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Abstract

OBJECTIVES: To perform a systematic comparison of in-hospital mortality risk prediction post-cardiac surgery, between the predominant
scoring system—European System for Cardiac Operative Risk Evaluation (EuroSCORE) II, logistic regression (LR) retrained on the same vari-
ables and alternative machine learning techniques (ML)—random forest (RF), neural networks (NN), XGBoost and weighted support vector
machine.

†The first two authors contributed equally to this study.
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METHODS: Retrospective analyses of prospectively routinely collected data on adult patients undergoing cardiac surgery in the UK from
January 2012 to March 2019. Data were temporally split 70:30 into training and validation subsets. Mortality prediction models were cre-
ated using the 18 variables of EuroSCORE II. Comparisons of discrimination, calibration and clinical utility were then conducted. Changes
in model performance, variable-importance over time and hospital/operation-based model performance were also reviewed.

RESULTS: Of the 227 087 adults who underwent cardiac surgery during the study period, there were 6258 deaths (2.76%). In the testing
cohort, there was an improvement in discrimination [XGBoost (95% confidence interval (CI) area under the receiver operator curve (AUC),
0.834–0.834, F1 score, 0.276–0.280) and RF (95% CI AUC, 0.833–0.834, F1, 0.277–0.281)] compared with EuroSCORE II (95% CI AUC,
0.817–0.818, F1, 0.243–0.245). There was no significant improvement in calibration with ML and retrained-LR compared to EuroSCORE II.
However, EuroSCORE II overestimated risk across all deciles of risk and over time. The calibration drift was lowest in NN, XGBoost and RF
compared with EuroSCORE II. Decision curve analysis showed XGBoost and RF to have greater net benefit than EuroSCORE II.

CONCLUSIONS: ML techniques showed some statistical improvements over retrained-LR and EuroSCORE II. The clinical impact of this im-
provement is modest at present. However the incorporation of additional risk factors in future studies may improve upon these findings
and warrants further study.

Keywords: Machine learning • Mortality prediction • Cardiac surgery • Risk stratification • Benchmarking

ABBREVIATIONS

AUC Area under the receiver operator curve
CI Confidence interval
E Expected outcome
EuroSCORE European System for Cardiac Operative Risk

Evaluation
FP False positive
LR Logistic regression
NN Neural network
O Observed outcome
RF Random forest
SVM Support vector machine
TP True positive

INTRODUCTION

The inherent mortality risk associated with cardiac surgery needs
to be accurately quantified using an updated and accurate risk
prediction model. With the emergence of alternative treatment
strategies and improving outcomes, this would allow appropriate
patient counselling, provide a context for benchmarking results
and form the basis of treatment guidelines.

The predominant in-hospital mortality risk stratification tool
utilized in adult cardiac surgery in the UK is the European System
for Cardiac Operative Risk Evaluation (EuroSCORE) II [1]—formu-
lated in 2011. It assessed results from multiple European centres
using logistic regression (LR) and utilizes 18 perioperative factors.
The data relevant to its calculation are now routinely gathered,
analysed and released for the above purposes. EuroSCORE II
improved upon the results of logistic EuroSCORE [2] but still has
a tendency to over-estimate risk, especially in those in the high-
est risk strata [3–8] and in those operated on outside Europe [9].

LR is a powerful tool that has been utilized for many years in
the development of prediction models. It relies on key assump-
tions regarding the linearity of the relationship between the logit
of the explanatory variables and the response variable and the
lack of multi-collinearity between explanatory variables [10]. Any
such complex interactions would have to be accounted for by
the model developer and could decrease the final model’s per-
formance. Machine learning (ML) can be defined as ‘the science
of getting computers to learn, without being explicitly pro-
grammed’ [11]. Interest in ML-based prediction modelling has

