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In this paper we compare different parallel implementations

of the same algorithm for solving nonlinear simulation prob-

lems on unstructured meshes.

In the first implementation, making use of the message-

passing programming model and the PVM system, the do-

main decomposition of unstructured mesh is implemented,

while the second implementation takes advantage of the in-

herent parallelism of the algorithm by adopting the shared-

memory programming model. Both implementations are ap-

plied to the preconditioned GMRES method that solves itera-

tively the system of linear equations. A combined approach,

the hybrid programming model suitable for multicomputers

with SMP nodes, is introduced.

For performance measurements we use compressible fluid

flow simulation in which sequences of finite element solu-

tions form time approximations to the Euler equations. The

tests are performed on HP SPP1600, HP S2000 and SGI

Origin2000 multiprocessors and report wall-clock execution

time and speedup for different number of processing nodes

and for different meshes. Experimentally, the explicit pro-

gramming model proves to be more efficient than the implicit

model by 20–70%, that depends on the mesh and the machine.

Keywords: Parallel programming, finite element method, it-

erative solvers, compressible fluid flow, GMRES method,

shared memory and message-passing programming, domain

decomposition, PVM, SMP

1. Introduction

Architecture details of parallel computers make it

possible to define diversity of machine taxonomies (see

for example [10,28,51]), however one of the most im-

portant factors is organization of the address space.

Between the two extremes, i.e., the shared address

space organization and the distributed memory archi-

tecture, there is a wide class of machines with virtu-

ally shared, physically distributed memory organiza-

tion (often called Distributed Shared Memory, DSM,

machines). DSM can be software or hardware im-

plemented; the latter one offers better characteristics

and several typical classes, like cc-NUMA (cache co-

herent non-uniform memory access), COMA (coher-

ent only memory architecture) and RMS (reflective

memory systems). At present cc-NUMA implementa-

tions are commercially the most popular. According

to Flynn’s taxonomy [17] they belong to Multiple In-

struction/Multiple Data (MIMD) computers. Examples

come from HP (Exemplar and SuperDome with two in-

terconnection layers) and from SGI (Origin2000/3000

with fat hypercube topology). The similar approach is

implemented in IBM RS/6000 SP computers with SMP

nodes.

Parallel computing adopts two classical program-

ming models – the message passing and the shared ad-

dress space. The former (explicit) is often treated as

an assembler for parallel programming, while the latter

(implicit) simplifies the programming process and is

applied recently for the network of workstations [29].

For the experienced user it is easier to obtain better

parallel efficiency with the message passing model.

Since the advanced multiprocessors and clusters are

constructed with SMP nodes the choice between the

programming models is not obvious and some inte-
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gration of multiprocessing and multithreading would

be profitable in the future. Due to faster communica-

tion within the SMP nodes than between the nodes, it

would be probably not the best choice to implement

DSM in the entire program (since they are specially de-

signed for the implicit programming). The better way

is to adopt this kind of programming within the SMP

nodes, while using the explicit programming between

the nodes. Such an approach is consistent with present

trends in high performance computing, in which the

dominant architecture will be clusters of SMPs in its

many variants [46].

Most programming problems can have several paral-

lel solutions. A popular design methodology is to con-

sider distinct stages, like machine-independent stages

including partitioning and communications and also

machine-specific stages of design that deal with ag-

glomeration and mapping. This kind of design is often

called the PCAM methodology [18].

For the Finite Element (FE) Method applied to nu-

merical approximation of nonlinear partial differential

equations, both implicit and explicit approaches could

be adopted, combined with iterative solvers for sys-

tems of linear equations and domain decomposition

preconditioners. The solvers are usually implemented

with imperative programming, which offers high per-

formance. Newly appearing approaches make use of

object-oriented paradigm implemented in the C++ lan-

guage and/or network paradigm represented by Java

(e.g. [22,31,42,52]).

Overlapping domain decomposition methods are it-

erative in nature, thus solutions on the individual sub-

domains can be combined together in order to formu-

late the overall solution. Iterative solvers can also be

applied on any individual subdomain, which consti-

tutes the room for further development of hierarchical

or multilevel algorithms, some of them published to

date, e.g. [32,34,47].

In this paper we compare different parallel imple-

mentations of the same algorithm for solving nonlinear

simulation problems on unstructured meshes using the

adaptive finite element approach. For this purpose we

developed a parallel adaptive finite element algorithm

in the version designed to solve the compressible Euler

equations of inviscid fluid flow. The general purpose

part consists of finite element data structure routines,

including mesh modification procedures and solvers.

For solving systems of linear equations, which in the

case of fluid flow problems are nonsymmetric, the GM-

RES method combined with overlapping domain de-

composition preconditioner is applied [37].

To get full advantage of parallelization, efficient

implementations of domain decomposition (including

load balancing and minimizing the communication

cost) and of the solver should be taken into account.

