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Abstract

Background: Prior studies have demonstrated that cardiorespiratory fitness (CRF) is a strong marker of cardiovascular
health. Machine learning (ML) can enhance the prediction of outcomes through classification techniques that classify
the data into predetermined categories. The aim of this study is to present an evaluation and comparison of how
machine learning techniques can be applied on medical records of cardiorespiratory fitness and how the various
techniques differ in terms of capabilities of predicting medical outcomes (e.g. mortality).

Methods: We use data of 34,212 patients free of known coronary artery disease or heart failure who underwent
clinician-referred exercise treadmill stress testing at Henry Ford Health Systems Between 1991 and 2009 and had a
complete 10-year follow-up. Seven machine learning classification techniques were evaluated: Decision Tree (DT),
Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian Network (BN),
K-Nearest Neighbor (KNN) and Random Forest (RF). In order to handle the imbalanced dataset used, the Synthetic
Minority Over-Sampling Technique (SMOTE) is used.

Results: Two set of experiments have been conducted with and without the SMOTE sampling technique. On average
over different evaluation metrics, SVM Classifier has shown the lowest performance while other models like BN, BC and
DT performed better. The RF classifier has shown the best performance (AUC = 0.97) among all models trained using
the SMOTE sampling.

Conclusions: The results show that various ML techniques can significantly vary in terms of its performance for the
different evaluation metrics. It is also not necessarily that the more complex the ML model, the more prediction
accuracy can be achieved. The prediction performance of all models trained with SMOTE is much better than the
performance of models trained without SMOTE. The study shows the potential of machine learning methods for
predicting all-cause mortality using cardiorespiratory fitness data.
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Background
Using data to make decisions and predications is not
new. However, the nature of data availability is changing
and the changes bring with them complexity in managing
the volumes and analysis of these data. The marriage be-
tween mathematics and computer science is driven by the
unique computational challenges of building predictive
models from large data sets and getting into untapped
hidden knowledge. Machine learning (ML) [1, 2] is a mod-
ern data analysis technique with the unique ability to learn
and improve its performance without being explicitly pro-
grammed and without human instruction. The main goal
of supervised ML classification algorithms [3] is to explain
the dependent variable in terms of the independent vari-
ables. The algorithms get adjusted based on the training
sample and the error signal. In general, conventional
statistical techniques commonly rely on the process of
hypothesis testing. This process is very user-driven
where user specifies variables, functional form and type
of interaction. Therefore, user intervention may influence
resulting models. With ML techniques, the primary hy-
pothesis is that there is a pattern (rather than an associ-
ation) in the set of predictor variables that will identify the
outcome. ML algorithms automatically scan and analyze
all predictor variables in a way that prevents overlooking
potentially important predictor variables even if it was
unexpected. Therefore, it has been acknowledged as a
powerful tool which dramatically changes the mode and
accessibility of science, research and practice in all do-
mains [4]. Medicine and Healthcare are no different [5–7].
The Henry Ford exercIse Testing (FIT) Project [8] is a

retrospective cohort that included 69,985 patients who
had undergone exercise cardiopulmonary treadmill stress
testing at Henry Ford Health System in Detroit, MI from
January 1, 1991- May 28, 2009. Briefly, the study popula-
tion was limited to patients over 18 years of age at the
time of stress testing and excluded patients undergoing
modified or non- Bruce protocol [9] exercise stress tests.
Information regarding a patient’s medical history, demo-
graphics, medications, cardiovascular disease risk factors
were obtained at the time of testing by nurses and exercise
physiologists, as well as searches through the electronic
medical records. For the full details of The FIT Project, we
refer to prior work by Al-Mallah et al. [8]. Several studies
[10–13] have used conventional statistical techniques to
predict various medical outcomes using the FIT project
data. In general, ML is an exploratory process, where there
is no one-model-fits-all solution. In particular, there is no
model that is known to achieve the highest accuracy for
all domains, problem types or datasets [14]. The best per-
forming model varies from one problem to another based
on the characteristics of the variables and observation. In
this study, we evaluate and compare seven popular super-
vised ML algorithms in terms of its accuracy of prediction

for mortality based on exercise capacity (e.g., fitness) data.
In particular, we conducted experiments using the follow-
ing ML techniques: Decision Tree (DT), Support Vector
Machine (SVM), Artificial Neural Networks (ANN),
Naïve Bayesian Classifier (BC), Bayesian Network (BN),
K-Nearest Neighbor (KNN), and Random Forest (RF).
We applied the 10-fold cross-validation evaluation method

Table 1 Baseline Characteristics for Included Study Cohort

Characteristic Data (n = 34,212)

Age (years)a 54 ± 13

Maleb 18,703 (55)

Raceb

White 23,801 (70)

Black 9768 (29)

Others 643 (1)

Body Mass Index (kg/m2)a 29.3 ± 5.8

Reason for Testb

Chest Pain 17,547 (51)

Shortness of Breath 3307 (10)

Pre-Operation 781 (2)

Rule out Ischemia 3884 (11)

Stress Variablesa

Peak METS 9.2 ± 3.1

Resting Systolic Blood Pressure (mmHg) 132 ± 19

Resting Diastolic Blood Pressure (mmHg) 82 ± 11

Resting Heart rate (bpm) 74 ± 13

Peak Systolic Blood Pressure (mmHg) 183 ± 27

Peak Diastolic Blood Pressure (mmHg) 86 ± 14

Peak Heart Rate (bpm) 151 ± 21

Chronotropic incompetenceb 6957 (23.3)

Past Medical Historyb

Diabetes 5907(17)

Hypertension 20,534 (60)

Smoking 15,249 (43)

Family History of CAD 18,299 (51)

Medications Usedb

Diuretic Use 5743 (16)

Hypertensive medications 14,905 (42)

Diabetes medications 2432 (7)

Statin 4524 (13.2)

Aspirin 5752 (16.8)

Beta Blockers 5434 (15.9)

Calcium Channel Blockers 4638 (13.5)

mmHg millimeter mercury, bpm beat per minute, CAD coronary artery disease
All the data are presented as:
aMean and standard deviation and
bfrequencies and percentages
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for all techniques where several evaluation metrics are
compared and reported. The study shows the potential of
machine learning methods for predicting all-cause mortal-
ity using cardiorespiratory fitness data.