increased considerably in recent years [12, 13]. ML incorporates a
multitude of different algorithms and has the advantages of not
making assumptions regarding linearity and using self-generating
algorithms to interpret complex variable interactions and handle
large volumes of data. These techniques have limitations when
handling small volumes of data or large class imbalances.
Comparisons between these techniques as applied to prediction
modelling in cardiac surgery has been limited [12–15]. A recent
meta-analysis by our group [14] has shown some advantages of
ML algorithms over LR. However, the true clinical impact of these
differences was difficult to establish. Our single-centre study
found no significant differences in the performance of models
developed using ML compared to LR [16]. With this study, we
applied similar techniques on a much larger national dataset of
over 220 000 patients to investigate differences in predictive per-
formance between EuroSCORE II, ML-based or LR-based models
retrained on the EuroSCORE II variables. We perform a thorough
analysis using measures of discrimination, calibration and clinical
utility. Finally, we reviewed model performance over time, be-
tween hospitals, between operations and temporal changes in
variables importance. We are adding to the knowledge behind
model development and assessment with our paper.

METHODS

Ethics statement

The register-based cohort study is part of research approved by the
Health Research Authority (HRA) and Health and Care Research
Wales and a need for patients’ consent was waived (HCRW) (IRAS
ID: 257758, 23 July 2019). Reporting of results follows the TRIPOD
statement.

Data extraction

A complete extract of prospectively collected data from the
National Adult Cardiac Surgery Audit was obtained from the
National Institute of Cardiovascular Outcomes Research central
cardiac database of all adults undergoing cardiac surgery in
England and Wales. Data processing and imputation of missing
data were as previously described [17, 18] using R v4.0.2 [19]. Age
and weight were imputed using the median. The absence of
other variables was presumed to be an absence of that risk factor,
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a method previously established by National Adult Cardiac
Surgery Audit. The variables unique to EuroSCORE II (e.g.
Creatinine Clearance) were not routinely collected in the UK till
after its publication in 2012. Hence, on analysis of the national
data, we found that a meaningful comparison with EuroSCORE II
could only be formulated by utilizing data from 2012 to 2019.

Statistical analysis

Categorical variables were summarized as counts and percentages.
Continuous variables were summarized as mean and standard devi-
ation. The primary outcomes were discrimination, calibration and
clinical utility of the different models in prediction of mortality risk
either in-hospital or within 30 days of cardiac surgery. Comparisons
of quantitative model performance were performed using Tukey’s
pairwise analysis.

Model development

All models were developed with Python [20] Scikit-learn v0.23.1
and Keras v2.4.0 using the 18 variables in EuroSCORE II - age,
gender, renal impairment, extracardiac arteriopathy, poor mobil-
ity, previous cardiac surgery, chronic lung disease, active endo-
carditis, critical preoperative state, diabetes on insulin, New York
Heart Association score, Canadian Cardiovascular Society score
class 4 angina, left ventricular function, recent myocardial infarc-
tion, pulmonary hypertension, operative urgency, weight of the
intervention and thoracic aortic surgery [1]. Categorical variables’
values were converted to either binary values for dichotomous
categories or to the ordinal scale for multi-category variables.

We acknowledge that the risk profile and outcomes have evolved
over time. This is the inherent reason why prediction models need
periodic updating. We have temporally split the data for 3 reasons—
(i) this mimics the natural development of prediction models with
prospective verification of predictive ability following model devel-
opment, (ii) cohorting the training dataset by time effectively
removes the bias of time-based variation in the above predictor
and outcome variables when developing the models (i.e. they are
all equally effected by temporal changes), (iii) it permitted a review
of calibration drift. The 2012–2019 dataset was split with 70% of
records (1 January 2012–31 December 2016) for training and 30%
(1 January 2017–31 March 2019) for external validation. The ML-
models developed were retrained-LR, neural networks (NN),
XGBoost and weighted support vector machine (SVM) and random
forest (RF) (Supplementary Material, Table S1).

Model validation

We utilized a modified five-fold cross-validation approach suited
to multi-metric assessment with conserved evaluation to extract
and vertically combine probabilities and outcome class from
each iteration into 2 single vectors (Supplementary Material, Fig.
S1). In essence, only 1 model’s prediction is applied to any subset
of the validation dataset, thus making the training performance
results more comparable to the hold-out dataset.

Model evaluation

Formulae are provided in Supplementary Material, Table S2.

