
A mediator is a variable that explains the psychologi-
cal mechanism between an independent variable and a de-
pendent variable (see, e.g., Baron & Kenny, 1986; James 
& Brett, 1984; Judd & Kenny, 1981; MacKinnon, 2008; 
MacKinnon, Fairchild, & Fritz, 2007).1 A simple literature 
review shows that Baron and Kenny’s seminal article has 
been cited more than ten thousand times. Their article is 
also the most cited in the history of the Journal of Person-
ality & Social Psychology (Quinones-Vidal, Lopez-Garcia, 
Penaranda-Ortega, & Tortosa-Gil, 2004). Although some 
of the citations may be related to moderators rather than 
to mediators, this large number still clearly indicates the 
importance of using mediation models in the social and be-
havioral sciences (see MacKinnon, 2008, for the applica-
tions of mediation models in many disciplines).

Figure 1 shows a model with one single mediator. X, M, 
and Y are the independent variable, the mediator, and the 
dependent variable, respectively. The basic idea of a me-
diation analysis is to decompose the total effect into two 
parts: the direct and the indirect effects. The direct and the 
indirect effects can be estimated by the product terms c  
and ab, respectively, whereas the sum of them (ab  c ) is 
known as the total effect. In order to conduct a mediation 
analysis, both regression analysis and structural equation 
modeling (SEM) may be used (see, e.g., M. W.-L. Cheung, 
2007; James, Mulaik, & Brett, 2006; MacKinnon, 2008; 
Preacher & Hayes, 2004, 2008a).

After obtaining an estimate on the indirect effect, it is 
also important for one to report its precision. The precision 
of an estimated indirect effect can be in the form of either a 
standard error (SE; Aroian, 1944; Goodman, 1960; Sobel, 

1982, 1986) or a confidence interval (CI; Bollen & Stine, 
1990; M. W.-L. Cheung, 2007, 2009; MacKinnon, Lock-
wood, & Williams, 2004; Shrout & Bolger, 2002; Williams 
& MacKinnon, 2008). The present study aimed to focus 
mainly on the CI, even though many of the techniques dis-
cussed can be directly applied to SE.

There were three main objectives in the present study. 
First, it emphasized the importance of using effect size and 
its CI in a mediation analysis. Such a practice is consistent 
with the current statistical reform in psychology and in other 
disciplines in the social sciences (see, e.g., Cumming et al., 
2007; Wilkinson et al., 1999). Effect size is also required 
in power analysis, along with sample-size estimation and 
defining conditions for computer simulations (see, e.g., the 
studies conducted by MacKinnon, Lockwood, Hoffman, 
West, & Sheets, 2002).

On the basis of a simulation study, Fritz and Mac Kinnon 
(2007) presented sample sizes required to test small, me-
dium, and large effect sizes in a mediation analysis. In 
their study, and in all other simulation studies conducted 
by MacKinnon and his colleagues (e.g., Mackinnon et al., 
2002), the model specification was set in such a way that 
the error variances of the mediator and the dependent vari-
able were both 1.0.2 In other words, the regression coeffi-
cients for small (.14), medium (.39), and large (.59) effects 
are interpreted under the assumption that the error vari-
ances of the mediator and the dependent variable are both 
1.0. This makes it difficult to interpret the strength of the 
indirect effect, since the error variances are seldom equal to 
1.0 in applied settings. The present study suggested using a 
standardized indirect effect in a mediation analysis. It will 
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the dependent variables (see Equation A1 in Appendix A), 
the unstandardized indirect effect calculated from raw 
scores cannot be interpreted as a measure of the effect 
size. MacKinnon (2008) commented that “[t]he value of 
the [unstandardized] mediated effect is more interpretable 
if the unit of measurement of the dependent variable in-
volved is clear” (p. 79).

However, the scaling of many variables in the social and 
behavioral sciences is arbitrary. This creates serious prob-
lems with interpreting the magnitude of the unstandardized 
indirect effect. Besides the significance of the indirect ef-
fect, researchers cannot say anything about the strength of 
the indirect effect. Moreover, researchers cannot compare 
the indirect effect found in one study with those found in 
other studies. Researchers may use complete or partial me-
diation to qualify the type of mediation involved (Baron & 
Kenny, 1986; James et al., 2006). However, doing this still 
will not lead to the quantification of the indirect effect.

In the social and behavioral sciences, the calculation of 
effect sizes and their CIs is usually preferred over null hy-
pothesis significance testing (see, e.g., American Psycho-
logical Association, 2001; Cohen, 1994; Harlow, Mulaik, 
& Steiger, 1997; Wilkinson et al., 1999). The Publication 
Manual of the American Psychological Association (2001) 
explicitly states that “it is almost always necessary to in-
clude some index of effect size or strength of relationship 
in your Results section” (p. 25). An effect size provides a 
scale-free measure of the strength of association that can 
be compared and synthesized across studies.

