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Abstract

Purpose The present study compared manual and automated measurement of Cobb angle in idiopathic scoliosis based on 

deep learning keypoint detection technology.

Methods A total of 181 anterior–posterior spinal X-rays were included in this study, including 165 cases of idiopathic sco-

liosis and 16 normal adult cases without scoliosis. We labeled all images and randomly chose 145 as the training set and 36 

as the test set. Two state-of-the-art deep learning object detection models based on convolutional neural networks were used 

in sequence to segment each vertebra and locate the vertebral corners. Cobb angles measured from the output of the models 

were compared to manual measurements performed by orthopedic experts.

Results The mean Cobb angle in test cases was 27.4° ± 19.2° (range 0.00–91.00°) with manual measurements and 

26.4° ± 18.9° (range 0.00–88.00°) with automated measurements. The automated method needed 4.45 s on average to 

measure each radiograph. The intra-class correlation coefficient (ICC) for the reliability of the automated measurement of 

the Cobb angle was 0.994. The Pearson correlation coefficient and mean absolute error between automated positioning and 

expert annotation were 0.990 and 2.2° ± 2.0°, respectively. The analytical result for the Spearman rank-order correlation 

was 0.984 (p < 0.001).

Conclusion The automated measurement results agreed with the experts’ annotation and had a high degree of reliability 

when the Cobb angle did not exceed 90° and could locate multiple curves in the same scoliosis case simultaneously in a 

short period of time. Our results need to be verified in more cases in the future.

Keywords Cobb angle · Idiopathic scoliosis · Automated measuring · Deep learning · Keypoint detection

Introduction

Different methods of measuring the Cobb angle include 

manual measurement and computer-assisted semi-automated 

measurements. The most widely used manual method of 

measurement requires extensive technical experience and 

is prone to intra- and inter-observer errors of 2.8–8° [1, 

2]. Although semi-automated measurement methods can 

improve work efficiency, clinicians still need to select the 

end vertebrae and determine the positions of endplates. 

Therefore, it is difficult for inexperienced observers to 

measure Cobb angles accurately. Besides, inevitable manual 

operations increase the work burden [3].

Deep learning technology can be used to optimize diag-

nosis, prognosis, and outcome prediction in spinal diseases 

[4–8]. However, the use of deep learning in the field of 

scoliosis measurement is still immature. Previous studies 

have performed deep learning measurements based on mild 

scoliosis cases or chest X-ray images, or non-deep learning 

methods with redundant pixel-level segmentation of images, 

requiring excessive manual assistance [9–11]. Therefore, 

the measurement methods in these studies may not apply 
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to severe scoliosis. Most studies have only measured the 

main scoliosis curve, but the upper and lower curves adja-

cent to the main curve are also crucial for making treatment 

decisions.

To address these problems and compare manual and auto-

mated measurement of Cobb angle in idiopathic scoliosis, 

we chose anterior–posterior (AP) spine X-ray images as the 

research object and proposed an automated measurement 

system based on deep learning object detection and keypoint 

detection technology. The system consists of three parts: 

isolated vertebra detection, vertebral corner localization, and 

Cobb angle calculation. The Cobb angle measurement based 

on the four corners of the vertebra can avoid the influence of 

irregular or unclear contours during measurement.

Materials and methods

Experimental materials

The inclusion criteria for images were as follows: patients 

with idiopathic scoliosis (IS) or normal adults without sco-

liosis, no other previous spinal disease or surgery, and a 

full-length AP spinal X-ray image should include the entire 

spine without interference blocking the vertebrae. 181 AP 

spinal X-ray images were included in this study, including 

165 IS cases (Cobb angle range: 10–93°) and 16 normal 

adults without scoliosis (Cobb angle range 0–10°). We used 

the image annotation tool ‘Labelme’ to label the four corners 

of each vertebra from C7 to L5. We used 145 X-ray images 

(2610 vertebrae) for training and 36 X-ray images (648 ver-

tebrae) for testing.

Proposed methods

Our automated measurement method consisted of three 

steps (Fig. 1). First, the C7-L5 vertebrae were detected and 

cropped from the X-ray images. The resolution of the X-ray 

images was zoomed out from 1750 × 3064 to 768 × 1152 pix-

els to locate each vertebra efficiently with global informa-

tion. The vertebral regions were cropped from the original 

X-ray images to facilitate the predictions made by the deep 

learning detection model. Second, the four vertebral cor-

ners were located in the cropped regions. The regions were 

zoomed in to 512 × 512 pixels before being fed into the deep 

learning corner detection model to precisely locate the four 

corners. Third, the Cobb angles were measured automati-

cally using the connecting line between the upper or lower 

corners, which, in clinical practice, is equivalent to the upper 

or lower endplate.