Methods
Cohort study
In this study, we have excluded from the original registry
of the FIT project the patients with known coronary artery
disease (n = 10,190) or heart failure (n = 1162) at the time
of the exercise test or with less than 10-year follow-up
(n = 22; 890). Therefore, a total of 34,212 patients were in-
cluded in this study. The baseline characteristics of the in-
cluded cohort are shown in Table 1 and indicate a high
prevalence of traditional risk factors for cardiovascular
disease. After a follow-up duration of 10 years, a total of
3921 patients (11.5%) died as verified by the national so-
cial security death index. All included patients had a social
security number and were accounted for. In this study, we
have classified the patients into two categories: low risk of
all-cause mortality (ACM) and high risk of ACM. In
particular, patients were considered to have high risk
for ACM if the predicted event rate is more than or
equal to 3%.

Data Preprocessing
Data preprocessing is a crucial step in ML. Data that
have not preprocessed carefully may lead to misleading
prediction results. In our study, we have conducted the
following preprocessing steps.

� Outliers: The dataset used has been preprocessed by
removing outliers (values that deviate from the expected
value for a specific attribute) using the statistical
measure namely inter-quartile range (IQR) [15].
The authors in [1] compare different outlier detection
methods on biomedical datasets. The results show
that the IQR is the fastest method in detecting all
outliers correctly. Since the dataset used in this
study is nearly symmetric, its mean equals its median
equals its midrange, then the IQR is a good choice
for handling outliers. The IQR measure is used to
preprocess and identify the outliers from the training
dataset. The IQR finds the outliers from the dataset by
identifying the data that is over ranging from the
dataset. The IQR is evaluated as IQR = Q3-Q1
where Q3 and Q1 are the upper and lower quar-
tiles, respectively. The number of records that are
identified as outliers and has been removed is 808
records.

� Missing values: It has been noted that some attributes
such as the Percentage of Achieved Heart Rate and
Metabolic Equivalent (METS) have missing values.
The missing data for such attributes has been handled
by replacing the missing values by the attribute mean.

Fig. 1 The ranking of the variables based on the outcome of the
Feature Selection Process

Table 2 Comparison of the performance of Decision Tree (DT)
classifier with sampling using confidence parameter (Conf)
equals 0.1, 0.25, 0.5, 0.75 and 1

Conf = 0.1 Conf = 0.25 Conf = 0.5 Conf = 0.75 Conf = 1

Sensitivity 50.52% 55.71% 59.33% 59.95% 59.12%

Specificity 94.05% 64.97% 95.56% 96.05% 95.74%

Precision 55.69% 61.87% 67.08% 70.91% 68.52%

F-score 52.98% 58.63% 62.97% 64.97% 63.48%

RMSE 0.31 0.29 0.28 0.27 0.28

AUC 0.83 0.84 0.87 0.88 0.87

Table 3 Comparison of the performance of Decision Tree (DT)
classifier without sampling using confidence parameter (Conf)
equals 0.1, 0.25, 0.5, 0.75 and 1

Conf = 0.1 Conf = 0.25 Conf = 0.5 Conf = 0.75 Conf = 1

Sensitivity 61.52% 54.43% 43.48% 36.11% 36.11%

Specificity 90.09% 90.51% 90.91% 90.95% 90.95%

Precision 18.21% 22.80% 28.16% 30.17% 30.17%

F-score 28.10% 32.14% 34.18% 32.87% 32.87%

RMSE 0.3 0.3 0.33 0.35 0.35

AUC 0.72 0.73 0.69 0.65 0.65
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Feature selection
The FIT project dataset includes 49 demographic and
clinical variables.1 In general, it is a common case that a
few or several of the variables used in ML predictive
models are in fact not associated with the response. In
practice, including such irrelevant variables leads to un-
necessary complexity in the resulting model. Therefore,
before developing our model, we utilized an automated
R-based popular feature selection algorithm, information
gain [16], to choose the most effective attributes in classi-
fying the training data. In particular, this algorithm as-
sesses the weight of each variable by evaluating the
entropy gain with respect to the outcome, and then ranks
the variables according to their weights. Only attributes
with information gain >0 were subsequently used in
model building.