MacKinnon, Warsi, and Dwyer (1995; see also MacKin-
non, 2008b) compared several potential measures of effect 
size in the context of mediation analysis. Two of them were 
the ratio mediated (ab/c ; Sobel, 1982) and the proportion 
mediated [ab/(ab  c ); Alwin & Hauser, 1975]. The ratio 
mediated is interpreted as the ratio of the indirect effect to 
the direct effect, whereas the proportion mediated is inter-
preted as the proportion of the effect from X to Y that can be 
accounted for by the mediator, M. However, both interpre-
tations become problematic when there is an inconsistent 
mediation (MacKinnon, Krull, & Lockwood, 2000). When 
inconsistent mediation occurs, the signs between ab and c  
are different, and the terms ab/c  and ab/(ab  c ) can be 
negative. Moreover, MacKinnon et al. (1995) found that 
these measures are not very stable unless the sample size is 
at least 500. Another limitation is that these two measures 
do not indicate the effect of the mediation; they merely 
show the ratio (or percentage) of the indirect effect to the 
direct effect (or the total effect).

A more direct measure of the effect size is the stan-
dardized indirect effect calculated from the standardized 
scores (see, e.g., Bobko & Rieck, 1980; Preacher & Hayes, 
2008b; Raykov, Brennan, Reinhardt, & Horowitz, 2008). 
There are several advantages to using a standardized in-
direct effect. First, it is interpreted in a manner similar 
to that for the unstandardized indirect effect; that is, it is 
interpreted as the effect of an independent variable on a 
dependent variable via a mediator after controlling for the 
direct effect when all variables are standardized. Second, 
the standardized total effect always equals the sum of the 
standardized indirect effect and the standardized direct ef-

be shown that a standardized indirect effect is much more 
interpretable.

The second objective was to review the correct procedures 
for constructing CIs of the standardized indirect effect. It is 
well known that statistical tests based on correlation and co-
variance matrices can be different (see, e.g., Bollen, 1989; Cu-
deck, 1989; Wansbeek & Meijer, 2000). MacKinnon (2008) 
also explicitly stated that “[u]sing the [formulas derived for 
unstandardized mediation analysis] to test the significance of 
the product of standardized â and b̂ regression coefficients 
(based on unstandardized standard errors) can lead to mis-
leading results” (p. 74). Even worse, some researchers may 
wrongly apply bootstrap procedures to the standardized data. 
This approach is labeled as naive bootstrap CI in the pres-
ent article. The present study showed the problems with this 
naive bootstrap method and the correct way to obtain boot-
strap CIs of the standardized indirect effect.

The final objective was to empirically evaluate 11 methods 
for constructing CIs of the standardized indirect effect. These 
methods included 6 Wald CIs based on SEs, 3 bootstrap CIs, 1 
likelihood-based CI, and the PRODCLIN (distribution of the 
product confidence limits for indirect effects; MacKinnon, 
Fritz, Williams, & Lockwood, 2007) CI. Although there are 
several simulation studies on the performance of these meth-
ods in testing the unstandardized indirect effect, it is not clear 
how good these methods are in testing the standardized indi-
rect effect. The present study filled this research gap by pro-
viding some empirical findings via a computer simulation.

The present article is organized as follows. In the next 
section, I will briefly discuss the importance of using ef-
fect size in a mediation analysis. In the subsequent section, 
methods for constructing CIs of the unstandardized indirect 
effect and the ways in which they can be extended to the 
standardized indirect effect will be reviewed. A computer 
simulation will then be presented to evaluate the empiri-
cal coverage probabilities of these methods. Finally, future 
directions for and issues related to the standardized indirect 
effect will be discussed.

Importance of Reporting Effect Size  
in Mediation Analysis

Conventionally, researchers focus on the significance 
of the indirect effect. Since the magnitude of the indirect 
effect depends on the scales of both the independent and 

Figure 1. A mediating model with unstandardized variables.
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(variances of X and Y ) are fixed. That is, variability in esti-
mating VX and VY is not incorporated into the calculations 
of the CI of the standardized indirect effect. The Wald CIs 
obtained by this approach are the same as the one obtained 
by using Equation 7, which will be discussed later.

Second—and most important—bootstrap procedures 
should not be applied directly to the standardized data to 
obtain the bootstrap CIs. The reason is that the variances 
of the bootstrapped samples may be different from 1.0, 
even when the data have been standardized prior to the 
analysis. Therefore, the CIs constructed from the boot-
strapped samples cannot be qualified as the CIs of the 
standardized indirect effect. The correct procedure is to 
standardize each bootstrapped sample before calculating 
the standardized indirect effect. Doing so ensures that the 
variances of the bootstrapped samples are exactly 1.0.

Third, standardizing the data prior to the analysis may 
not be appropriate for more complicated mediational 
models—for example, those with latent variables and 
with specific or intermediate mediators. This is similar to 
the analysis of correlation matrices by using covariance 
structure models in the context of SEM (Cudeck, 1989). 
The SEs and CIs of the parameter estimates may be incor-
rect. A model-based standardization (see, e.g., Jöreskog, 
Sörbom, Du Toit, & Du Toit, 1999), which will be intro-
duced later, is recommended to obtain the standardized 
coefficients.