C7‑L5 vertebrae localization

To locate the region of interest of the spine, the zoomed-out 

X-ray images were fed into the CenterNet-based [12] model 

named CenterNet1 to approximately locate the C7-L5 ver-

tebral regions. CenterNet is a state-of-the-art deep learning 

object detection technology that uses keypoint estimation to 

find center points and regresses by measuring the size of the 

borders. After the vertebrae were located, their sequence was 

determined by the longitudinal height. The lowest detection 

result was L5 in each X-ray image, and the other vertebrae 

included L4-C7 from bottom to top. To ensure that four 

corners were included in the vertebral region, the widths 

and heights of the bounding boxes were enlarged 1.5-times. 

Fig. 1  Cobb angle measurement flow
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Subsequently, each vertebral region was cropped from the 

high-resolution X-ray images and zoomed in to 512 × 512 

pixels. (Fig. 2).

Vertebral corner localization

Next, we used keypoint detection technology to locate the 

four corners in each vertebral region. The proposed vertebral 

corner detection model was another CenterNet-based model 

named CenterNet2 consisting of two parts: the backbone and 

the output heads (Fig. 3). The backbone used the pertaining 

DLA-34 [13]. The vertebral corner detection model included 

three output heads, which were used to estimate the center 

heatmap, corner locations, and corner offset. Corner loca-

tions were the relative locations of the corners compared to 

the center. The corner offset was the discretization error of 

the corners.

The input of the vertebral corner detection model was the 

cropped vertebrae images described above. During the deep 

learning system training, supervision consisted of center 

heatmap loss, corner location loss, and corner offset loss. 

The center heatmap loss used the focal loss, whereas the 

other losses used the L1-norm loss. The left-top, right-top, 

left-bottom, and right-bottom corners of each vertebra were 

determined according to the vertical and horizontal coordi-

nates after the vertebral corner detection.

Cobb angle measurement

The Cobb angle is defined as the angle between the upper 

endplate of the upper end vertebra and the lower endplate 

of the lower end vertebra. This study used the line connect-

ing the left-top corner and the right-top corner as the upper 

endplate, and the line connecting the left-bottom corner and 

the right-bottom corner as the lower endplate for each ver-

tebra (Fig. 4).

To obtain the Cobb angle, each angle composed by dif-

ferent vertebrae is calculated recursively by changing the 

lower and upper end vertebra from top to bottom (Fig. 5a). 

After the Cobb angle of the main curve is detected, Cobb 

angles in its upper and lower curves will also be measured 

in a similar way. A spinal X-ray is given as an example to 

show the detection result (Fig. 5b).

Fig. 2  Image processing flow for vertebrae localization
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Finally, descriptive statistics were calculated for all 

patient characteristics as means and standard devia-

tions for each group (expert annotated and deep learning 

located). To measure the reliability of the Cobb angles cal-

culated by the proposed deep learning method, the intra-

class correlation coefficient (ICC) was utilized, whereas 

the Pearson correlation coefficient, the mean absolute error 

and Spearman rank-order correlation were used to explore 

the relationships between deep learning results and the 

experts’ annotation as appropriate. The level of signifi-

cance was set at p < 0.05. The data were analyzed using 

Python (rpy2 3.3.6) and calling R language.

Results

The GPU-accelerated deep learning system measured 

36 test set images simultaneously, and the average time 

required for each image was 4.45 s. The automated system 

was set up to mark the name of each vertebra and its four 

corners, then to measure the Cobb angle of the main curve 

and display any adjacent curve > 10° above and below it 

(Table 1). We selected four test images for demonstration, 

the most severe one had a Cobb angle of 88° for the main 

curve, and its upper and lower curves were 30 and 49°, 

respectively (Fig. 6).

The mean Cobb angles of the two methods and cor-

relation coefficients are given in Table 2. The statistical 

analysis indicated that the automated measurements agree 

with the experts’ annotation.

The Spearman rank-order correlation of 0.984 

(p < 0.001) indicated that the Cobb angle results obtained 

using the deep learning-located corners and those obtained 

using the expert-annotated corners highly correlated.