Sampling
One of the main issues we encountered with the dataset
used in this study is that it is imbalanced. In particular,
the dataset included 3946 records with class label Yes
(high risk of all-cause mortality) and 30,985 records with
class label No (low risk of all-cause mortality). In general,
the predication accuracy is significantly affected with im-
balanced data [17]. In practice, there are two ways to han-
dle the imbalanced class problem. One way is assign
distinct costs to examples in the training dataset [18]. The
other way is to either oversampling the minority class or

to under-sampling the majority class [19–22]. In order to
handle the imbalanced dataset used in this study, we use
Synthetic Minority Over-sampling (SMOTE) Technique
[23]. It is an over-sampling technique in which the minor-
ity class is over-sampled by creating synthetic examples
rather than by over-sampling with replacement. SMOTE
selects the minority class samples and creates “synthetic”
samples along the same line segment joining some or
all K nearest neighbors belonging to the minority class
[24, 25]. In other words, the oversampling is done as
follows:

1. Take sample of the dataset and find its nearest neighbors
2. To create a synthetic data point, take the vector

between a data point P in the sample dataset and
one of P’s k-nearest neighbors.

3. Multiply this vector by a random number x which
lies between 0 and 1.

4. Add this to P to create the new synthetic data point.

The percentage of SMOTE instances created in our ex-
periment is 300% (11,838 records from the minority class).

Machine learning classification techniques
In our experiments, we studied the following seven popu-
lar ML classification techniques: Decision Tree (DT), Sup-
port Vector Machine (SVM), Artificial Neural Networks
(ANN), Naïve Bayesian Classifier (BC), Bayesian Network

Table 4 Comparison of the performance of Support Vector Machine (SVM) classifier with sampling using polynomial, normalized
polynomial and puk kernels using complexity parameters 0.1, 10 and 30

Polynomial Normalized Polynomial Puk

C = 0.1 C = 10 C = 30 C = 0.1 C = 10 C = 30 C = 0.1 C = 10 C = 30

Sensitivity 36.18% 36.18% 36.18% 100% 95.10% 65.10% 47.38% 81.94% 80.26%

Specificity 94.37% 94.37% 94.37% 88.31% 88.79% 88.85% 88.58% 94.13% 95.19%

Precision 61.46% 61.41% 61.41% 0.02% 33.67% 5.62% 6.33% 53.64% 62.63%

F-score 45.55% 45.53% 45.53% 0.05% 49.73% 10.35% 11.17% 64.84% 70.36%

RMSE 0.41 0.42 0.42 0.34 0.34 0.34 0.35 0.26 0.25

AUC 0.74 0.74 0.74 0.5 0.52 0.53 0.53 0.76 0.8

Table 5 Comparison of the performance of Support Vector Machine (SVM) classifier without sampling using polynomial, normalized
polynomial and puk kernels using complexity parameters 0.1, 10 and 30

Polynomial Normalized Polynomial Puk

C = 0.1 C = 10 C = 30 C = 0.1 C = 10 C = 30 C = 0.1 C = 10 C = 30

Sensitivity 0% 0% 0% 0% 0% 56.59% 0% 37.90% 39.78%

Specificity 88.30% 88.30% 88.30% 88.30% 88.30% 88.83% 88.30% 90.22% 87.65%

Precision 0% 0% 0% 0% 0.00% 5.55% 0% 22.11% 18.03%

F-score 0% 0% 0% 0% 0.00% 10.11% 0% 27.92% 24.81%

RMSE 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.37 0.47

AUC 0.50 0.50 0.50 0.5 0.5 0.52 0.5 0.58 0.59
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(BN), K-Nearest Neighbor (KNN) and Random Forest
(RF). We explore the space of parameters and common
variations for each machine learning algorithm as thor-
oughly as is computationally feasible.
Decision Tree (DT) [26] is a model that uses a tree-like

graph to predict the value of a target variable by learning
simple decision rules inferred from the data features.
We use J48 decision tree algorithm (Weka implemen-
tation of C4.5 [27]). We tested the J48 classifier with
confidence factor of 0.1, 0.25, 0.5, 0.75 and 1. The
confidence factor parameter tests the effectiveness of
post-pruning and lowering the confidence factor de-
creases the amount of post-pruning.
Support Vector Machine (SVM) [28] represents the in-

stances as a set of points of 2 types in N dimensional
place and generates a (N - 1) dimensional hyperplane to
separate those points into 2 groups. SVM attempts to
find a straight line that separates those points into 2
types and is situated as far as possible from all those
points. Training the SVM is done using Sequential
Minimal Optimization algorithm [2]. We used Weka
implementation of SMO [29]. We tested SVM using
polynomial, normalized polynomial, puk kernels and
varied the complexity parameter {0.1, 10, and 30}. The
value of the complexity parameter controls the tradeoff
between fitting the training data and maximizing the
separating margin.
Artificial Neural Network (ANN) [30] attempts to

mimic the human brain in order to learn complex tasks.
It is modeled as an interconnected group of nodes in a
way that is similar to the vast network of neurons in the
human brain. Each node of the network receives inputs
from other nodes, combines them in some way, performs
a generally nonlinear operation on the result and outputs
the final result. We trained the Neural Networks with
gradient descent backpropagation. We varied the num-
ber of hidden units {1, 2, 4, 8, 32} and the momentum
{0,0.2,0.5,0.9}.
Naïve Bayesian Classifier [31] applies Bayes’ theorem

[32] with the naive assumption of independence between
every pair of features. We use Weka implementation of
Multilayer Perceptron [33]. We try three different Weka
options for handling continuous attributes: modeling
them as a single normal, modeling them with kernel
estimation, or discretizing them using supervised
discretization. Bayesian Network [34] is designed for
modeling under uncertainty where the nodes represent
variables and arcs represent direct connections between
them. BNs model allows probabilistic beliefs about the
variables to be updated automatically as new information
becomes available. We tried different search algorithms
including K2 [33], Hill Climbing [35], Repeated Hill
Climber, LAGD Hill Climbing, TAN [36], Tabu search
[53] and Simulated annealing [37].