Methods of Constructing Confidence Intervals 
for the Unstandardized Indirect Effect

In this section, I will summarize several methods of ob-
taining CIs for the unstandardized indirect effect. Then I 
will extend these methods to the case of the standardized 
indirect effect. In Figure 1, the unstandardized indirect 
effect is estimated by

 Iunstand.  ab. (1)

On the basis of the multivariate delta method with a first-
order Taylor series approximation, Sobel (1982) derived 
the SE of the unstandardized indirect effect as follows:

 SE a SE b SEb aSobel
2 2 2 2 ,  (2)

where SEa and SEb are the estimated asymptotic standard 
errors of a and b, respectively (see also MacKinnon, 2008, 
for the derivations).4

There are other, alternative estimators of the SE of the 
unstandardized indirect effect. Aroian (1944) and Good-
man (1960) estimated the SE of the unstandardized in 
direct effect by using the multivariate delta method with 
a first- and second-order Taylor series approximation and 
with the distribution of the product term of two random 
variables. Their proposed estimators were

 SE a SE b SE SE SEb a a bAroian
2 2 2 2 2 2 , (3)

and

 SE a SE b SE SE SEb a a bGoodman
2 2 2 2 2 2 . (4)

The indirect effect divided by its estimated SE—that is, z  
ab/SE—approximately follows a standard normal distribu-

fect. Researchers do not need to learn new concepts before 
interpreting a standardized indirect effect.

Third, the standardized indirect effect is usually within 
the range of 1 to 1, given that there is no inconsistent 
mediation. Statistically speaking, the standardized indirect 
effect can be larger (or smaller) than 1 (or 1) (Jöreskog, 
1999), although this is not likely. This does not affect the 
use of the standardized indirect effect as a measure of ef-
fect size, however. Being bounded by a certain value is 
not a requirement for an effect-size measure. For example, 
there is no boundary on the odds ratio and on the standard-
ized mean difference. In fact, both of them are important 
measures of effect size in the behavioral sciences. Since 
the standardized indirect effect indicates both the direction 
of an influence and the strength of an association, it can 
serve as a measure of effect size in a mediation analysis.

Similar concepts of the standardized indirect effect have 
been widely applied in simulation studies on unstandardized 
indirect effects in order to define the population of effect sizes 
(see, e.g., G. W. Cheung & Lau, 2008; M. W.-L.  Cheung, 
2007; Fritz & MacKinnon, 2007; MacKinnon, Fairchild, 
& Fritz, 2007; MacKinnon et al., 2002; MacKinnon et al., 
2004; Taylor, MacKinnon, & Tein, 2008) (see note 2). The 
use of the standardized indirect effect also facilitates the 
comparison between indirect effects across studies and a 
meta-analysis (Hedges & Olkin, 1985; Hunter & Schmidt, 
2004). Since studies are likely different in terms of mea-
sures, scales, and samples, standardized scores are preferred 
in a meta-analysis (see Hunter & Hamilton, 2002, for the 
arguments on this matter). Therefore, the standardized in-
direct effect is not only useful as an effect-size measure in 
primary studies; it is also useful for future meta-analyses 
that cumulate scientific knowledge regarding the mediating 
effect on a particular topic.

Indeed, the task of estimating the standardized indirect 
effect is not a new one to many SEM users. For example, 
popular SEM packages such as LISREL (Jöreskog & Sör-
bom, 1996) and Mplus (Muthén & Muthén, 2007) provide 
commands to obtain standardized indirect effects. How-
ever, estimating the CIs of the standardized indirect effect 
has been investigated less in the literature.3

Constructing Confidence Intervals  
of Unstandardized and Standardized  

Indirect Effects

Standardizing Raw Scores Before  
a Mediation Analysis

Before discussing methods of constructing CIs of the 
standardized indirect effect, I will first address issues re-
lated to the naive bootstrap CI. Intuitively, one may simply 
want to standardize the data and then conduct a mediation 
analysis on the standardized data. The CIs obtained for 
the standardized data may then be used as the CIs for the 
standardized indirect effect.

Although the present approach looks appealing because 
the existing methods for unstandardized indirect effects can 
be applied directly to standardized indirect effects without 
any modification, several issues should be noted. First, in 
standardizing the data prior to conducting a mediation anal-
ysis, the assumption is that the estimates of both VX and VY 
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Methods for Constructing Confidence Intervals 
for the Standardized Indirect Effect

An unstandardized indirect effect approach. The 
first method for obtaining the standardized indirect effect is 
by standardizing the unstandardized indirect effect, using
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where VX and VY are the variances of X and Y, respectively. 
It should be noted that the variance of M (the mediator) is 
not involved in the calculations (see Appendix A).5

Several methods may be applied to derive the SE of 
Istand. depending on whether the estimates of VX and VY 
are treated as fixed or random. If the sample sizes are suf-
ficiently large, we may treat both VX and VY as fixed and 
known (e.g., Bollen & Stine, 1990; Cohen, Cohen, West, 
& Aiken, 2003). Doing this is equivalent to conducting 
a mediation analysis on the standardized data that were 
mentioned before. Since both VX and VY are treated as 
constants, the SE of the standardized indirect effect can 
be easily obtained by using
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When the sample sizes are small, however, the estimates 
of VX and VY may vary across samples. We have to take the 
variability of VX and VY into account in deriving the SE 
of the standardized indirect effect (see, e.g., Bentler, 2007; 
Bentler & Lee, 1983; Bollen, 1989; Wansbeek & Meijer, 
2000). By treating the estimates of ab, VX, and VY as uncor-
related, the SE of the standardized indirect effect can be ob-
tained by the multivariate delta method (see Appendix A).
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where n is the sample size. Since the term
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is nonnegative, SEstand.-random is always larger than 
 SEstand.-fixed. When n gets larger and larger, SEstand.-random 
approaches SEstand.-fixed.