Discrimination. Discrimination is ‘how well the model differen-
tiates those at higher risk of having an event from those at lower
risk’ [21, 22]. We are interested in how effectively the models identify
those that are likely to experience an event (i.e. death) and so the
true positive (TP) rate is of greater significance. The F1 score [23, 24]
was used in addition to area under the receiver operator curve
(AUC), with the corresponding 95% confidence intervals (CIs) using
bootstrap-t sampling with replacement, as it places the emphasis on
the TPs and penalizes a high type II error rate [24]. The F1 score is
the harmonic mean of the precision and recall and its values range
from 0 to 1, with higher scores representing better model perform-
ance. 1000 repetitions of normal bootstrap were applied for AUC
and 100 repetitions of bootstrap-t were applied for F1 score (Scikit-
learn v0.23.1 and ROCR v1.0–11). The bootstrap-t enabled relax-
ation of parametric assumptions thus reducing computational cost
for obtaining a gaussian distribution.

Calibration. Calibration is ‘how similar the predicted absolute
risk is to the true (observed) risk in groups of patients classified in
different risk strata’ [21, 25]. We have included a thorough ana-
lysis of model calibration through visual (reliability and residuals
curves) and quantitative [expected calibration error (ECE)] [26]
means. An ideal model would follow a straight line bisecting the
reliability graph with an observed-to-expected ratio (O:E) of 1. A
O:E > 1 implies under-estimation of risk. A O:E < 1 implies
over-estimation of risk. Higher ECE indicates lower calibration.

Calibration drift was assessed visually by comparing O:E over
time and quantified by comparing the ECEs across 2 time peri-
ods—2012–2016 and 2017–2019. We assessed models’ calibration
by hospital and operation. 95% CIs was derived using bootstrap-t
sampling with replacement (100 repetitions).

Overall accuracy. The Brier score encompasses both discrim-
ination and calibration. It is the mean squared error between the
observed and expected outcomes. 95% CI was derived using
bootstrap-t sampling with replacement (100 repetitions). The
smaller the Brier score the better the performance of a model.

Clinical utility. Assessed using decision curve analysis (DCA)
with plotting of net benefit against the threshold probability (pt)
(defined as the minimum probability of death at which antici-
pated benefit of surgery equals the anticipated benefit of with-
holding intervention) [25, 27, 28]. Net benefit was calculated
using proportions of TP and false-positive (FP) predictions,
weighted by the threshold probability. For comparison, the net
benefit when operating on all patients and no patients were plot-
ted at different threshold probabilities. The higher the net benefit
for a given threshold, the more clinically useful the model.

Net benefit can be interpreted as:

1. increase in TP and no change in FP—more surgery in those
that survive without a change in those that were operated on
and died—i.e. more surgery in survivors

2. no change in TP and decrease in FP—less surgery in those that
would die and no change in surgery on those that survived—
i.e. less surgery in the non-survivors.

Variable importance over time

Trends were assessed for 2012–2016 and 2017–2019 independ-
ently. Variable importance for retrained-LR and SVM is based on
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weight coefficients. XGBoost is based on gain and RF is based on
Gini importance. NN were assessed using variance-based feature
importance [29]. The baselines were generated by the mean of
each variable scaled to values between 0 and 1 using min–max
normalization. The analysis was performed using five-fold cross-
validation and the mean plotted. 95% CI was derived using
bootstrap-t sampling with replacement (100 repetitions).

RESULTS

Demographics

A total of 227 087 adults underwent cardiac surgery during the
study period. Congenital, transplant and mechanical support de-
vice insertion cases were excluded. The pre-processing of data
has been described previously [17] and is in accordance with pre-
viously published guidance [18]. Missing data were <1%. There
were 6258 deaths (2.76%) (Fig. 1). Baseline differences in
EuroSCORE II variables between survivors and non-survivors are
shown in Table 1.

Model performance

All models displayed good discrimination with all values of
AUC > 0.81. Ensemble decision tree-based algorithms, namely
XGBoost and RF, consistently out-performed other models
(Table 2, Fig. 2A, and Supplementary Material, Fig. S2A). The AUC
for XGBoost and RF were significantly greater than those for
EuroSCORE II and retrained-LR (Table 2). Similarly, F1 scores for
XGBoost and RF were greater than those for EuroSCORE II and
retrained-LR. EuroSCORE II had the lowest mean AUC and F1 of
all models assessed in the training and validation subsets
(Supplementary Material, Fig. S2A).