K-Nearest Neighbors (KNN) [38] identifies from the
neighbors, K similar points in the training data that are
closest to the test observation and classifies it by esti-
mating the conditional probability of belonging to each
class and choosing the class with the largest probability.
We varied the number of k {1, 3, 5, 10} neighbors. We
considered three distance functions: Euclidean distance,
Manhattan distance and Minkowski distance.
Random Forest (RF) [39, 40] is a classification algo-

rithm that works by forming multiple decision trees at
training and at testing it outputs the class that is the
mode of the classes (classification). Decision tree works
by learning simple decision rules extracted from the data
features. The deeper the tree, the more complex the de-
cision rules and the fitter the model. Random decision
forests overcome the problem of over fitting of the deci-
sion trees. We use Random Forest Weka implementa-
tion. We varied the forests to have 10, 50, and 100 trees.
The size of the feature set considered at each split is 1,
2, 4, 8, and 12.

Model evaluation and validation
In order to evaluate our models, we used the 10-fold
cross-validation [39] evaluation method where the data
are randomly partitioned into 10 mutually exclusive sub-
sets {D1, D2, …, DK} with approximately equal size. The

Table 8 Comparison of the performance of Naïve Bayesian
classifier (BC) using three different Weka options for handling
continuous attributes: single normal, kernel estimation and
supervised discretization using Sampling

Single Normal kernel Estimation Supervised Discretization

Sensitivity 35.32% 40.90% 37.41%

Specificity 93.26% 92.37% 93.32%

Precision 52.34% 42.70% 52.20%

F-score 42.18% 41.78% 43.59%

RMSE 0.35 0.32 0.34

AUC 0.81 0.81 0.82

Table 9 Comparison of the performance of Naïve Bayesian
classifier (BC) using three different Weka options for handling
continuous attributes: single normal, kernel estimation and
supervised discretization without using Sampling

Single Normal kernel Estimation Supervised Discretization

Sensitivity 35.73% 41.25% 37.71%

Specificity 93.22% 92.17% 93.23%

Precision 51.89% 40.79% 51.32%

F-score 42.32% 41.02% 43.47%

RMSE 0.35 0.32 0.34

AUC 0.81 0.81 0.82
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testing operation is then repeated 10 times where at the
ith evaluation iteration, the Di subset is used as the test
set and the others as the training set. In general, a main
advantage of the 10-fold cross-validation evaluation
method is that it has a lower variance than a single
hold-out set evaluator. In particular, it reduces this vari-
ance by averaging over 10 different partitions, therefore,
it is less sensitive to any partitioning bias on the training
or testing data. For each iteration of the evaluation
process, the following metrics are calculated:

� Sensitivity: True Positive recognition rate

Sensitivity = TP/TP + FN

� Specificity: True Negative recognition rate

Specificity = TN/TN + FP

� Precision: It represents the percentage of tuples that the
classifier has labeled as positive are actually positive

Precision = TP/TP + FP

� F-score: It represents the harmonic mean of
precision and sensitivity

F-score = 2 * TP / 2* TP + FP + FN

� Root Mean Squared Error (RMSE): It is defined as the
square root of the mean square error that measures

the difference between values predicted by the model
and the actual values observed, where y′ is a vector
of n predictions and y is the vector of n observed
(actual) values

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

n

i¼1

y′i−yi
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� ROC: Receiver Operating Characteristic (ROC)
Curve [40] is a way to quantify the diagnostic value
of a test over its whole range of possible cutoffs for
classifying patients as positive vs. negative. In each
possible cutoff, the true positive rate and false positive
rate is calculated as the X and Y coordinates in the
ROC Curve.

True Positive (TP) refers to the number of high risk
patients who are classified as high risk, whereas False
Negative (FN) refers to the number of high risk patients
who are classified as low risk patients. On the other
hand, False Positive (FP) refers to the number of low risk
patients who are classified as high-risk patients and False
Negative (FN) refers to the number of low risk patients
who are classified as low risk patients. All results of the
different metrics are then averaged to return the final
result.

Table 10 Comparison of the performance of Bayesian Network classifier (BN) using different search algorithms: K2, Hill Climbing,
Repeated Hill Climber, LAGD Hill Climbing, TAN, Tabu and Simulated Annealing using Sampling

K2 Hill Climbing Repeated Hill Climber LAGD Hill Climbing TAN Tabu Simulated Annealing

Sensitivity 37.44% 37.44% 37.44% 47.65% 60.07% 37.59% 55.20%

Specificity 93.31% 93.31% 93.31% 91.55% 91.02% 93.20% 91.23%

Precision 52.11% 52.11% 52.11% 33.76% 27.32% 51.10% 29.71%

F-score 43.57% 43.57% 43.57% 39.52% 37.56% 43.31% 38.63%

RMSE 0.34 0.34 0.34 0.34 0.28 0.34 0.29

AUC 0.82 0.82 0.82 0.81 0.84 0.81 0.84

Table 11 Comparison of the performance of Bayesian Network classifier (BN) using different search algorithms: K2, Hill Climbing,
Repeated Hill Climber, LAGD Hill Climbing, TAN, Tabu and Simulated Annealing without using Sampling

K2 Hill Climbing Repeated Hill Climber LAGD Hill Climbing TAN Tabu Simulated Annealing