Since there are two formulas (SESobel and SEAroian) for 
estimating the SE of the unstandardized indirect effect, 
there are four possible formulas for estimating the SE of 
the standardized indirect effect, depending on whether we 
treat VX and VY as fixed or random. These formulas are
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tion in large samples. If the absolute value of the z score is 
larger than 1.96, it is statistically significant at .05.

By assuming that the unstandardized indirect effect is 
approximately normally distributed, a 95% Wald CI can 
be constructed by

 ab  1.96SE, (5)

where SE is the estimated SE based on Equations 2–4. 
MacKinnon et al. (2002) compared the empirical per-
formance of these estimators via a computer simulation. 
They found that these tests had low Type I error rates and 
very low statistical power. Moreover, MacKinnon et al. 
(2002) and MacKinnon et al. (2004) found that SE Goodman 
was often undefined. Therefore, SEGoodman will not be fur-
ther considered in the present article.

Since the distribution of the indirect effect ab is usu-
ally nonnormal except in very large sample sizes, several 
approaches have been suggested to test the unstandard-
ized indirect effect. One recommended method is to use 
bootstrap CIs. Bootstrap methods use the empirical distri-
bution of the statistics to approximate the theoretical dis-
tribution of the statistics (see, e.g., Bollen & Stine, 1990; 
MacKinnon et al., 2004; Shrout & Bolger, 2002).

Suppose that we have N data; we may take N indepen-
dent draws with replacement from the original samples. The 
bootstrap sample is then used to construct an estimate, ab*, 
of the unstandardized indirect effect. This procedure is re-
peated B times. On the basis of ab*, there are several meth-
ods by which to construct bootstrap CIs. One of them is the 
percentile bootstrap approach. To construct a 95% percentile 
bootstrap CI for the unstandardized indirect effect, one may 
obtain the 2.5th and 97.5th percentiles on the B bootstrap 
replications ab*. Several modifications may be used to im-
prove the performance. These include the bias-corrected 
(BC) bootstrap CI and the bias-corrected and acceleration 
(BCa) bootstrap CI (see Davison & Hinkley, 1997).

Another approach for testing the unstandardized indirect 
effect is based on the distribution of a product. MacKinnon, 
Fritz, et al. (2007) presented a program called PRODCLIN 
that provides CI on the indirect effect. Since the PROD-
CLIN CI captures the non-normality of the distribution of 
the product between two regression coefficients, their ap-
proach performs much better than the Wald CIs in testing 
the indirect effect. The PRODCLIN approach can be ex-
tended to the standardized indirect effect by assuming that 
the variances of the variables are fixed.

An alternative approach is the use of likelihood-based 
CIs (M. W.-L. Cheung, 2007, 2009; Neale & Miller, 
1997). To construct a 100(1 )% likelihood-based CI 
on a  parameter—say, an unstandardized indirect effect—
we move the parameter estimate (treated as varied) as far 
away as possible from its maximum likelihood estimate so 
that it is just statistically significant at the desired  level. 
Like the PRODCLIN approach, the likelihood-based CI 
captures the asymmetry on the distribution of the indi-
rect effect. It should be noted that both PRODCLIN and 
likelihood-based CIs still assume that the raw data are nor-
mally distributed, whereas the bootstrap CIs do not make 
this assumption.
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By using this parameterization, Q, R, and S become 
the standardized variables of X, M, and Y, respectively 
(Jöreskog & Sörbom, 1996). It should be noted that these 
constraints also ensure that the bootstrapped samples are 
standardized. Thus, a percentile bootstrap and BC boot-
strap CIs of the standardized indirect effect can be ob-
tained correctly by using this setup.

The standardized indirect effect can be easily estimated 
by the product term ab in Figure 2. To estimate the CI of 
the standardized indirect effect, we may introduce a phan-
tom variable P (see, e.g., M. W.-L. Cheung, 2007, 2009; 
Raykov & Shrout, 2002; Rindskopf, 1984). The variance 
of P is fixed at 0. Thus, the addition of P has no effect on 
the parameter estimates and the model fit. It is introduced 
to directly estimate the product term of a and b; that is,

 p  ab. (16)

The CI on p is equivalent to the estimated CI on the stan-
dardized indirect effect. Most SEM packages, such as LIS-
REL, Mx (Neale, Boker, Xie, & Maes, 2005), and Mplus, 
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A correlational approach. Another approach to ob-
taining the standardized indirect effect is to derive it from 
the correlation coefficients among X, M, and Y (Bobko & 
Rieck, 1980). Bobko and Rieck further proposed a formula 
for estimating the SE of the standardized indirect effect 
via the multivariate delta method (Equation 13, below), 
where s  (r2

XM rMY  rMY  2rXM rXY )(1  r2
XM) 2, t  

r2
XM(1  r2

XM) 1, u  rXM(1  r2
XM) 1, var(rij) is the as-

ymptotic variance of rij, and cov(rij,rjk) is the asymptotic 
covariance between rij and rjk.

To apply Equation 13, we have to estimate the asymp-
totic variance of a correlation coefficient and the asymp-
totic covariance between two correlation coefficients 
(see, e.g., Olkin & Finn, 1995; Olkin & Siotani, 1976). 
The asymptotic variance of a correlation coefficient rij 
and the asymptotic covariance between rij and rjk can be 
approximated by
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Once the asymptotic covariances and variances are avail-
able, Equation 13 can be applied to estimate the SE of the 
standardized indirect effect. When the SEs for the stan-
dardized indirect effect are available, Wald CIs may be 
constructed by Equation 5.

