 91.3%; AUC: 0.913) improved
our previous result (acc: 81.7%; AUC: 0.816) obtained
by LSTM using Cirrus HD-OCT.36

Pending further studies that use OCT data in com-
bination with AI for MS prognosis, we have to com-
pare our results with those of studies that used test
such as MRI or EP.53 Zhao et al.64 used MRI data to
predict disability progression after 2 years using 3-year
follow-up and the best result was an accuracy of 71.0%
with SVM. Recently, Zhao et al.65 also achieved an
AUC of 0.83 using MRI data from the first 2 years to
predict disease course 3 years later. Using EP, Yper-
man et al.62 predicted disability progression after
2 years using 2-year time series with an AUC of 0.75.
Pinto et al.42 developed several models to predict dis-
ease severity in the 6/10th year of progression using 1-
5 years of follow-up with MRI, EP and cerebrospinal
fluid (CSF) data. It is clear that model performance
increased over time, but it is preferable to achieve a
good accuracy with the minimum number of data
points. Therefore, these authors considered that the 2-
year model (AUC: 0.89) was the most suitable to
predict disease severity 4 years later.

As can be seen in Table 4, the results of this work
could indicate some conclusions. For MS diagnosis,
the best acquisition protocols of Spectralis OCT were
fast macular thickness and fast RNFL-N thickness. In
addition, the best performing binary classifiers for this
task were k-NN and EC, while simpler methods such
as MLR or NB showed a performance not as good as
the previous ones (see accuracy for MS diagnosis
model in Fig. 5). Our results are totally in accordance
with our previous work,36 in which the behaviour of
the tested algorithms was similar. For both MS prog-
nosis models, the best performance was obtained using
datasets with fast macular thickness protocol and fast
RNFL thickness protocol in combination with DT or
SVM. For prognosis purposes, the accuracy increased
from 86.3% to 91.3% using one more data point.

TABLE 4. Model assessment for each dataset, only the best classifier is shown.

Dataset Features Classifier Acc (%) Sens (%) Spec (%) Prec (%) NPV (%) F1 score FM MCC j AUC

MS diagnosis model

1 5 k-NN 95.8 94.4 97.2 97.1 94.6 0.958 0.958 0.917 0.917 0.958

2 6 k-NN/EC 93.1 91.7 94.4 94.3 91.9 0.930 0.930 0.861 0.861 0.931

3 7 EC 95.1 94.4 95.8 95.8 94.5 0.951 0.951 0.903 0.903 0.951

MS prognosis model with 2-year follow-up

4 4 DT 86.3 92.5 80.0 82.2 91.4 0.871 0.872 0.731 0.725 0.863

5 4 DT 86.3 87.5 85.0 85.4 87.2 0.864 0.864 0.725 0.725 0.863

6 4 DT 80.0 85.0 75.0 77.3 83.3 0.810 0.810 0.603 0.600 0.800

MS prognosis model with 3-year follow-up

7 3 DT 91.3 90.0 92.5 92.3 90.2 0.911 0.911 0.825 0.825 0.913

8 4 SVM 91.3 87.5 95.0 94.6 88.4 0.909 0.910 0.827 0.825 0.913

9 4 k-NN 85.0 92.5 77.5 80.4 91.2 0.860 0.863 0.708 0.700 0.850

As can be seen in Eqs. [1–9], the following parameters are calculated: accuracy (acc), sensitivity (sens), specificity (spec), precision (prec),

negative predictive value (NPV), F1 score, Fowkles-Mallows index (FM), Matthews correlation coefficient (MCC), Cohen’s Kappa coefficient

(j). Area under curve (AUC) is the area under the receiver operating characteristic (ROC) curve.

k-NN k-nearest neighbours, EC ensemble classifier, DT decision tree, SVM support vector machine.
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Therefore, it seems worthwhile to delay the prediction
by 1 year to increase the model performance. In this
case, Fig. 5 shows how the behaviour of each classifier
strongly depends on the acquisition protocol used and
the model developed, and no determining conclusion
can be drawn. This fact highlights the need for further
machine learning studies using RNFL thickness for
MS prognosis. Alternatively, as mentioned above,
several studies used data from other tests such as MRI,
EP or CSF analysis. Zhao et al. compared SVM, LR,
RF and EC.64,65 Seccia et al. tested SVM, RF, k-NN,
EC and LSTM.52 Pinto et al. used MLR, SVM, k-NN
and DT.42 All of them, together with this work, con-
cluded that SVM is one of the best classifiers to predict
MS disease course.

Although our results represent a major step forward
in the use of OCT to provide valuable information that
could help clinician to treat MS better and faster, this
work has several limitations. In our study, only good
quality scans were selected, but it is not always possible
in clinical practice. The models developed are heavily
based on OCT data. However, if these data are com-
bined with other previously studied tests such as MRI,
EP or CSF analysis, the model performance could be
improved. Although the EDSS score is considered the
most useful tool to measure MS disability progression,
this scale has low reliability and sensitivity.34 Our
prediction of progression is based on the variation of
EDSS score (DEDSS), so the output of our models is a
qualitative and not a quantitative prediction.

Another highly limiting aspect is the sample popu-
lation of our study (72 MS patients and 30 healthy
controls) which is too small to establish our results as a
gold standard. It can be said that the dataset detailed
in this work could be representative of the subjects
affected by MS since these data follow the trend of this
pathology: 73.6% of MS patients were females and
RRMS was the most predominant MS subtype.
Moreover, the size of our raw data and characteristics
such as age or MS duration were similar to those of
previous studies.36,42 However, more cross-sectional
and longitudinal studies with the same aims and with
larger sample population will be required to confirm
RNFL thickness as a biomarker for early diagnosis
and prediction of the disability progression in MS
patients.

We must also take into account our class-imbal-
anced data and the method used to solve this issue. The
use of any method of handling imbalanced datasets
actually changes the nature of the dataset, and this fact
could imply the generality of the results. However, by
generating examples similar to existing minority sub-
jects, SMOTE creates broader and less specific decision
boundaries that increase the generalizability of the
classifiers, increasing their performance.23,49 Thus, the

risk of overfitting for the majority class and underfit-
ting for the minority class is reduced.

With thiswork, we support the idea of several authors
to use AI in MS and take advantage of its benefits.1 For
our particular goal, OCT is an objective, reproducible,
cost-effective and non-invasive test that can be per-
formed by any clinician in a couple of minutes, without
causing any discomfort to the patient. This study can be
considered as a proof of concept on the possibility of
diagnosing MS and predicting MS disability progres-
sion using a machine learning approach with Spectralis
OCT data. This work used data from a hospital with the
aim of developing models that are ready to test new
patients who are undiagnosed or whose progression is
unknown. In addition, disease progression was also
analysed by accumulating information based on con-
secutive years. This would be of great benefit to doctors,
who would be able tomake an early diagnosis and select
more specific treatments according to the predicted
disability progression of each MS patient.
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