Sensitivity 37.70% 37.70% 37.70% 48.11% 57.09% 37.94% 53.65%

Specificity 93.21% 93.21% 93.21% 91.44% 90.71% 93.19% 90.97%

Precision 51.20% 51.20% 51.20% 32.63% 24.57% 50.89% 27.44%

F-score 43.42% 43.42% 43.42% 38.89% 34.35% 43.47% 36.31%

RMSE 0.34 0.34 0.34 0.34 0.34 0.3 0.3

AUC 0.82 0.82 0.82 0.81 0.83 0.81 0.82
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Results
As an outcome of the feature selection process, the ML
models have been developed using only 15 variables where
Age, METS, Percentage HR achieved, HX Hypertension,
Reason for test are ranked as the top significant five vari-
ables. The full list of the outcome variables is presented in
Fig. 1.
Tables 2 and 3 show the performance of the DT classi-

fier, with confidence parameter (Conf ) equals 0.1, 0.25,
0.5, 0.75 and 1, using sampling and without using sampling,
respectively. The results show that the AUC increased as
the confidence factor increased up to about 0.75 at a peak
of 0.88 AUC using sampling and up to about 0.25 at a peak
of 0.73 AUC without using sampling, after which the classi-
fier exhibited effects of over-training. These effects are seen
by a decrease in the AUC value with a confidence factor
above 0.75 using sampling and above 0.25 without using
sampling.
The results of the SVM classifier using sampling and

without using sampling are reported in Tables 4 and 5,
respectively. Different kernels (polynomial kernel, normal-
ized polynomial kernel and puk kernel) and complexity
parameters (C) (0.1, 10 and 30) are tested. The results
show that the AUC increased as the complexity parameter
increased up to 30 using sampling. In addition, the SVM
using puk kernel outperforms the SVM using other ker-
nels achieving AUC of 0.80 using sampling and 0.59
without using sampling with complexity parameter C = 30.

Tables 6 and 7 show the performance of Neural Net-
works with gradient descent backpropagation using
hidden units H = {1, 2, 4, 8, 32} and the momentum
M = {0, 0.2, 0.5, 0.9} using sampling and without using
sampling, respectively. The number of hidden units
and momentum rate that gives better AUC value is con-
sidered here. For neural networks, the highest perform-
ance is achieved when H = 4 and M = 0.5 for the case of
using sampling (AUC = 0.82) while when H = 8 and M = 0
for the case of not using sampling (AUC= 0.80).
The performance of the Naïve Bayesian Classifier using

sampling and without using sampling is reported in
Tables 8 and 9, respectively. Three different Weka options
for handling continuous attributes are explored (single
normal, kernel estimation and supervised discretization).
Results show that BC using supervised discretization
achieves the highest AUC value of 0.82 using sampling
and without using sampling. The performance results of
the Bayesian Network classifier with different search algo-
rithms (K2, Hill Climbing, Repeated Hill Climber, LAGD
Hill Climbing, TAN, Tabu and Simulated Annealing)
using sampling and without using sampling are reported
in Tables 10 and 11, respectively. Bayesian Network classi-
fier using Tan search algorithm achieves the highest AUC
value of 0.84 using Sampling and 0.83 without using
sampling.
Tables 12 and 13 report the performance of the KNN

classifier, with different values of k {1, 3, 5, 10} neighbors,

Table 12 Comparison of the performance K-Nearest Neighbor classifier (KNN) using different values of k {1, 3, 5, 10} neighbors and
using different distance functions; Euclidean distance, Manhattan distance and Minkowski distance using sampling

Euclidean distance Manhattan Distance Minkowski Distance

K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10

Sensitivity 78.43% 65.61% 64.17% 50.00% 78.29% 65.66% 65.68% 61.23% 78.43% 65.61% 64.17% 59.23%

Specificity 96.98% 91.74% 90.53% 89.84% 97.05% 91.80% 90.60% 89.91% 96.98% 91.74% 90.53% 89.84%

Precision 77.18% 33.64% 22.32% 11.50% 77.73% 34.16% 22.94% 16.44% 77.18% 33.64% 22.32% 15.89%

F-score 77.80% 44.47% 33.12% 18.70% 78.01% 44.94% 34.01% 25.91% 77.80% 44.47% 33.12% 25.05%

RMSE 0.23 0.27 0.28 0.29 0.23 0.27 0.28 0.29 0.23 0.27 0.28 0.29

AUC 0.88 0.86 0.85 0.84 0.87 0.86 0.85 0.84 0.87 0.86 0.85 0.84

The results show that the value 1 for the K parameter achieves the highest AUC (0.88) using Euclidean distance

Table 13 Comparison of the performance K-Nearest Neighbor classifier (KNN) using different values of k {1, 3, 5, 10} neighbors and
using different distance functions; Euclidean distance, Manhattan distance and Minkowski distance without using sampling

Euclidean distance Manhattan Distance Minkowski Distance

K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10

Sensitivity 28.06% 38.19% 42.44% 46.78% 28.54% 38.21% 42.96% 47.59% 28.06% 38.19% 42.44% 28.06%

Specificity 90.24% 89.88% 89.50% 89.31% 90.28% 89.87% 89.49% 89.31% 90.24% 89.88% 89.50% 90.24%

Precision 25.36% 18.37% 13.64% 11.12% 25.62% 18.18% 13.42% 11.12% 25.36% 18.37% 13.64% 25.36%

F-score 26.64% 24.81% 20.64% 17.97% 27.00% 24.64% 20.45% 18.03% 26.64% 24.81% 20.64% 26.64%