A structural equation modeling approach. An SEM 
approach may also be used to obtain the standardized in-
direct effect and its CI (see Figure 2). Using conventional 
SEM notations, squares and circles represent the observed 
variables and the latent variables, respectively. The double 
arrow on a variable represents the variance or error vari-
ance of that variable, depending on whether it is an inde-
pendent or a dependent variable.

There are three important points that need to be noted 
here. First, the parameters f, g, and h in Figure 2 represent 
the standard deviations of the observed variables X, M, 
and Y, respectively. Second, there is no measurement error 
for the observed variables X, M, and Y. Third, the latent 
variance of Q is fixed at 1, whereas the following two 
nonlinear constraints are required to fix the variances of 
R and S constrained at 1:

 d  1  a2

and
 e  1  b2  c 2  2abc . (15)

Figure 2. A structural equation model for the standardized in-
direct effect.
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CIs and the naive bootstrap CI of the standardized indirect effects 
were implemented in R. A PRODCLIN program with the R interface 
(MacKinnon, Fritz, et al., 2007) was used to construct the PROD-
CLIN CI for the standardized data. The generated raw data were ex-
ported. Mplus was used to estimate the percentile bootstrap and the 
BC bootstrap CIs with the SEM approach. Since Mx is the only SEM 
package that provides a likelihood-based CI, it was used to obtain the 
likelihood-based CI of the standardized indirect effect. Five thousand 
replications per condition were used to ensure the stability of the find-
ings. For the bootstrap CIs, 2,000 bootstrapped samples were used.

Effect sizes for the population standardized indirect effects. 
Four levels of the standardized indirect effects were studied: zero, 
small, medium, and large. According to Cohen (1988, pp. 412–414; 
see also note 2), the levels of small (2% of the variance in the depen-
dent variable), medium (13% of the variance in the dependent vari-
able), and large (26% of the variance in the dependent variable) effect 
sizes of the standardized indirect effect were selected in the simu-
lation studies. The population direct effect was fixed at zero in the 
simulation. The regression coefficients of a and b in Figure 1 were 
assumed to be the same. Since the population direct effect was 0 and 
all variables were standardized, the percentage of the variance ex-
plained for the dependent variable by the independent variable via the 
mediator was the square of the standardized indirect effect. Thus, the 
path coefficients for a and b that were assumed to be the same in the 
zero, small, medium, and large effect-size conditions were 0, 0.37, 
0.60, and 0.71, respectively (see M. W.-L. Cheung, 2007; MacKinnon 
et al., 2002; MacKinnon et al., 2004, for similar designs).

Sample size. Four levels of sample sizes were studied: 50, 100, 
200, and 500. These levels were selected to reflect common sample 
sizes used in typical research settings.

Population standard deviation of the variables. To assess 
whether the standard deviation of the variables would have any ef-
fect on performance, the raw data generated were multiplied by the 
corresponding population standard deviations. Two levels were stud-
ied: 1 and 5.

Methods of estimating CIs. Eleven methods for estimating the 
CIs of the standardized indirect effect were studied. Six of them were 
Wald CIs: Sobel-fixed, Aroian-fixed, Sobel-random, Aroian- random, 
Bobko–Rieck, and SEM-Wald. The other five methods were the 
naive bootstrap CI, the percentile bootstrap CI, the BC bootstrap CI, 
the likelihood-based CI, and the PRODCLIN CI.

Assessment of the empirical performance. The parameter es-
timates of the unstandardized indirect effect are generally unbiased 
(MacKinnon et al., 1995). Given that the standardized indirect ef-
fects are transformed directly from the unstandardized indirect ef-
fects, they are also unbiased. Since the model with one mediator is 
saturated, the parameter estimates based on the regression analysis 
and the SEM approach are the same. Therefore, the parameter esti-
mates were not compared in the present study.

The empirical coverage probabilities of the constructed CIs were 
reported. If the constructed CIs are accurate, it can be expected that 
about 95% of the CIs that are constructed will include the popula-
tion standardized indirect effect. A 95% CI is conservative if the 
empirical coverage probability is larger than 95%; it is liberal if the 
coverage probability is smaller than 95%. When the CI is applied to 
hypothesis testing, a conservative (and liberal) CI indicates that the 
Type I error rate is smaller (and larger) than the predefined level. 
Neither of them is desirable.

Results and Discussion
The empirical coverage probabilities of the 95% CIs of 

the standardized indirect effect are summarized in Table 2. 
Several observations can be made. First, the naive boot-
strap CI is quite comparable to the percentile bootstrap 
and the BC bootstrap CI, except when the effect size is 
large. When the effect size is large, the naive bootstrap CI 
is too conservative. Another problem with the naive boot-

allow for the creation of new parameters that are functions 
of other parameters (see Appendix B for the sample codes). 
Both LISREL (Jöreskog & Sörbom, 1996, pp. 345–347) 
and Mplus (Muthén & Muthén, 2007, pp. 553 and 577) use 
the multivariate delta method to calculate the SEs of the pa-
rameters with constraints. By using the SEM approach, a 
variety of methods for constructing the CIs of the standard-
ized indirect effect are available to applied researchers.