Besides, since deep learning models always give the 

identical output on the identical input, intra-rater variabil-

ity of the models involved in this paper always remains 

zero.

Discussion

Cobb angle is the most common way to quantify the 

severity of scoliosis. Currently, manual measurement is 

widely used. However, inexperienced observers often 

lead to improper localization of end vertebrae and end-

plates, resulting in inevitable random errors. The larger the 

curve, the more variable the measurement accuracy [14, 

15]. In addition, manual measurement is time-consuming 

[15]. To address these problems, some researchers have 

explored methods of automatically or semi-automatically 

measuring the Cobb angle [9–11, 16–19]. Compared to 

manual measurement and semi-automated measurement, 

automated measurement can reduce differences in the 

selection of end vertebrae and errors caused by manually 

drawing endplate lines, thereby achieving high-precision 

in the measurements.

To reduce artificial errors, many previous studies have 

proposed various semi-automated methods of measuring 

the Cobb angle, which could minimize manual participa-

tion in the measurement process [11, 16–18]. In 2002, 

Chockalingam et al. [16] developed a semi-automated 

computerized technique to measure the Cobb angle. Sub-

jectivity arises when the observer determines the upper 

and lower end vertebra of the curve on the spinal image, 

Fig. 3  The architecture of the vertebral corner detection model

Fig. 4  Illustration of the vertebral endplates



1973European Spine Journal (2022) 31:1969–1978 

1 3

and when the medial and lateral edges of the vertebra are 

defined. The mean analysis time for each radiograph was 

2.3 min. Although research on semi-automated measure-

ment has deepened, and measurement time and accuracy 

are improving, the process of manual participation cannot 

be avoided. For example, a system developed by Zhang 

et al. [11] could achieve an accuracy similar to that of 

experienced physicians, and the average computing time 

was less than half a minute, but it still required manual 

selection and labeling of the end vertebrae.

The use of deep learning technology in identifying and 

measuring spinal X-ray images is still in its early stages, 

and there were significant limitations in previous studies 

[9, 10, 19]. The automated systems developed by Pan et al. 

[9] measured Cobb angles in 248 chest X-rays with mild 

scoliosis (6.6–48.3°; average 14.87 ± 5.57°), whereas the 

ICC between the system and the physician’s manual meas-

urement was 0.854 and the mean absolute difference was 

3.32°. In other words, the sensitivity (89.59%) and specific-

ity (70.37%) of this system for identifying scoliosis were 

unsatisfactory. Horng et al. [10] only tested their automated 

measurement system in a Cobb angle range of 0–20.1°. The 

ICC and Pearson correlation coefficient were within the 

range of 0.936–0.971, and the Spearman rank-order cor-

relation between the expert manual measurements and the 

system measurements was 0.891. This system exhibited high 

accuracy, but it was not verified with a Cobb angle > 20.1°. 

Zhang et al. [19] also used the vertebral corner keypoint 

detection method to achieve automated measurement of the 

Cobb angle. However, they did not use statistical methods 

to compare the automated method’s consistency against the 

manual method. Furthermore, the range of Cobb angles that 

can be measured effectively was not mentioned.

To solve these problems, we proposed a new scoliosis 

measurement method based on deep learning. Our sys-

tem can achieve automated measurement of Cobb angles 

through the vertebral positioning based on deep learning 

object detection technology and vertebral corner position-

ing based on deep learning keypoint detection technology. 

Our study included various Cobb angles in the training set 

(145 X-ray images), ranging from 0 to 93°. We used the 

trained system to automatically identify and measure Cobb 

angles on 36 AP spine X-ray images that were not included 

in the training set. There were no significant differences in 

the measurements of 36 scoliosis cases with different sever-

ity by both the system and orthopedic experts. The trained 

deep learning system could satisfactorily recognize curves 

up to almost 90°. Compared to previous studies, our sys-

tem has obvious advantages in its scope of application and 

degree of automation. The vertebral positioning based on 

Fig. 5  a The traversal computation for the Cobb angle. b An illustration of the Cobb angle measurement results with Cobb angles of 11°, 29° 

and 13° corresponding to the upper, main and lower curves
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Table 1  36 cases of idiopathic scoliosis X-ray orthopedic expert measurement results and deep learning system measurement results