RMSE 0.4 0.33 0.32 0.3 0.4 0.33 0.32 0.31 0.4 0.33 0.32 0.4

AUC 0.58 0.66 0.7 0.74 0.59 0.67 0.7 0.74 0.58 0.66 0.7 0.58

The results show that the value 10 for the K parameter achieves the highest AUC (0.74) using Euclidean distance
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and using sampling and without using sampling. In our
experiments, we used different distance functions; Eu-
clidean distance, Manhattan distance and Minkowski
distance. The results show that the KNN classifier using
sampling has its best performance (AUC = 0.88) with K
value equals 1 using any of the three distance functions
while the KNN classifier without using sampling has its
best performance (AUC = 0.74) with K value equals 10
using any of the three distance functions.
Tables 14 and 15 report the performance of the Ran-

dom Forest (RF) classifier using 10, 50 and 100 trees.
The size of the feature set (F) considered at each split is
1, 2, 4, 8, and 12. The results show that the highest AUC
(0.97) is achieved using a forest of 50 trees with a feature
set of 1, 2, 4, 8 or 12 using sampling whereas the highest
AUC (0.82) is achieved using a forest of 100 trees with a
feature set of 4.
We compared the impact of using different percentage

of synthetic examples of the class “yes” (patients who are
considered to have high risk for ACM). Figure 2 shows
the area under the curve of seven different machine learn-
ing models trained using Decision Tree (DT), Support
Vector Machine (SVM), Artificial Neural Networks
(ANN), Naïve Bayesian Classifier (BC), Bayesian Network
(BN), K-Nearest Neighbor (KNN) and Radom Forest (RF).
All the models have been evaluated using datasets with
100%, 200% and 300% of synthetic example created using
the SMOTE sampling technique on the training dataset

and evaluated using 10-fold cross validation. The results
show that increasing the percentage of synthetic examples
improves the prediction accuracy for all models except for
the BC. For example, the SVM model achieves AUC of
0.62 using the sampled dataset with 100% synthetic exam-
ples compared to 0.72 using the sampled dataset with
200% synthetic examples. Increasing the percentage of
synthetic examples to 300% improves the AUC of the BN
to achieve 0.8. The performance of KNN, DT and RTF
models using SMOTE has shown great improvement. The
RF has shown the best improvement using SMOTE
achieving 0.83 using 100% synthetic examples compared
to 0.95 and 0.97 using 200% and 300% synthetic examples
respectively. In our experiments, further increasing the
synthetic examples to 400% and 500% did not show any
improvement in the performance of the prediction
models.
In order to evaluate the impact of using the SMOTE

sampling techniques in handling the problem of the
imbalanced dataset, we build different prediction
models with and without SMOTE. Tables 16 and 17
show the prediction performance of different prediction
models using various evaluation metrics without and with
the SMOTE sampling technique (300%), respectively. For
each metric (row), we highlighted the highest value in
bold font and underlined the lowest value. As shown in
Tables 16 and 17, after applying the 10-fold cross-validation
on the training dataset, the AUC and sensitivity for all

Table 14 Comparison of the performance of Random Forest (RF) classifier having 10, 50 and 100 trees with different feature set
considered at each split (1, 2, 4, 8, and 12) using sampling

No. of tree =10 No. of tree =50 No. of tree =100

F = 1 F = 2 F = 4 F = 8 F = 12 F = 1 F = 2 F = 4 F = 8 F = 12 F = 1 F = 2 F = 4 F = 8 F = 12

Sensitivity 90.62% 91.01% 89.46% 87.40% 86.90% 96.07% 95.47% 94.67% 93.63% 93.14% 96.73% 95.97% 94.85% 93.95% 93.59%

Specificity 96.49% 96.56% 96.67% 96.79% 96.83% 96.84% 96.85% 97.06% 97.11% 97.15% 96.88% 96.88% 97.04% 97.19% 97.18%

Precision 72.78% 73.40% 74.28% 75.31% 75.67% 75.50% 75.57% 77.27% 77.73% 77.99% 75.74% 75.81% 77.08% 78.35% 78.28%

F-score 80.72% 81.26% 81.17% 80.90% 80.90% 84.55% 84.36% 85.09% 84.94% 84.90% 84.96% 84.71% 85.05% 85.44% 85.25%

AUC 80.72 81.26 81.17 80.90 80.90 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

RMSE 0.2 0.19 0.2 0.2 0.2 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

Table 15 Comparison of the performance of Random Forest (RF) classifier having 10, 50 and 100 trees with different feature set
considered at each split (1, 2, 4, 8, and 12) without using sampling

No. of tree =10 No. of tree =50 No. of tree =100

F = 1 F = 2 F = 4 F = 8 F = 12 F = 1 F = 2 F = 4 F = 8 F = 12 F = 1 F = 2 F = 4 F = 8 F = 12

Sensitivity 45.82% 47.20% 48.35% 46.64% 45.44% 56.62% 56.34% 57.33% 55.84% 54.51% 58.39% 59.87% 59.09% 56.56% 54.41%

Specificity 90.03% 90.23% 90.58% 90.83% 90.85% 89.60% 89.81% 90.29% 90.48% 90.57% 89.50% 89.81% 90.21% 90.45% 90.48%

Precision 18.90% 20.77% 24.19% 26.91% 27.30% 13.61% 15.74% 20.41% 22.42% 23.42% 12.49% 15.53% 19.52% 22.08% 22.56%

F-score 26.76% 28.84% 32.24% 34.13% 34.11% 21.95% 24.61% 30.10% 31.99% 32.76% 20.58% 24.66% 29.35% 31.76% 31.90%