An Illustration With an Empirical Example
To illustrate the procedures for the present article, an 

example used in M. W.-L. Cheung (2009) was adopted. 
In this example, job satisfaction was used as a mediator to 
explain the effect from job autonomy to life satisfaction. 
The descriptive statistics are shown in Table 1. Sample 
Mplus, LISREL, and Mx syntax using the SEM approach 
to estimate the standardized indirect effect is listed in Ap-
pendix B. The key point in obtaining a correct bootstrap 
CI on the standardized indirect effect is to standardize 
each bootstrapped sample, not the original data, before 
calculating the bootstrap CIs. According to Sobel’s (1982) 
formula, the unstandardized indirect effect and its SE were 
0.1232 and 0.0299, respectively. Thus, it is statistically 
significant (z  4.12, p  .001). Since the SDs of the 
variables deviate from 1, interpreting the strength of the 
indirect effect is difficult.

According to Equation 6, the standardized indirect 
effect is 0.1991. According to M. W.-L. Cheung (2007; 
see note 2), the effect size can be qualified as small. The 
Wald CIs for Sobel-fixed, Aroian-fixed, Sobel-random, 
Aroian- random, Bobko–Rieck, and SEM-Wald are 
(0.1038, 0.2944), (0.1034, 0.2949), (0.0999, 0.2983), 
(0.0995, 0.2988), (0.0782, 0.3200), and (0.1085, 0.2897), 
respectively; whereas the naive bootstrap, the percentile 
bootstrap, the BC bootstrap, the likelihood-based, and the 
 PRODCLIN CIs are (0.1059, 0.3106), (0.1089, 0.2967), 
(0.1113, 0.2985), (0.1117, 0.2942), and (0.1091, 0.2996), 
respectively. Although all CIs do not include 0, there ap-
pear to be moderate differences among these estimated 
values. However, judging which one is more accurate is 
difficult. The following simulation study addressed the 
accuracy of different CI estimators of the standardized 
indirect effect via a computer simulation.

A Simulation Study
Method

Multivariate normal data with known population standardized indi-
rect effects were generated from the statistical environment R (R De-
velopment Core Team, 2008). Procedures for estimating the Wald 

Table 1 
Descriptive Statistics of the Variables

 LS  JS  JA

LS 1.0000
JS 0.3704 1.0000
JA 0.2148 0.5504 1.0000

SD  1.4868  2.0094  2.4034

Note—N  200. LS, life satisfaction (dependent variable); JS, job satis-
faction (mediator); JA, job autonomy (independent variable).
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SEM-Wald CI was slightly better than the other Wald 
CIs, especially when the population standardized effect 
size was large. Since the SEM-Wald CI and other Wald 
CIs are all based on the multivariate delta method, one 
may wonder why the SEM-Wald CI is better than other 
Wald CIs. One speculation is that a full asymptotic co-
variance matrix of all parameters is used in constructing 
an SEM-Wald CI. This means that the estimates of a, b, 
VX, and VY are allowed to be correlated in the SEM ap-
proach. In estimating Sobel-fixed and Aroian-fixed CIs, 
VX, and VY are assumed fixed, whereas ab, VX, and VY 
are assumed uncorrelated in estimating Sobel-random and 
Aroian-random CIs.6 The availability of a full asymptotic 
covariance matrix of all parameters slightly improves the 
performance of the SEM-Wald CI.

Last—and most important—the coverage probability 
of the constructed CIs was too high (or the constructed 
CIs were too conservative), regardless of the estimation 
methods, when the population standardized indirect effect 
was zero. This finding is consistent with those of previ-
ous simulations of the unstandardized indirect effect (see, 
e.g., MacKinnon et al., 2002; MacKinnon et al., 2004), in 
which the estimated SEs were less accurate when the pop-
ulation indirect effect was zero. Moreover, using bootstrap 

strap CI is that the bias is consistent across sample sizes. 
This means that using a larger sample size does not reduce 
the bias introduced in the naive bootstrap CI. Given that 
the naive bootstrap CI is not theoretically justified, it is 
not advisable to use it.

Second, the percentile bootstrap, the BC bootstrap, and 
the likelihood-based CIs had the best coverage probability 
when the population standardized indirect effect was larger 
than zero. Their empirical coverage is very close to 95%. 
This result is consistent with the general findings on the 
unstandardized indirect effect (see, e.g., M. W.-L.  Cheung, 
2007; MacKinnon et al., 2004).

Third, the empirical coverage probability of the PROD-
CLIN CI was slightly conservative when the population 
standardized indirect effect was medium or large. One spec-
ulation is that the current naive application of PRODCLIN 
CI does not take the standardization effect into account; it 
simply treats the standardized coefficients as unstandard-
ized coefficients. It is well known that the sampling dis-
tributions between a covariance and a correlation are dif-
ferent. Further research may address how to improve the 
PRODCLIN CI for testing the standardized indirect effect.