In this paper, however, we are interested in different

parallel implementations of the same algorithm rather

than in sophisticated methods concerning the domain

decomposition (which are kept simple for this study),

thus dealing with machine-specific issues of the PCAM

methodology.

We introduce two levels of parallelization to the al-

gorithm. Using one-level parallelism only explicit or

implicit programming can be applied. With two-level

parallelism a hybrid model is considered to effectively

use SMP nodes. The paper describes the essential ex-

tensions to the algorithm which has been partially al-

ready presented [34–36].

The goal of the paper is to compare performance

of different parallel models, that implement the same

mathematical algorithm.

2. Finite element algorithm

As a test bed for parallel implementations of GM-

RES an h-adaptive finite element code designed to solve

compressible Euler and Navier-Stokes equations has

been used. The code implements standard stabilized

finite element algorithms (Streamline Diffusion [1,20,

21,44] with pseudo time stepping for steady state prob-

lems or modified Taylor-Galerkin [12] for transient

problems). The approximation to the Euler equations

is split into a sequence of solutions to implicit finite el-

ement problems with a system of non-symmetric linear

equations solved at each time step. Adaptivity is based

on refinement/derefinement technique [11] with the use

of explicit residual error indicators for compressible

flow problems [13]. The details of the finite element

algorithm can be found in [3,4,6,7]. This rather sim-

ple algorithm, still however of practical significance,

demonstrates flexibility for explicit, implicit and hy-

brid implementations. It contains the most important

ingredients found in modern finite element solvers for

CFD, like error based adaptivity, Krylov space solvers

and domain decomposition preconditioning. From the

point of view of parallelization, the techniques devel-

oped for this particular algorithm can be easily trans-

ferred to other solvers.

The standard finite element procedures for solving

an implicit, linear problem consist in creation of ele-

ment stiffness matrices and load vectors, assembling
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them into a global stiffness matrix and a global load

vector and then solving a resulting system of linear

equations. The latter task is often performed by a sep-

arate, general purpose library procedure or specialized

algorithms (e.g. [40]). The parallelization of such a

solver is done independently of the finite element mesh

and the problem to be solved.

In the reported case the solvers are built into the al-

gorithm and use a particular data structure related to

the finite element mesh. It is assumed that the finite

element module of the code provides the solvers with

element stiffness matrices and load vectors, together

with information on element connectivities. The con-

nectivity information, in the form of lists of element

nodes and, for each node, elements sharing a node, is

sufficient for assembling the global stiffness matrix and

the load vector (also in the case of irregular meshes

with hanging nodes). The code assembles and stores

the global stiffness matrix in a special data structure

related to the decomposition of the computational do-

main into small subdomains. These small subdomains,

called patches of elements, consist of several elements

only (with one or more internal nodes). There is a patch

data structure created for each patch, consisting of the

corresponding blocks of the stiffness matrix and the

load vector. When each node of the finite element mesh

belongs to the interior of only one small subdomain (for

standard meshes this corresponds to one element over-

lap between subdomains) than blocks of the stiffness

matrix in patch structures do not overlap. In that case

the storage scheme is just a version of the block com-

pressed row storage. Otherwise, it provides a useful

extension to it for the case of overlapping subdomains.

The patch data structure is directly used in the solver

algorithm that is built around block iterative methods.

Patch stiffness matrices form stiffness matrices for lo-

cal, subdomain problems, forming building blocks of

the algorithm.

The GMRES algorithm [39,41,48,50] is one of the

most successful and widely used iterative methods for

solving nonsymmetric systems of linear equations. It is

especially suited for nonlinear or time dependent prob-

lems where the whole simulation is split into a sequence

of separate step problems. The solution from the pre-

vious step problem forms then a perfect candidate for

the initial guess in GMRES iterations.

The performance of the GMRES depends on the con-

ditioning of a system of equations so usually it is used

with left or right preconditioning. In the case of left

preconditioning, instead of solving the original system

of equations Ax = b (with A the global stiffness ma-

trix, x the vector of unknown degrees of freedom and

b the global load vector), the preconditioned system

M
−1

Ax = M
−1

b is solved (see e.g. [6]). The pre-

conditioning matrix M should be easily invertible and

designed in such a way that the preconditioned system

has better convergence properties than the original one

(the condition number of the product M−1
A should be

close to one). The preconditioned GMRES algorithm

schematically is presented in Fig. 1.

Since the convergence of the GMRES was not the

subject of investigations, the number of Krylov space

vectors Nksv was set to 10, a small arbitrary number,

often found in large scale simulations. The initial guess

x
0 was formed by the solution from the previous time

step.

Preconditioning of the GMRES algorithm can be ef-

ficiently achieved by using any of basic iterative meth-

ods such as the standard Jacobi, Gauss-Seidel or block

Jacobi, block Gauss-Seidel methods [19].