RMSE 0.3 0.3 0.3 0.3 0.31 0.29 0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.29 0.29

AUC 0.76 0.77 0.77 0.77 0.76 0.81 0.81 0.81 0.81 0.80 0.81 0.81 0.82 0.81 0.81
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models used SMOTE have been significantly improved over
the training results without SMOTE except for the BC. In
addition, the performance of each model can differ from
one metric to another. In general, the Random Forest (RF)
classifier using SMOTE sampling achieves the best per-
formance improvement. In particular, it achieves the
best performance in terms of Sensitivity (95.07%), RMSE
(0.18), F-Score (84.55%) and AUC (0.97). However, the
same model without using SMOTE achieves Sensitivity of
(59.09%), RMSE of (0.29), F-Score (29.35%) and AUC of
(0.82). The KNN models using SMOTE achieves the best
performance in terms of Specificity (96.98%) and Precision
(77.18%). The KNN model without SMOTE achieves
Specificity of 89.31%% and Precision of 11.12%. This
improved performance of the prediction models is due
to the imbalanced data size. It is noted that all the
models with SMOTE achieve a more balanced sensitivity.
Figure 3(a) and (b) illustrates the ROC curves for the
different ML models with and without using SMOTE,
respectively.

Discussion
Using machine learning methods to predict different med-
ical outcomes (e.g., diabetics, hypertension and death)

from medical datasets is gaining an increasing attention in
the medical domain. This study is designed to take advan-
tage of the unique opportunity provided by our access to a
large and rich clinical research dataset, a total of 34,212
patients, collected by the FIT project to investigate the
relative performance of various machine learning classifi-
cation methods for predicting all-cause mortality (ACM)
using medical records of cardiorespiratory fitness. The
large number of attributes of the dataset, 49 attributes, is
used to uncover new potential predictors of ACM. To the
best of our knowledge, this is the first study that compares
the performance of ML model for predicting ACM using
cardiorespiratory fitness data. We have evaluated seven
models trained with and without SMOTE using various
evaluation metrics.
Knuiman et al. [41] presented an empirical comparison

of four different techniques for estimating the risk of
death using mortality follow-up data on 1701 men. The
four techniques used are binary tree, logistic regression,
survival tree and Cox regression. The Cox regression
outperformed the other three techniques achieving area
under the AUC of 0.78 followed by logistic regression
(AUC = 0.72), survival tree (AUC = 0.71) and binary tree
(AUC = 0.66), respectively. Vomlel et al. [42] presented a

Fig. 2 AUC of different models with different percentage of synthetic examples created using SMOTE

Table 16 Comparison of the performance of the different classification models without using the SMOTE sampling method

DT SVM ANN BC BN KNN RF

Sensitivity 54.43% 39.78% 52.65% 37.71% 57.09% 46.78% 59.09%

Specificity 90.51% 87.65% 91.37% 93.23% 90.71% 89.31% 90.21%

Precision 22.80% 18.03% 31.39% 51.32% 24.57% 11.12% 19.52%

F-score 32.14% 24.81% 39.33% 43.47% 34.35% 17.97% 29.35%

RMSE 0.3 0.47 0.29 0.34 0.34 0.3 0.29

AUC 0.73 0.59 0.80 0.82 0.83 0.74 0.82

The models are: Decision Tree (DT), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian Network (BN), K-Nearest
Neighbor (KNN) and Random Forest (RF). The results of this experiment show that BN achieves the highest AUC (0.83). The BC model achieves the highest precision
(51.32%) and the highest specificity (93.32%)
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predictive model for mortality using five different machine
learning techniques on a data of 603 patients from Univer-
sity Hospital in Olomouc. The machine learning tech-
niques used are logistic regression, decision tree, Naive
Bayes classifier, Artificial Neural Network and Bayesian
Network classifier. Using 10- fold cross validation logistic
regression achieves the highest area under curve of 0.82,
whereas the decision tree has the lowest AUC value of
0.61. Allyn et al. [43] compared the performance of lo-
gistic regression model and different machine learning
models to predict the mortality in-hospital after elective
cardiac surgery. The study includes database of 6520
patients from December 2005 to December 2012, from
a cardiac surgical center at University Hospital. Five
different machine learning models have been evaluated:
logistic regression, gradient boosting machine, random
forest, support vector machine and naive bayes. The
area under the ROC curve for the machine learning
model (AUC = 0.795) was significantly higher than the
logistic regression model (AUC = 0.742). Taylor et al.
[44] studied the prediction of mortality of 4676 patients

with sepsis at the emergency department using logistic
regression and machine learning model. The machine
learning model (AUC 0.86) outperforms the logistic re-
gression model (AUC 0.76). Sherri [45] studied the Phys-
ical Performance and Age-Related Changes in Sonomans
(SPPARCS) to predict death among 2066 residents of
Sonoma, California over the period between 1993 and
1995. In this study, a super learner has been used for
death prediction. A super learner is an ensembling ma-
chine learning approach that combines multiple machine
learning algorithms into a single algorithm and returns a
prediction function with the best cross-validated mean
squared error. The super learner outperforms all single
algorithms in the collection of algorithms, although its
performance was quite similar to that of some algo-
rithms. Super learner outperformed the worst algorithm
(neural networks) by 44% with respect to estimated cross-
validated mean squared error. In principle, the datasets of
both studies (Knuiman et al. [41] and Allyn et al. [43]) are
considered to be relatively small in comparison to the
number of patients for our dataset. In general, in