Fourth, all Wald CIs were not as good as the bootstrap 
and the likelihood-based CIs. Among the Wald CIs, the 

Table2 
Empirical Coverage Probabilities of 95% Confidence Intervals of the Standardized Indirect Effects

Standardized Sample Sobel- Aroian- Sobel- Aroian- Bobko– SEM- Naive Percentile BC Likelihood-
Indirect Effect  Size  Fixed  Fixed  Random  Random  Rieck  Wald  Bootstrap  Bootstrap  Bootstrap  Based  PRODCLIN

Population SD  1

0.00 50 1.000 1.000 1.000 1.000 1.000 1.000 .997 .998 .991 .996 .997
100 1.000 1.000 1.000 1.000 1.000 1.000 .998 .998 .994 .996 .996
200 1.000 1.000 1.000 1.000 1.000 1.000 .998 .999 .995 .998 .998
500 1.000 1.000 1.000 1.000 1.000 1.000 .998 .999 .997 .999 .998

0.14 50 .924 .936 .928 .939 .932 .915 .945 .940 .953 .945 .941
100 .945 .949 .950 .953 .952 .936 .952 .947 .953 .948 .955
200 .946 .949 .951 .954 .955 .936 .950 .944 .951 .946 .954
500 .954 .956 .963 .963 .968 .946 .954 .949 .949 .951 .960

0.36 50 .958 .961 .972 .974 .976 .938 .959 .944 .949 .949 .966
100 .961 .962 .974 .975 .981 .939 .964 .943 .945 .944 .969
200 .965 .966 .978 .978 .986 .946 .966 .946 .946 .947 .969
500 .971 .971 .982 .982 .993 .948 .967 .948 .948 .948 .968

0.51 50 .968 .969 .982 .982 .988 .938 .963 .937 .936 .942 .969
100 .973 .975 .987 .987 .993 .949 .972 .947 .947 .949 .973
200 .972 .972 .988 .988 .995 .946 .972 .945 .947 .946 .974
500 .974 .974 .990 .990 .998 .947 .973 .945 .946 .947 .976

Population SD  5

0.00 50 1.000 1.000 1.000 1.000 1.000 1.000 .999 .999 .994 .997 .998
100 1.000 1.000 1.000 1.000 1.000 1.000 .998 .998 .994 .997 .998
200 1.000 1.000 1.000 1.000 1.000 1.000 .998 .998 .996 .997 .998
500 1.000 1.000 1.000 1.000 1.000 1.000 .999 .998 .993 .996 .997

0.14 50 .930 .944 .934 .946 .937 .920 .946 .941 .950 .948 .943
100 .936 .942 .942 .947 .948 .929 .957 .942 .953 .948 .949
200 .947 .950 .956 .958 .961 .939 .946 .947 .950 .950 .954
500 .952 .952 .959 .959 .966 .943 .954 .947 .949 .947 .956

0.36 50 .954 .958 .966 .968 .971 .930 .959 .938 .945 .942 .965
100 .963 .965 .976 .977 .984 .936 .964 .944 .947 .946 .968
200 .968 .968 .982 .983 .990 .945 .966 .948 .950 .950 .972
500 .973 .973 .986 .986 .993 .950 .974 .949 .950 .951 .973

0.51 50 .971 .971 .983 .984 .990 .944 .966 .946 .947 .948 .975
100 .966 .967 .982 .982 .990 .936 .969 .938 .939 .938 .967
200 .976 .976 .988 .988 .996 .952 .972 .950 .951 .953 .978
500 .974 .974 .990 .990 .997 .947 .973 .948 .949 .948 .974
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ticular field may then be suggested. Although the extent 
to which the conventions above are representative can be 
(and should be) arguable, it should be noted that such ar-
bitrary conventions cannot be even suggested by using an 
unstandardized indirect effect. The present study serves 
as a starting point to define the magnitude of effect in a 
mediation analysis.

When research questions become increasingly compli-
cated, one single mediator may not be sufficient to explain 
the psychological processes among the variables. Multiple 
specific mediators (MacKinnon, 2000; Preacher & Hayes, 
2008a; Williams & MacKinnon, 2008) and intermediate 
mediators (Taylor, MacKinnon, & Tein, 2008) may be re-
quired. It may also be necessary to test moderated media-
tion or mediated moderation (see, e.g., Edwards & Lam-
bert, 2007; Morgan-Lopez & MacKinnon, 2006; Preacher, 
Rucker, & Hayes, 2007). Sometimes, variables of interest 
may span more than one level (e.g., Bauer, Preacher, & 
Gil, 2006; Pituch, Whittaker, & Stapleton, 2005). Much 
research is required to develop reasonable measures of 
effect size to quantify the indirect effect in these settings. 
Many of these methods can be easily extended to stan-
dardized indirect effects discussed in the present study.

The present article has addressed only the methods of 
estimating the CIs. Since meta-analysis is widely used as 
a methodology to define values of effect size observed in 
applied settings, future studies may investigate the syn-
thesis of standardized indirect effects. Both a fixed- and 
a random-effects meta-analysis (Hedges & Olkin, 1985; 
Hedges & Vevea, 1998; Hunter & Schmidt, 2004) may 
be applied to the standardized indirect effects. Instead of 
synthesizing estimates of the indirect (and direct) effects, 
an alternative approach is to use meta-analytic structural 
equation modeling (M. W.-L. Cheung & Chan, 2005). 
Correlation matrices (M. W.-L. Cheung & Chan, 2005) 
or covariance matrices (M. W.-L. Cheung & Chan, 2009) 
are compared and synthesized first. A mediating model is 
then fitted to the pooled correlation (or covariance) ma-
trix. Further research may compare the advantages and 
disadvantages of synthesizing the indirect and direct ef-
fects versus synthesizing the correlation matrices.