We have implemented the preconditioning using

block Jacobi and block Gauss-Seidel algorithms where

all operations in the GMRES involving the global stiff-

ness matrix A are performed by means of loops over

local (block) problems.

In the default setting of the solver (used in all com-

putational examples reported) the local problems have

minimal dimension with patches having only one inter-

nal node. This option corresponds to blocks in standard

iterative methods related to unknowns at each finite el-

ement node and has proven to be the most efficient for

the Taylor-Galerkin method [3].

3. Parallel implementation of GMRES

3.1. Parallelization with explicit programming model

The GMRES algorithm preconditioned by standard

iterative methods can be interpreted as domain de-

composition algorithm [30,47]. It reflects the general

framework of Schwarz methods: divide the compu-

tational domain into subdomains, solve the problem

for each subdomain separately and combine the solu-

tions. The role of subdomains is played by patches

of elements and single iterations of iterative methods

accelerated by the GMRES are just inexact solutions

of subdomain problems. Depending on the precon-

ditioner we have either an additive Schwarz method

(block Jacobi preconditioner – contributions from dif-

ferent subdomains are summed up) or a multiplicative

Schwarz method (block Gauss-Seidel preconditioner –
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Fig. 1. The restarted GMRES algorithm.

contributions are taken into account while looping over

patches).
Since the number of patches is usually much larger

than the number of processors, the second level of do-
main decomposition is introduced, equivalent for finite

elements with suitable mesh partitioning. The num-
ber of subdomains at this level (submeshes) is equal to
the number of computing nodes of a parallel machine.
The subdomains possess one element overlap so each
node in the finite element mesh belongs to the interior

of only one subdomain. Using the message passing
programming model, data corresponding to a particular
subdomain are sent and stored in the memory of one
computing node. The computing node corresponding
to a given subdomain (storing its data) is responsible for

all computations related to the subdomain (computing
element stiffness matrices, assembling them into patch
matrices, solving local problems).

Having distributed the data structure, computations
of the GMRES algorithm begin. Some vector opera-

tions, such as scalar product or normalization, require
communication between computing nodes and are done
by standard message passing procedures using a se-
lected computing node to gather the data. Other opera-
tions, like subtraction or multiplication by a scalar, are

done entirely in parallel. The GMRES minimization
problem is solved on a chosen computing node.

Iterations of the block Jacobi method are done in two
steps. First the loop over all internal FE nodes of cor-
responding subdomains is executed by each computing

node separately. Patches of elements are created and
for each patch (i.e. finite element node) a local problem
is solved by a direct solver (e.g. Gauss elimination).

Then all subdomains exchange data on interface
nodes. Due to one element overlap between subdo-

mains, each node is updated during computations only
by one computing node (corresponding to the subdo-
main owning the node). Hence the exchange of data
after iteration loops is simplified – the computing node

owning a given interface node just broadcasts its data
to neighboring subdomains.

3.1.1. Mesh partition algorithm

The optimal partition of the mesh should keep mini-
mal the execution time of the whole problem solved by
the finite element method. Equal load of the processors
is usually imposed on the domain decomposition algo-

rithm. The partition determines two important factors:
the convergence properties of an iterative method used
to solve the system of linear equations [38,47] and the
amount of data exchanged between computing nodes
during the solution procedure. The former factor fa-

vorites subdomains with regular shape and bigger over-
lap. The influence of the latter depends additionally on
the architecture of the parallel system, especially the
bandwidth of data transfer between processing nodes.

Many partitioning algorithms of the unstructured

meshes have already been proposed, like coordinate bi-
section, spectral bisection and graph partitioning, see
for instance [9,15,24,25,33,45,53]. The finite element
tearing and interconnecting methods (FETI), e.g. [16]
have been applied for elliptic partial differential equa-

tions. Several libraries, like Chaco [23], Metis and
ParMetis [26,27] or TOP/DOMTEC [14] exist to solve
graph partitioning or similar problems. Space filling
curve methods represent another approach [2,8]. In
the case of remeshing predictive load balancing tech-

niques can be used, e.g. [49]. An overview of graph
partitioning is presented in [43].

As it has been noticed in the introduction, in this pa-
per we are interested in parallel implementation of the
solver rather than in the domain decomposition meth-

ods. For this purpose we introduce a simple heuris-
tic partitioning algorithm that, nevertheless, has several
advantages. It enables creation of subdomains with
arbitrary number of nodes and handles efficiently h-
adaptive meshes with hanging nodes. In the code it is

used for creating both types of subdomains: small sub-
domains for block iterative preconditioning and large
subdomains for parallel execution. The slightly simpli-
fied version of the algorithm, with all technical compli-

cations caused by the presence of constrained (hanging)
nodes omitted, is presented in Fig. 2.
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Fig. 2. The mesh partition algorithm (NS
n – the curent number of nodes in a subdoamin, NS

max – the maximal allowable number of nodes in a

subdomain).