Retrained-LR and NN had the lowest ECEs in the training and
validation datasets, respectively (Table 2). SVM had the highest

ECE in both subsets, followed by EuroSCORE II. Pairwise compar-
isons (Supplementary Material, Table S3) showed that all models
displayed better calibration than EuroSCORE II, except SVM.

Reliability graphs (Fig. 2B and Supplementary Material, Fig.
S2B) showed that all models had performances close to the ‘ideal’
bisector line at predicted risk under 25%. Between 25% and 45%
predicted risk, RF underestimated mortality risk. Above 35% pre-
dicted risk, other models slightly overestimated risk. Of note,
most patients had a predicted probability of death of <10%
(Fig. 2B). All models showed a tendency towards overestimation
with time (Fig. 2D) although the calibration drift was lower in
NN, XGBoost and RF compared with EuroSCORE II. EuroSCORE II
overestimated risk across all deciles of risk and over time (Fig. 2C
and D). Other models marginally overestimated risk in all but the
last decile.

The best performing model as per the Brier score was XGBoost
followed by RF (Table 2). SVM and EuroSCORE II had significantly
poorer performances than other models.

DCA (Fig. 2E and Supplementary Material, Fig. S2C) showed
XGBoost had the greatest net benefit for threshold probabilities
<_0.5, exceeding that of both EuroSCORE II and retrained-LR. At a
threshold probability of 25%, the net benefit of XGBoost
(0.00217) was 0.0008 greater than EuroSCORE II (0.00140) and
0.0006 greater than retrained-LR (0.00154), equating to a net
benefit of 24 per 10 000 patients (545 patients in our cohort)
when using XGBoost compared to EuroSCORE II. The net benefit
is 16 per 10 000 people (409 patients in our cohort) when using
XGBoost compared to retrained-LR. Above the 0.5 threshold,
there is an overlap of the curves, as would be expected at such
probabilities of risk.

Interestingly, there was marked variation in model calibration
across different hospitals (Fig. 3A) and different operations
(Fig. 3B). Within a hospital, there was little change in calibration
using different models suggesting that local hospital practices or
demographic factors may be unaccounted for by changes in
model development. Surprisingly, EuroSCORE II over-estimates

Figure 1: Consort diagram showing flow of participants through the study.
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risk for isolated coronary artery bypass graft (CABG), aortic valve
replacement (AVR) and mitral valve repair/replacement (MVR).
Retrained-LR and XGBoost over-estimate risk in isolated AVR and
MVR but have comparatively better performance in isolated
CABGs. XGBoost more accurately predicts mortality following
CABG + AVR compared to EuroSCORE II and retrained-LR.
EuroSCORE II and XGBoost have greater accuracy for aortic
procedures compared to retained-LR. CABG + MVR risk is
under-estimated by XGBoost and LR, with greater accuracy using
EuroSCORE II. Detailed analysis of operation-based model
performance is being conducted by our group.

Variable importance

Over time, there were subtle changes in variable importance
(Fig. 4 and Supplementary Material, Fig. S3). Most models
showed operative urgency had the most significant influence,
with a sharp increase in importance between 2012 and 2014 and
plateau thereafter. The significance of age decreased from 2014
onwards for EuroSCORE II, RF, SVM and XGBoost. New York
Heart Association score was of greater importance in RF and
XGBoost. The influence of renal impairment increased somewhat
in EuroSCORE II but conversely decreased in RF and XGBoost.