Image Expert annotation

UEV* LEV* Top Cobb 

angle

UEV LEV Middle Cobb 

angle

UEV LEV Bottom 

Cobb 

angle

1 T2 T6 33° T6 T11 55° T11 L4 47°

2 T2 T7 44° T7 L1 64° L1 L5 31°

3 T4 T11 12° T11 L3 33° L3 L5 12°

4 T1 T6 13° T6 L1 28° L1 L5 14°

5 T1 T6 41° T6 T12 78° T12 L5 42°

6 T2 T7 20° T7 L2 33° L2 L4 13°

7 T2 T11 19° T11 L3 23° – – –

8 T4 T8 17° T8 L2 17° L2 L5 9°

9 T5 L1 18° L1 L4 30° – – –

10 T4 T12 22° T12 L4 30° – – –

11 T6 L1 17° L1 L4 27° – – –

12 T5 T12 21° T12 L4 25° – – –

13 – – – T4 T8 14° – – –

14 T3 T11 21° T11 L4 29° – – –

15 T2 T11 19° T11 L4 28° – – –

16 T2 T12 19° T12 L4 43° – – –

17 T2 T5 13° T5 T10 16° – – –

18 T2 T6 27° T6 T11 32° T11 L3 21°

19 T1 T6 27° T6 T11 37° T11 L4 22°

20 T2 T6 22° T6 T10 34° T10 L3 22°

21 T2 T9 25° T9 T12 44° T12 L4 16°

22 T6 T10 18° T10 L3 23° – – –

23 T5 T12 12° T12 L4 16° – – –

24 T1 T6 29° T6 T11 91° T11 L5 51°

25 T5 T11 44° T11 L3 59° – – –

26 T2 T11 19° T11 L4 33° – – –

27 – – – T3 T6 31° T6 T11 24°

28 T1 T7 39° T7 L1 83° L1 L5 43°

29 T1 T7 37° T7 T12 62° T12 L5 36°

30 T1 T6 37° T6 T12 78° T12 L5 45°

31 T2 T6 14° T6 T11 36° T11 L5 24°

32 T4 T10 44° T10 L3 54° L3 L5 13°

33 T2 T6 31° T6 T12 59° T12 L4 30°

34 T1 T6 14° T6 T11 36° T11 L4 23°

35 T2 T7 55° T7 L1 70° L1 L5 27°

36 – – – T1 L2 6° – – –

Deep learning system location

UEV LEV Top Cobb angle UEV LEV Middle Cobb 

angle

UEV LEV Bottom 

Cobb 

angle

T2 T6 31° T6 T11 51° T11 L4 48°

T2 T7 44° T7 L1 62° L1 L5 28°

T4 T11 15° T11 L3 34° L3 L5 12°

T1 T6 11° T6 L1 29° L1 L4 13°

T1 T6 39° T6 T12 76° T12 L5 44°

T2 T7 17° T7 L2 30° L2 L5 16°
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deep learning object detection technology and vertebral cor-

ner positioning based on deep learning keypoint detection 

technology allowed faster measurement of Cobb angles by 

our system, which is more robust and finer-grained (Fig. 7). 

On the one hand, our automated system can identify each 

vertebra and obtain Cobb angles rapidly (average 4.45 s per 

image), avoiding human assistance at each step. On the other 

hand, this system can accurately measure severe Cobb angles 

up to almost 90° and locate multiple curves in the same 

scoliosis case simultaneously.

Our study has some limitations. First, our experiments 

found that the measurements made by our system greatly 

deviated from manual measurements when the curve was 

greater than 90°. The reason may be that, in severe scoliosis, 

the vertebrae are tilted and rotated severely, and the verte-

brae may overlap in X-ray images, especially in the thoracic 

spine, where the ribs interfere with the image. Our system 

cannot accurately segment the vertebrae and identify the 

four corners of the vertebrae in these severe cases. Second, 

our system has difficulty identifying the four corners of the 

L5 vertebra. Compared to other lumbar vertebrae, L5 is usu-

ally structurally different and more inclined in the sagittal 

plane. Even an experienced orthopedist may not be able to 

identify the four corners of L5 precisely. We measured the 

angles between the upper and lower endplates of L1-L5 and 

the horizontal line on sagittal X-ray images from 36 test 

sets (Fig. 8). The results show that L5 is the most inclined 

vertebra in the sagittal plane of the lumbar spine, which 

Table 1  (continued)