The standard for greedy type algorithms principle of

adding the nearest neighbor to the created subdomain

is combined with an intermediate step of creating a

front (group) of nodes being the candidates for adding

to the subdomain. The presence of heuristic weights

at nodal points, allows for using different mesh par-

tition strategies. These strategies are based on some

geometrical principles. The first node in a given sub-

domain becomes a reference point and then we create

subdomains trying to minimize the distance of the sub-

domain boundary from this point. Choosing different

definitions for the distance in 2D space we get differ-

ent strategies for mesh partition by obtaining different

shapes of subdomains and as a consequence different

sizes of inter-subdomain boundaries. The choice of the

strategy, which results in minimal number of elements

shared by the processors, follows from the qualitative

knowledge concerning the solution and local density

of mesh points. In Fig. 3(b)–(g) several partitions of

the mesh from the Fig. 3(a) are presented with corre-

sponding distance definitions. The expanse of white

between the partitions represents the shared elements.

We implemented also the greedy Farhat criterion [14,

15] of adding the node which belongs to the minimum

number of elements. In all examples the total number

of 8441 nodes is almost uniformly distributed among

subdomains, each of which possesses more than one

thousand internal nodes. The initial front for all cases

is the same and consists of the lower left corner node.

We developed a simple strategy for load balanc-

ing [7] which is used together with the heuristic strat-

egy for definition of the distance in 2D space. The load

balancing strategy exploits the fact that in the mesh

partition algorithm we can specify the number of nodes

for each subdomain. In the presented GMRES imple-

mentation, the workload for a given computing node is

proportional to the number of FE nodes. Then the load

balance in the corresponding subdomain is achieved by

ascribing to each computing node a subdomain with

the number of FE nodes proportional to power of the

computing node. As an estimate for computing node

performance the inverse of the average time for com-

puting local stiffness matrices is taken. The informa-

tion on the performance is sent as an input to the proce-

dure which specifies the numbers of nodes for particu-

lar subdomains. These numbers form the input for the

mesh partition algorithm. Combining the strategy for

load balancing with the strategy of distance definition

one is able to get a decomposition which is useful for

solver testing.

To retain the efficiency of the algorithm for adaptive

meshes, for which the number of nodes and elements

grows considerably, the loops in Fig. 2 can be per-

formed for initial mesh elements and the correspond-

ing nodes only. At that moment adding an element to

a subdomain consist of adding the element and all its

ancestors with all their nodes. Additional techniques

are introduced to maintain the one element overlap be-

tween subdomains. As a result, the speed of the al-

gorithm depends only on the parameters of the initial

mesh.

3.1.2. Implementation

The code is written in the C language and uses typical

C features like structures and dynamic memory alloca-

tion. The structures are used for nodes, elements and

patches data representation. Access to data is realized

by an array of pointers to the structures.
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(a)

(b)

(c)

(d)

Fig. 3. The mesh (a) and partitions using different strategies in the domain decomposition algorithm. (b) no weights associated with front nodes,

(c) weights based on the distance: ρ(x, y) = |x1 − y1| + |x2 − y2|, (d) weights based on the distance: ρ(x, y) = |x1 − y1|, (e) weights

based on the distance: ρ(x, y) = |x2 − y2|, (f) weights based on the distance: ρ(x, y) = max(|x1 − y1|, |x2 − y2|), (g) weights based on the

distance: ρ(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Characteristic feature of the present algorithm is the

existence of patch structures, each storing all data (in-

cluding lists of nodes and elements, assembled stiffness

matrices and load vectors) for a corresponding patch.

The exchange of data between subdomains is based

on arrays storing, for each subdomains, lists of nodes

for which data is sent to or received from the neighbor-

ing subdomains.

The practical realization of the whole computations

in the explicit model is achieved using master – slave

paradigm. There exists one master process that controls

the solution procedure and slave processes performing

in parallel the most of calculations. The flow diagram

of the whole simulation is presented in Fig. 4. Since

the implementation of the explicit programming model

makes use of the PVM system for message passing

between different processing nodes, it is denoted by

PVM in the following sections.

Adaptation of the mesh can be performed between

any two time steps of the algorithm. Usually for sim-

ulations of transient problems, adaptations of the mesh

are frequent while for steady state problems only sev-

eral adaptations are required in the whole solution pro-

cedure. Partitioning of the mesh is performed after

mesh adaptation. This may mean that different mesh

partition strategies are optimal for these two types of

problems.

In the current setting of mesh adaptation all the do-

main information must fit the master processor. To

overcome this effect fast refinement-derefinement tech-

nique is used for mesh modification, rendering the time

for adaptation to the range of several percents of the to-
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(e)

(f)

(g)

Fig. 3. continued.

tal computing time. Nevertheless, despite the fact that

expensive error estimation is done perfectly in parallel,

the algorithm is expected to scale only up to the range

of several dozens of processors. Then special parallel

adaptation strategies has to be designed.