Table 1: Baseline patient demographics

Variable Mortality status P-Valueb

Survivor, N = 220 829a Non-survivor, N = 6258a

EuroSCOREII, mean (SD) 0.03 (0.04) 0.12 (0.14) <0.001
Age (years), mean (SD) 67.5 (11.2) 70.8 (11.4) <0.001
Female gender, n (%) 59 467 (27%) 2328 (37%) <0.001
Diabetes on insulin, n (%) 12 818 (5.8%) 453 (7.2%) <0.001
Recent myocardial infarct, n (%) 43 316 (20%) 1594 (25%) <0.001
New York Heart Association score, n (%) <0.001

I 48 625 (22%) 1055 (17%)
II 96 888 (44%) 1609 (26%)
III 64 049 (29%) 2228 (36%)
IV 11 267 (5.1%) 1366 (22%)

Renal impairment, n (%) <0.001
Normal (creatinine clearance > 85 ml/min) 103 196 (47%) 1704 (27%)
Moderate (50 ml/min < creatinine clearance < 85 ml/min) 92 411 (42%) 2451 (39%)
Severe (creatinine clearance < 50 ml/min) 23 035 (10%) 1773 (28%)
On dialysis 2187 (1.0%) 330 (5.3%)

Chronic lung disease, n (%) 26 644 (12%) 1211 (19%) <0.001
Poor mobility, n (%) 8305 (3.8%) 514 (8.2%) <0.001
Extracardiac arteriopathy, n (%) 22 327 (10%) 1215 (19%) <0.001
Previous cardiac surgery, n (%) 12 012 (5.4%) 1141 (18%) <0.001
Left ventricular function (LVEF: left ventricular ejection fraction) <0.001

Good (LVEF > 50%) 184 721 (84%) 4706 (75%)
Moderate (LVEF 31–50%) 30 608 (14%) 1089 (17%)
Poor (LVEF 21–30%) 4241 (1.9%) 318 (5.1%)
Very poor (LVEF <_ 20%) 1259 (0.6%) 145 (2.3%)

Pulmonary hypertension, n (%) <0.001
Pulmonary artery systolic pressure (<31 mmHg) 201 643 (91%) 5000 (80%)
Pulmonary artery systolic pressure (31–55 mmHg) 13 126 (5.9%) 705 (11%)
Pulmonary artery systolic pressure (>55 mmHg) 6060 (2.7%) 553 (8.8%)

Canadian cardiovascular society score 4, n (%) 18 370 (8.3%) 956 (15%) <0.001
Operative urgency, n (%) <0.001

Elective 141 617 (64%) 2442 (39%)
Urgent 72 090 (33%) 2134 (34%)
Emergency 6533 (3.0%) 1230 (20%)
Salvage 589 (0.3%) 452 (7.2%)

Weight of the intervention, n (%) <0.001
Isolated CABG 111 243 (50%) 1546 (25%)

Single non-CABG 62 568 (28%) 2153 (34%)
Two procedures 42 649 (19%) 2108 (34%)
Three procedures 4369 (2.0%) 451 (7.2%)

Critical preoperative state, n (%) 7255 (3.3%) 1382 (22%) <0.001
Active endocarditis, n (%) 5816 (2.6%) 493 (7.9%) <0.001
Surgery on thoracic aorta, n (%) 9070 (4.1%) 896 (14%) <0.001

aMean (SD) or frequency (%).
bWilcoxon rank sum test; Pearson’s Chi-squared test.
CABG, coronary artery bypass graft; EuroSCORE: European System for Cardiac Operative Risk Evaluation; LVEF, left ventricular ejection fraction.
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NN variable-importance had the most marked swings over time
and no consistent trends could be identified. XGBoost displayed
the most subtle changes. SVM and EuroSCORE II had similar
variable-importance profiles.

DISCUSSION

This is the largest multicentre comparative analysis of ML-models
in adult patients undergoing cardiac surgery. The primary finding
is that ML-models improve upon the discrimination and clinical
utility of EuroSCORE II. There were subtle improvements in cali-
bration, which were similar to retrained-LR. This is in contrast to
our previous single-centre results [16]. Notably these improve-
ments were found utilizing the same limited number of variables
as EuroSCORE II. Our group will apply feature selection techni-
ques to the entire dataset to search for additional risk factors that
could be included in future models.

The increased cohort size has contributed to more accurate
model development, as is evidenced by greater AUC across all
models. The best performing ML-model showed a 1.6% improve-
ment in discrimination, that nationally would equate to hundreds
of patients being incorrectly counselled and denied surgery.
Ensemble decision tree-based models (XGBoost and RF) showed
greatest discrimination. XGBoost had the best overall perform-
ance using the Brier score.