Table 17 Comparison of the performance of the different classification models using the SMOTE sampling methods. The models
are: Decision Tree (DT), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian
Network (BN), K-Nearest Neighbor (KNN) and Random Forest (RF)

DT SVM ANN BC BN KNN RF

Sensitivity 59.95% 80.26% 55.89% 37.41% 60.07% 78.43% 96.07%

Specificity 96.05% 95.19% 90.43% 93.32% 91.02% 96.98% 96.84%

Precision 70.91% 62.63% 24.37% 52.20% 27.32% 77.18% 75.50%

F-score 64.97% 70.36% 33.94% 43.59% 37.56% 77.80% 84.55%

RMSE 0.27 0.25 0.29 0.34 0.28 0.23 0.18

AUC 0.88 0.8 0.82 0.82 0.84 0.88 0.97

The results of this experiment show that the RF model achieves the highest AUC (0.97), the lowest RMSE (0.18) and the highest sensitivity (94.65%)

Fig. 3 The ROC curves of the different machine learning classification models. The models are: Decision Tree (DT), Support Vector Machine (SVM),
Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian Network (BN) and K-Nearest Neighbor (KNN). The results show that without
using the SMOTE sampling method (a), BC and BN achieves the highest AUC (0.81) while with using the SMOTE sampling method (b), the KNN model
achieves the highest AUC (0.94)
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Machine Learning, the bigger the size of the dataset,
the higher the accuracy and robustness of the devel-
oped prediction models. In these studies, the highest
AUC achieved by the developed prediction models is
0.86. In our experiments, the Random Forest (RF)
model using SMOTE sampling achieved AUC of
0.97which significantly outperform the models of both
studies.
Sullivan et al. [46] investigated the literature related to

the comparisons made between established risk prediction
models for perioperative mortality used in the setting of
cardiac surgery. Meta-analysis was conducted to calculate
a summary estimate of the difference in AUCs between
models. The comparisons include 22 studies. The authors
noted that all he investigated studies relied on relatively
small datasets. This highlights the strengths and unique-
ness of our study which is relying on large datasets
reflected on the number of patients and the number of
variables.
In general, an important observation from the results

of our experiments is that for all metrics, the results
show that it is not necessarily that the complex ML
models (e.g., Support Vector Machine (SVM), Artificial
Neural Networks (ANN)) can always outperform simpler
models (e.g., Decision Tree (DT) model [47]). In particu-
lar, the Decision Tree (DT) model has been outperform-
ing the complex models in terms of all evaluation metrics.
The RF and KNN classifiers are considered to be less
complex than SVM and ANN. However, it achieved the
best performance for all metrics for model trained using
SMOTE. In general, KNN is a non-linear classifier, there-
fore, it tends to perform very well with a lot of data points.
It is also very sensitive to bad features (variables). There-
fore, effective feature selection [27] is an important step
before using the KNN classifier and tends to improve its
results. The Decision Tree (DT) model benefits from the
feature selection and removing colinear variables steps as
well. In general, decision trees do not require any assump-
tions of linearity in the data and thus they work well for
nonlinearly related variables.
On the other hand, the SVM model tends to perform

well in high-dimensioned classification problems that
may have over hundreds of thousands of dimensions,
which is not the case of this study. In addition, the SVM
model does not tend to perform well if the classes of the
problem are strongly overlapping. In general, parametric
models (e.g., SVM, Bayesian Network) can suffer from
remembering local groupings as by their nature they
summarize information in some way. ANN can usually
outperform other methods if the dataset is very large
and if the structure of the data is complex (e.g., they
have many layers). This is an advantage for the KNN
classifier which makes the least number of assumptions
regarding the input data.

The results also show that the performance of the
KNN and ANN classifiers, similar to the other models,
can be very sensitive for the values of its parameters and
thus these parameters need to be carefully explored and
tuned in order to reach an adequate configuration. For
example, the results show that setting the K parameter
to the value of 1 achieves the best performance for all
the evaluation metrics. For example, for K = 1, the model
achieves AUC of (0.94) while for K = 3, 5 and 10, the
model achieves the accuracy of (0.93), (0.91) and (0.90),
respectively. In general, increasing the value of the K
parameter has a mostly negative impact on the perform-
ance of the classifier for all metrics. The risk of model
overfilling by using a low K value has been overcome by
using the 10-fold cross-validation evaluation method.
However, clearly, the optimal value of the K parameter
can significantly differ from one problem to another.

Conclusion
ML techniques have shown solid prediction capabilities
in various application domains including medicine and
healthcare. In this study, we presented an evaluation and
comparison of seven popular ML techniques on predi-
cating all-cause mortality (ACM) using medical records
of Cardiorespiratory Fitness for the Henry Ford Testing
(FIT) Project. The results show that various ML techniques
can significantly vary in terms of its performance for the
different evaluation metrics. It is also not necessarily that
the more complex the ML model, the more prediction ac-
curacy can be achieved. Simpler models can perform better
in some cases as well. Therefore, there is no one-size-fits-
all model that can be well performing for all domains or
datasets. Each problem and dataset need to be carefully
evaluated, modeled and studied in order to reach an effect-
ive predictive model design. The results have also shown
that it is critical to carefully explore and evaluate the
performance of the ML models using various tuned
values for their parameters. These results confirm the
explorative nature of the ML process that requires it-
erative and explorative experiments in order to discover
the model design that can achieve the target accuracy.

Endnotes
1The detailed descriptions of the variables of the

dataset are available on the appendix of the article.
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