3.2. Parallelization with implicit programming model

Compilers for parallel computers parallelize codes

automatically, verifying loop dependencies. Such an

approach results in sufficient efficiency for simple loops

only. For example, a subroutine call inside a loop

prevents it from possibility of automatic paralleliza-

tion. To overcome those problems compiler direc-

tives/pragmas are additionally used to increase degree

of parallelization and to enable manual control of many

aspects of execution.

In the implicit programming model, the GMRES

algorithm sketched in Fig. 1 (written in C language

in a similar way to the explicit one) is parallelized

using compiler directives whenever a loop over patches,

nodes, or individual degrees of freedom is encountered.

In particular the parallelization is applied for:

– loops over blocks of unknowns at the step of blocks

construction,

– computation of element stiffness matrices and as-

sembly into patch stiffness matrices,

– iterations of the block method.

Since the implicit programming model makes use

of distributed shared memory of the multiprocessors,

its practical implementation is denoted by DSM in the

following sections.

3.3. Parallelization with hybrid programming model

A hybrid programming model is a combination of

explicit and implicit models. In this model, suitable

for a machine with SMP nodes (or for a cluster of

multiprocessor workstations), we introduce two levels

of parallelization:

– first-level parallelization with pure explicit pro-

gramming model making use of geometrical data

decomposition into subdomains; a number of sub-

domains is equal to the number of SMP nodes

coordinated by a message passing library.

– second-level parallelization with the implicit pro-

gramming model for each SMP node, that makes

use of the shared memory for performing iterations

for the block method.
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Fig. 4. Diagram of the whole simulation in the explicit programming model (indicating master and slave processes).

4. Results

We tested our parallel versions of GMRES (precon-

ditioned with the block Jacobi method) with an exam-

ple of flow simulations – a well known transient bench-

mark problem – the ramp problem [54]. A Mach 10

shock traveling along a channel and perpendicular to

its walls meets at time t = 0 s a ramp, having an angle

of 60 degrees with the channel walls. A complicated

flow pattern develops with double Mach reflection and

a jet of denser fluid along the ramp behind the shock.

The mesh after initial adaptation is shown in Fig. 3(a),

that presents qualitatively the solution.

The problem is solved with the Taylor-Galerkin

method. Adaptations of the mesh are done every five

steps. Since the flow is inviscid, a simplified version of

the element error indicator is used:

e2
K =

∥

∥

∥

∥

U
n+1 − U

n

∆t
+ f

E
k,UU,k

∥

∥

∥

∥

H,UU

where h is a linear element size, U is the vector of

conservation variables at time tn and tn+1 (∆t =
tn+1 − tn) and f

E
k are the vectors of Eulerian fluxes.

The Euclidean vector norm is weighted by the Hessian

of the entropy function H with respect to U [4].

The time step length is controlled by the constant

CFL number equal to 2 [5].

In the explicit parallel programming model (denoted

by PVM) we used a version of domain decomposition

(mesh partition) algorithm that ensures vertical align-

ment of subdomain interfaces.

The results refer to the wall-clock execution time,

T , for one time step chosen as a representation for

the whole simulation, with different meshes (having

N = 4474, 16858, 18241 and 73589 nodes and denoted

in the following figures by s4t, s16t, s18t and s73t

respectively). To verify performance of the algorithm

for different meshes and different programming models

we fixed the number of restarted GMRES iterations, l,

that keeps the convergence index, ǫ, at the acceptable

level. We used ǫ =‖ rl ‖, where rl = x
l−1 − x

l and

x
l−1, x

l are solution approximations in l − 1 and l

iterations respectively.

In Fig. 5 dependence of convergence index on the

number of restarted GMRES iterations, l, for three

meshes is presented. Since ǫ � 10−10 for l � 5, l = 5

was adopted.

To get statistically more reliable results the measure-

ments have been collected three times from 5 subse-

quent time steps, since fluctuations in T of several per-

cents were observed.



J. Płażek et al. / Comparison of message-passing and shared memory implementations 203

Fig. 5. Dependence of convergence index on number of restarted

GMRES iterations.

Table 1

Number of interface nodes for different kinds of the mesh partition

strategies

#Domains Number of the interface nodes

Strategy Strategy With Greedy

from Fig. 3(b) from Fig. 3(d) strategy

2 350 114 368

3 772 179 855

4 1115 324 1319

6 1790 465 1241
8 2542 800 1453

10 4881 1356 1917

4.1. Performance of the mesh partition algorithm

The final result of partition produced by the algo-

rithm from Fig. 2 depends, for a given computational

domain, on the initial front and the way of selecting

nodes from the front. On the basis of knowledge con-

cerning the solution and local density of mesh nodes,

from many possibilities presented in Section 3 we im-

plemented three for explicit programming to compare

their efficiency.