Pairwise quantitative comparisons showed NN and retrained-
LR had the highest calibration, followed by RF and XGBoost.
Calibration drift was least pronounced for NN and XGBoost.
Periodic retraining of models is accepted in clinical practice and
indeed the Society of Thoracic Surgeons does so on an annual
basis. Periodic automated retraining of models may be possible
in the future as server capacity increases. Reliability graphs
showed good calibration of all models at predicted risk < 35%
with a separation of the curves thereafter. However, this is a co-
hort of patients that have proceeded to have surgery and, as
expected, most had predicted mortality <10% and almost none

had a predicted mortality > 50%. With very few high-risk cases,
the models are insufficiently trained on this cohort resulting in
lower calibration. As some high-risk patients did undergo sur-
gery, factors not accounted for in the database may balance the
risk perceived by the current variables. The ‘end-of-bed’ inspec-
tion adds a layer of clinic judgement that is difficult incorporate
in a rigid database. Additional information from clinicians and in-
clusion of additional clinical and radiological information is
needed in future models. Many risk factors have previously been
identified [30] but gathering such vast quantities of data are logis-
tically challenging.

The differences in AUC, F1 score and ECE show statistical sig-
nificance. However, in an over-powered study, one must inter-
pret the results with clinical context. Hence, we reviewed clinical
utility using DCA and found that the greatest net benefit from
treatment was achieved using XGBoost and would result in many
more patients appropriately being offered surgery as compared
to EuroSCORE II. Given that the mortality rate was low (2.76%),
seemingly small statistically significant improvements may also
be of clinical significance. This corroborated previous findings
[27].

The present literature has shown conflicting results for the use
of ML-models in mortality risk prediction in adult cardiac sur-
gery. Some have shown no improvement in discrimination [16],
whilst others only modest improvements [14, 15, 27]. Few have
reported calibration [15, 16] and only 1 reported clinical utility
[27]. Current research into ensemble models, super-learners and
stacked models show improved model performance [15]. Our fu-
ture work will focus on ensemble modelling.

ML-models are often described as the ‘black box’ of risk pre-
diction and this dissuades clinicians from trusting their results.
We attempted to demystify this by identifying the underlying
variable importance. Different strategies were employed to re-
flect the different mechanisms for model development and
results regularized to allow cross-model comparisons. Operative
urgency had the greatest influence on risk, which is both intuitive
and consistent with previous knowledge [1]. Notably, age had a

Table 2: Quantitative model performance

Model name Discrimination Calibration Brier scorea

AUCa F1a ECEa (�10–3)

(A) Training dataset
XGBoost 0.826 (0.825–0.826) 0.267 (0.266–0.269) 3.22 (3.14–3.29) 0.0245 (0.024–0.0246)
RF 0.824 (0.824–0.824) 0.266 (0.265–0.267) 3.30 (3.23–3.37) 0.0246 (0.0245–0.0247)
Retrained-LR 0.818 (0.818–0.818) 0.259 (0.258–0.261) 1.73 (1.67–1.79) 0.0248 (0.0247–0.0248)
NN 0.817 (0.816–0.817) 0.252 (0.251–0.253) 2.12 (2.06–2.19) 0.0248 (0.0247–0.0248)
EuroSCORE II 0.814 (0.814–0.814) 0.244 (0.243–0.245) 3.92 (3.85–3.99) 0.0250 (0.0249–0.0250)
Weighted SVM 0.818 (0.818–0.819) 0.252 (0.250–0.253) 192.02 (191.94–192.11) 0.0709 (0.0709–0.0710)