Deep learning system location

UEV LEV Top Cobb angle UEV LEV Middle Cobb 

angle

UEV LEV Bottom 

Cobb 

angle

T2 T11 16° T12 L3 19° – – –

T4 T8 16° T8 L2 17° L2 L5 8°

T5 L1 16° L1 L4 25° – – –

T4 T12 21° T12 L4 30° – – –

T6 L1 16° L1 L4 26° – – –

T5 T12 19° T12 L4 24° – – –

– – – T4 T8 12° – – –

T3 T11 21° T11 L4 29° – – –

T2 T12 16° T12 L4 33° – – –

T2 T12 18° T12 L4 42° – – –

T2 T5 12° T5 T10 16° – – –

T2 T6 26° T6 T11 31° T11 L4 17°

T2 T6 24° T6 T11 33° T11 L4 19°

T2 T6 22° T6 T10 34° T10 L3 20°

T2 T9 24° T9 T12 38° T12 L4 15°

T6 T10 16° T10 L3 20° – – –

T5 T12 7° T12 L3 15° – – –

T1 T6 30° T6 T11 88° T11 L5 49°

T5 T11 42° T11 L3 56° – – –

T2 T11 19° T11 L4 38° – – –

– – – T3 T6 26° T6 T12 22°

T2 T7 34° T7 L1 82° L1 L5 43°

T1 T7 40° T7 T12 65° T12 L5 36°

T1 T7 30° T7 T12 79° T12 L5 43°

T1 T6 14° T6 T11 36° T11 L4 24°

T4 T10 46° T10 L3 57° L3 L5 4°

T2 T6 31° T6 T12 60° T12 L5 32°

T1 T6 16° T6 T11 36° T11 L4 25°

T1 T7 53° T7 L1 75° L1 L5 29°

– – – T2 L3 9° – – –
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leads to projection of the upper and lower endplates of the 

L5 vertebra closer to a “plane” rather than a “line” on the 

coronal plane. The “planes” of the upper and lower endplates 

are closer to each other, or even overlap, which makes it dif-

ficult to identify the four corners of the L5 vertebra on the 

coronal plane. Hopefully, future studies can overcome these 

problems and achieve more accurate measurements.

Conclusion

We developed an automated measurement method for Cobb 

angle in idiopathic scoliosis based on deep learning key-

point detection and compared it to manual measurement. 

The automated measurement results agreed with the experts’ 

annotation and had a high degree of reliability when the 

Cobb angle did not exceed 90°. The technique could also 

locate multiple curves in the same scoliosis case simulta-

neously in a short period of time. However, the number of 

images in our test set was small, the results of this experi-

mental study need to be verified in more cases in the future.

Fig. 6  The Cobb angles measured by the deep learning system. a A 

patient with severe idiopathic scoliosis (IS). Deep learning measure-

ments were 88° for the main thoracic (MT) curve, 30° for the proxi-

mal thoracic (PT) curve, and 49° for the lumbar curve. b A patient 

with IS. Deep learning measurements were 62° for the MT curve, 

44° for the PT curve, and 28° for the lumbar curve. c A patient with 

Lenke 5C IS. Deep learning measurements were 42° for the main 

lumbar curve, and there is a compensatory non-structural curve of 

18° at T2–T12. d A patient with mild IS. Deep learning measure-

ments were 20° for the thoracolumbar curve and 16° for the thoracic 

curve, which is a compensatory non-structural curve

Table 2  Comparison of the 

Cobb angle measurements 

between expert annotation and 

automated location

*Data are presented as mean ± standard deviation (range). For ICC and Pearson correlation coefficient, sta-

tistics in brackets represents as the 95% confidence interval

Variable Expert annotation Automated location

Cobb angle* 27.4° ± 19.2° (0.0–91.0°) 26.4° ± 18.9° (0.0–88.0°)

ICC – 0.994 (0.992, 0.996)

Pearson correlation coefficient – 0.990 (0.985, 0.993)

Average absolute error – 2.2° ± 2.0°

0

1

2

3

4

5

6

7

8

9

0° 1° 2° 3° 4° 5° 6° 7° 8° 9° Error

Number of cases

Fig. 7  In each case, the Cobb angle of scoliosis with the biggest dif-

ference between expert annotation and automated positioning was 

selected as the maximum error of this case, and the number of cases 

with the maximum error from 0 to 9° in the test set of 36 cases was 

shown in the form of histogram. The median of maximum Cobb 

angle error was 3.0°, the mean value of the maximum Cobb angle 

error is 3.2°
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