The initial front for all cases is the same and consists

of the lower left corner node. Table 1 shows the num-

ber of the interface nodes (representing the communi-

cation cost) for strategies presented in Figs 3(b) and

(d) supplemented with the greedy Farhat’s strategy [14,

15]. These values were obtained for the ramp problem

with the number of nodes equal to 18241.

It can be noticed, that for the particular domain con-

sidered, the heuristic strategy presented in Fig. 3(d)

results in the smallest number of the interface nodes

minimizing the communication requirements. This re-

sult remains valid also if the mesh is refined, because

remeshing is done mainly in the region of high mesh

density which does not influence much mesh density

profiles.

4.2. Performance of the parallel GMRES

Three parallel machines have been used: HP

SPP1600 (32 PA 7200/120MHz processors organized

in 4 SMP hypernodes, with SPP-UX 4.2, Convex

C 6.5 and Convex PVM 3.3.10), HP S2000 (16

PA8000/180MHz processors in one hypernode using

SPP-UX 5.2, HP C 2.1 and PVM 3.3.11) and SGI Ori-

gin2000 (32 R10000/250MHz processors, IRIX 6.5,

SGI C 7.3 and SGI PVM 3.1.1). We run the code on a

SPP1600 isolated subcomplex consisting of 16 proces-

sors from four SMP nodes. During the measurements

on S2000 and on Origin2000 (subsequently called S2K

and O2K respectively) no other users were allowed to

use the machines.

In Figs 6(a) and (b) CXpa profiles for the wall-clock

execution time, T , for one simulation step and for the

implicit parallel programming (denoted by DSM) are

reported. CXpa is a performance analysis tool for

CONVEX and HP parallel computers [55] for moni-

toring program performance at user-selectable source

code regions, such as routines, loops, and compiler-

generated parallel loops. Collected data include wall-

clock/cpu time, execution counts, cache miss counts

and latency for memory access. In our case the pro-

files represent the time spent by the program in the

most time consuming program modules. Seven execu-

tion threads were declared of a rather small problem

with 4474 FE nodes. For execution with one thread,

T = 48 s (see Fig. 6(a)), compared to T = 19 s

obtained for seven threads (cf. Fig. 6(b)). Since

the results concern program threads with procedures

including children (e.g. the main() procedure in-

cludes time spent in all other routines), it can be no-

ticed that sufficient parallel performance is obtained.

The most involved modules are a main() procedure,

dumpin() for reading input data, adapt() for per-

forming mesh adaptation and gmressol() for solv-

ing a finite element problem using preconditioned GM-

RES method. The last mentioned procedure calls other

modules, like assebj() to compute element stiffness

matrices and assembly them into patch stiffness ma-
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(a)

(b)

Fig. 6. CXpa profiles (SPP 1600) for wall-clock execution time for one simulation step and for the implicit parallel programming model for: (a)

one and (b) seven threads with children, N = 4474.

trices using celm(), elem(), mcoeff(), kijnat(),

mat4prodffc() modules andbijacit() to perform

one block Jacobi iteration. Due to rather high CXpa

overhead the results can be interpreted qualitatively

only.

In Fig. 7(a) the wall-clock execution time, T , for dif-

ferent number of processors, K , for different machines

and programming models is presented for number of
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(a)

(c) (d)

(b

Fig. 7. Wall-clock execution time for one simulation step, different programming models and machines: (a) the mesh with N = 16858 nodes,
(b) with N = 73589 nodes. (c) Speedup for different meshes (N = 16858 and 73589 nodes). (d) Normalized T for N = 16858, 18241 and

73589 nodes.

nodes N = 16858. The architecture of SPP1600 has

influenced results of the DSM implementation, while

results from the explicit model remained undistored by

the lower bandwidth between the hypernodes. Better

scalability is observed for the explicit model in com-

parison with DSM, although the latter results are ob-

tained with relatively small programmer’s effort. For

30 Origin2000 processors and the PVM implementa-

tion characteristic saturation becomes evident, while

kept monotonic for DSM. Results for the hybrid im-

plementation (denoted by PVM+DSM) are in between

those obtained for PVM and DSM.

Difference in performance between explicit and im-

plicit models for K = 1 results from distinct nodes

numbering in the meshes and consequently different

cache performance.

In Fig. 7(b) timings for a greater mesh (N = 73589)

are shown. Again, the difference between the PVM

and DSM implementations is not high for rather small

number of processors (K � 16). The significant differ-

ence is obtained for K > 16, i.e., for O2K hypercube

dimensionality d > 2. For the DSM implementation

unexpected response is found, with local maximum for

K = 24 and monotonic execution time decrease for

K > 24. This feature results from the complicated

O2K communication topology. Contrary to DSM, no
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(a) (b)

Fig. 8. (a) Timings for O2K for different mesh sizes and models, (b) Wall clock time distribution for each of the first 5 time steps and for the

mesh N = 73589.

characteristic saturation is observed for the PVM im-

plementation due to higher computation to communi-

cation ratio, resulting from higher data locality.