(B) Validation dataset
XGBoost 0.834 (0.834–0.834) 0.278 (0.276–0.280) 3.94 (3.85–4.03) 0.0236 (0.0235–0.0237)
RF 0.834 (0.833–0.834) 0.279 (0.277–0.281) 3.56 (3.46–3.66) 0.0236 (0.0235–0.0237)
Retrained-LR 0.822 (0.822–0.822) 0.266 (0.264–0.268) 2.34 (2.25–2.43) 0.0237 (0.0236–0.0238)
NN 0.820 (0.812–0.820) 0.272 (0.270–0.274) 1.92 (1.82–2.02) 0.0238 (0.0237–0.0239)
EuroSCORE II 0.818 (0.817–0.818) 0.253 (0.258–0.262) 5.20 (5.08–5.32) 0.0241 (0.0240–0.0242)
Weighted SVM 0.823 (0.823–0.823) 0.260 (0.252–0.255) 203.51 (203.36–203.66) 0.0749 (0.0748–0.0750)

Best performing models are highlighted in bold and worst performing models are in italics.
aMean (95% confidence interval).
AUC, area under the receiver operator curve; ECE, expected calibration error; EuroSCORE, European System for Cardiac Operative Risk Evaluation; LR, logistic re-
gression; NN, neural networks; RF, random forest; SVM, support vector machine.
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Figure 2: Assessment of model performance. (A) Discrimination—area under the receiver operator curve (AUC) of different prediction models. (B) Calibration—ratios
of observed (O)-to-expected (E) outcomes per decile of predicted risk. (C) Calibration—difference in observed (O) and expected (E) outcomes per decile of predicted
risk. (D) Assessment of calibration drift. (E) Decision curve analysis showing the expected net benefit of performing surgery on all patients, no patients and patients
stratified by retrained-logistic regression, EuroSCORE II and XGBoost at different probability thresholds.
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decreasing contribution to risk. Further analysis of trends in
prevalence of predictor variables over time would be useful.

Another criticism of risk modelling is the cohort-specific interpret-
ability of the results. We noted hospital and operation-specific varia-
tions in model calibration. Conspicuously, model calibration is
specific to a hospital or procedure rather than the model employed.
This suggests that local factors have not been accounted for in cur-
rent models. Automated data extraction from electronic health
records (EHR), use of natural language processing for report extrac-
tion, image analysis and greater information on local health provi-
sion could potentially be incorporated into future models to
increase accuracy and applicability. This would necessitate account-
ing for highly complex interactions and prove computationally ex-
pensive when using LR. ML-models may therefore be best equipped
to tackle this challenge in the future. Conversely an institution, oper-
ation or surgeon-specific risk adjusted mortality rate may need to be
utilized when counselling patients or deciding local policies.

Our study supports the study of ML-models in future iterations
of risk-stratification models and has provided a robust set of
metrics to test future models’ performance.

Limitations

Only 3 months of data for 2019 were available and future efforts
to obtain a more up-to-date dataset are planned. We also plan
to perform a dedicated study on the optimal performance hyper-
parameters and configurations for NN on the current dataset.
We will be interested in assessing stability of post-pandemic risk
prediction based on pre-pandemic data. Class imbalance does
exist within the dataset and can be tackled with different strat-
egies such as over and under-sampling or algorithm-centred
approaches that modify the algorithm to favour its prediction

towards the less-represented class. However, these approaches
are controversial and have not been employed in this analysis.

CONCLUSIONS

Machine learning models showed some statistical improvements
in discrimination, calibration and clinical utility compared with
EuroSCORE II. All models showed a degree of calibration drift.
Ensemble decision tree-based models showed the most accurate
performance. Overall, operative urgency remains the primary
contributor to mortality risk prediction. The clinical impact of
these improvements are modest at present. However, the incorp-
oration of additional risk factors, including the use of imaging
analysis and natural language processing, in future studies may
improve upon these findings and warrants further study.
Furthermore, the prospect of automated retraining of models
would be beneficial in reducing calibration drift.

SUPPLEMENTARY MATERIAL

Supplementary material is available at EJCTS online.
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Figure 3: Variations in calibration (observed-to-expected ratio) across hospitals (A) and operations (B) by different models. Ranked by observed-to-expected ratio for
the best performing model (XGBoost).
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Figure 4: Variable importance in different models over time. (A) Logistic regression (retrained). (B) XGBoost. (C) Random forest. (D) Neural network. (E) Weighted sup-
port vector machine.
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