In all cases the DSM implementation shows worse

performance in comparison with PVM. Although the

machines are the shared memory computers, DSM

hardware represents different access times between dif-

fering levels of memory (i.e. non-uniform memory ac-

cess). This fact introduces difference in the latency and

in the memory bandwidth, that reduce the performance.

The PVM implementation takes advantage of the

PVM system adopted by the vendors. No additional

knowledge of the architecture has been included. The

architecture details influence the hybrid implementa-

tion (PVM+DSM), which is more flexible in choice of

communication and computation granularities, accord-

ing to the surface-to-volume ratio [18].

Relative speedup values, S, are depicted in Fig. 7(c).

Good scalability is obtained for the message-passing

model, with better characteristics for Origin2000. De-

spite of the interval 16 < K < 28 (with the biggest

mesh, N = 73589 influenced again by different levels

of memory), the DSM implementation demonstrates

higher speedup on Origin2000 than on S2000. In

Fig. 7(d) we present the wall-clock execution time nor-

malized to number of mesh nodes, T/N . Since the

characteristics are very close each other, this confirms

experimentally linear computational complexity o(N)
of the algorithm.

In Fig. 8(a) timings for Origin2000 are collected.

For a small mesh (N = 4474), a minimum is observed

due to small computation to communication ratio. The

scalability is getting better as the ratio increases. Wall

clock time distribution for each of the first 5 time steps

and the PVM implementation is presented in Fig. 8(b).

It reflects uncertainty in wall clock time measurements

(due to operating system overhead), that confirms rea-

sons for multiple measurements.

5. Conclusions

In the paper we have focused on parallel implemen-

tations of the algorithm for GMRES method. The DSM

implementation demonstrates useful and scalable par-

allelization. No PCAM methodology is applied, mak-

ing the development easier, for the price of suitable

choice of data structures and program control flow. In

particular, this implementation is adequate for rather

small number of processing nodes, although this limi-

tation depends on the architecture of the computer sys-

tem and the problem size. In our case, a practical limit

for processors is K = 4 (for SPP1600 and N = 16858)

and K = 16 (for Origin2000 and N = 73589). No

performance degradation is observed on S2000, due to

only one (SMP-) hypernode available.

The PVM implementation still demonstrates higher

performance and speedup characteristics closer to the

ideal case for the price of more complicated code struc-
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ture. In the development stage application of the PCAM
methodology is useful to obtain efficient implementa-
tion. In our case, in spite of use of the simple partition-
ing method, no essential limitation of this implemen-
tation is encountered. The biggest production run with
N ≈ 375000, completed for the PVM implementation
in the 32-processor Origin2000 multiuser environment,
proved sufficient practical performance.

The PVM implementation is less sensitive to the
communication bandwidth than DSM. Changing from
one SMP node execution to multi-SMP node execu-
tion, the former is only weakly affected, while the latter
suffers the performance degradation. The PVM imple-
mentation is suitable also for the clusters of comput-
ers. In this implementation the PCAM methodology
should be carefully applied, considering partitioning
and communication models as well as implementation
issues of atomic tasks agglomeration and mapping on
the architecture [18]. On machines with vast number of
processors implemented for big problems solving, dif-
ficulties with load-balancing and with computation to
communication ratio kept high could be encountered.
On the other hand, the DSM implementation, although
easy to develop and efficient for small number of pro-
cessors, would suffer of low performance and exces-
sive resources consuming while the problems got big-
ger. Thus neither of the specific implementations is
universal.

Since most of the modern machines with vast num-
ber of processors implement different layers of memory
and also because the dominant architecture for the fu-
ture is expected to be clusters of SMPs [46], the hybrid
model, that makes use of the both implementations,
would be a choice for those kinds of machines. If nec-
essary, in this model both domain and functional par-
titioning methods can be implemented simultaneously.
The present study shows the possibility and feasibility
of using the hybrid approach for parallelization of finite
element, and hopefully, other scientific codes. To fully
assess advantages of this approach against the explicit
model more numerical studies for systems consisting
of a large number of SMP nodes should be performed.

Future work could consider also several topics, like
tuning the solvers for each type of architecture, cod-
ing in parameters, which estimate processor perfor-
mance, memory access speed and the interconnection
bandwidth, to be used later on for further solver op-
timization. Other possibilities include implementa-
tion of more sophisticated partitioning methods, load-
balancing procedures and parallel adaptation strategies.

In practice, to get advantage of parallel implementa-
tions on tightly coupled architectures, more processors

have to be available. Otherwise, in multiuser environ-

ments with vast number of users, performance loss is
observed.
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[5] K.Banaś and L.Demkowicz, New quasi-natural artificial vis-

cosity models for compressible fluid flow, with improved en-

tropy production mechanism, J. Theor. Appl. Mech. 35 (1997),

233–248.
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208 J. Płażek et al. / Comparison of message-passing and shared memory implementations

[12] J. Donea, A Taylor-Galerkin method for convective transport

problems, Int. J. Numer. Meth. Eng. 20 (1984), 101–119.

[13] K. Ericsson and C. Johnson, Adaptive streamline diffusion fi-

nite element methods for stationary convection diffusion prob-

lems, Mathem. of Comput. 60 (1993), 167–188.

[14] C. Farhat, S. Lanteri and H.D. Simon, TOP/DOMDEC – a

software tool for mesh partitioning and parallel processing,
Comput. Systems Eng. 6 (1995), 13–26.

[15] C. Farhat, N. Maman and G.W. Brown, Mesh partitioning

for implicit computations via iterative domain decomposition:

impact and optimization of the subdomain aspect ratio, Int. J.

Numer. Meth. Eng. 38 (1995), 989–1000.

[16] C. Farhat, K. Pierson and M. Lesoinne, The second generation

FETI methods and their application to the parallel solution

of large-scale linear and geometrically non-linear structural
analysis problems, Comp. Meth. Appl. Mech. Engng. 184(2–4)

(2000), 333–374.

[17] M.J. Flynn, Some computer organizations and their effective-

ness, IEEE Trans. on Computers, C-21(9) (1972), 948–960.

[18] I. Foster, Designing and Building Parallel Programs, Addison

Wesley, 1995.

[19] G. Golub and J.M. Ortega, Scientific Computing (Academic

Press, San Diego, 1993). Numerical Approximation of Partial
Differential Equations (Springer, Berlin, 1994).

[20] P. Hansbo and C. Johnson, Adaptive streamline diffusion

method for compressible flow using conservation variables,

Comp. Meth. Appl. Mech. Engng. 87 (1991), 267–280.

[21] P. Hansbo, Explicit Streamline Diffusion Finite Element Meth-

ods for the Compressible Euler Equations in Conservation

Variables, J. Computat. Physics 109 (1993), 274–288.

[22] J. Hauser, T. Ludewig, R.D. Williams, R. Winkelmann, T.
Gollnick, S. Brunett and J. Muylaert, A test suite for high-

performance parallel Java, Proc. of Fifth NASA National Symp.

on Large-Scale Analysis, Design and Intelligent Synthesis En-

vironments, Williamsburg, Oct. 12–15, 1999, Advances in En-

gineering Software (Elsevier) 31(8–9) (2000), 687–696.

[23] B. Hendrickson and R. Leland, The Chaco User’s Guide. Ver-

sion 2.0. Technical Report, SAND95-2344, Sandia National
Laboratories, Albuquerque, NM, 1995.

[24] B. Hendrickson and T. Kolda, Graph partitioning models for

parallel computing, Parallel Computing 26(12) (2000), 1519–

1534.

[25] S.-H. Hsieh, G.H. Paulino and J.F. Abel, Recursive spectral

algorithms for automatic domain partitioning in parallel finite

element analysis, Comput. Meth. Appl. Mech. Eng. 121 (1995),

137–162.
[26] G. Karypis and V. Kumar, A fast and high quality multilevel

scheme for partitioning irregular graphs, SIAM J. Sci. Comput.

20(1) (1998), 359–392.

[27] G. Karypis, K. Schloegel and V. Kumar, ParMetis – Parallel

Graph Partitioning and Sparse Matrix Ordering Library, Ver-

sion 2.0, User’s Manual, Dept. of Comp. Sci. University of

Minnesota, 1998.

[28] V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction
to Parallel Computing, The Benjamin/Cummings Publishing

Company, Redwood City, 1994.

[29] K.D. Ryu and J.K. Hollingsworth, Exploiting fine grained idle

periods in networks of workstations, IEEE Trans. on Parallel

and Distrib. Systems 11(7) (2000), 683–698.

[30] P. LeTallec, Domain decomposition method in computational

mechanics, in: J.T. Oden, ed., Amsterdam, North Holland,

1994.

[31] P. Luksch, Parallel and distributed implementation of large

industrial applications, Future. Gen. Comp. Syst. 16(6) (2000),

649–663.

[32] M. Papadrakakis, S. Bitzarakis and A. Kotsopulos, An im-

proved dual domain decomposition technique for computa-

tional structural mechanics, in: Proc.Second ECCOMAS Conf.

Numer. Methods in Engng, J.-A. Desideri et al., eds, J. Wiley
& Sons Ltd., Paris, Sep. 9–13, 1996, pp. 482–490.

[33] A. Patra and J.T. Oden, Problem decomposition for adaptive

hp finite element methods, Comput. Systems Eng. 6 (1995),

97–109.
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