Although standardized indirect effects are comparable 
across studies, the estimated values may still be attenuated 
by the presence of statistical artifacts, such as measure-
ment errors (Hoyle & Kenny, 1999) and restrictions in 
range. Hunter and Schmidt (2004) identified 11 statistical 
artifacts that can be corrected in a meta-analysis. Future 
studies may address how to correct these statistical arti-
facts and to synthesize the standardized indirect effects in 
the context of mediation analysis.
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and likelihood-based CIs did not help much in this condi-
tion. Further research is definitely needed to improve the 
coverage probability in testing the standardized indirect 
effect when the population indirect effect is zero.

Of the factors studied, it was found that the population 
standard deviation and the sample size had little impact on 
the empirical coverage of the estimated CIs. The most cru-
cial factors affecting the performance were the estimation 
method and the population effect size of the standardized 
indirect effect.

Conclusions and General Discussion
In the present article, it was argued that the standardized 

indirect effect is a more appropriate measure of effect size 
in a mediation analysis. Eleven methods of constructing the 
CIs of the standardized indirect effect were reviewed and 
compared via a computer simulation. It was found that the 
percentile bootstrap, the BC percentile bootstrap, and the 
likelihood-based CIs performed best in terms of coverage 
probability. Researchers are advised to report the CI of the 
standardized indirect effect using some of these methods.

The conventions suggested by Cohen (1988) have been 
directly adopted in the present article. Following the re-
sults of M. W.-L. Cheung (2007), values of 0, 0.14, 0.36, 
and 0.51 for the standardized indirect effect are qualified 
as having an effect size of “zero,” “small,” “medium,” and 
“large,” respectively. There are several issues worth dis-
cussing. As Cohen (1988) himself stressed, “[t]his is an 
operation fraught with many dangers: The definitions are 
arbitrary, such qualitative concepts as ‘large’ are some-
times understood as absolute, sometimes as relative; and 
thus they run a risk of being misunderstood” (p. 12). Even 
though there are many problems with these conventions, 
Cohen (1988) continued to defend his conventions, stating 
that they “will be found to be reasonable by reasonable 
people” (p. 13).

Even if one accepts Cohen’s (1988) conventions as 
reasonable (0%, 2%, 13%, and 26% of the variance ex-
plained), one does not necessarily have to agree on apply-
ing them to the indirect effect, as was done in the present 
article. MacKinnon and his colleagues (e.g., MacKinnon 
et al., 2002) applied Cohen’s (1988) conventions to the 
regression paths. Thus, the magnitudes of the effect sizes 
defined by M. W. -L. Cheung (2007) and MacKinnon and 
his colleagues are different by a square root (see note 2 
for the details). Which one is more appropriate is an open 
question for further clarification. As was emphasized by 
Kline (2004), one should not consider these conventions 
as “rules”; otherwise, one would encounter the same prob-
lem as in null hypothesis significance testing. Moreover, 
the conventions “do not apply across all behavioral re-
search areas” (Kline, 2004, p. 133).

Kirk (1996) suggested that one should consider the 
practical significance of the findings in one’s research 
area. That is, one should look at whether the effect is large 
enough to be of value in a practical sense. When a field 
is mature enough with sufficient empirical studies, Kline 
(2004) recommended using a meta-analysis to operation-
ally define small versus large effect sizes. Reasonable 
guidelines on the standardized indirect effect in a par-
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NOTES

1. The generic terms indirect effect and mediating effect are used in-
terchangeably in the present article.

2. It should be noted that values of the “small-,” “medium-,” and 
“large-” effect sizes used in the simulation studies conducted by 
M. W.-L. Cheung (2007) and MacKinnon and his colleagues (Fritz & 
MacKinnon, 2007; MacKinnon, Fritz, et al., 2007; MacKinnon et al., 
2002; MacKinnon et al., 2004; Taylor et al., 2008) were different. All 
of them adopted Cohen’s (1988) conventions in regression analysis; 
that is, the effect sizes were defined by percentages of variance of 2%, 
13%, and 26% explained on the dependent variable. There are two 
major differences between the definitions of M. W.-L. Cheung (2007) 
and those of MacKinnon and his colleagues (e.g., MacKinnon et al., 
2002). First, M. W.-L. Cheung (2007) defined the aforementioned per-
centages as the effect sizes for the standardized indirect effect. That is, 
the corresponding standardized indirect effects for the “small,” “me-
dium,” and “large” effect sizes are 0.14, 0.36, and 0.51, respectively. 
MacKinnon and his colleagues used 0.14, 0.39, and 0.59 as the effect 
sizes for the regression coefficients from X to M and from M to Y. In 
other words, the effect sizes defined by MacKinnon and his colleagues 
are the squared values of those defined by M. W.-L.  Cheung (2007). 
Second—and most important—M. W.-L. Cheung (2007) defined the 
effect sizes in terms of standardized scores; that is, all variables (X, M, 
and Y in Figure 1) were standardized, whereas in their simulation stud-
ies, MacKinnon and his colleagues used 1 for the variances of the 
independent variable and the error variances (X, e, and f in Figure 1) 
(MacKinnon, 2008, p. 98; MacKinnon et al., 2004, p. 106). In other 
words, the values of 0.14, 0.39, and 0.59 in MacKinnon’s work cannot 
be interpreted as values for the standardized indirect effects.

3. Mplus Version 5 (Muthén & Muthén, 2007) provides a command 
OUTPUT: STANDARDIZED to obtain the SE of the standardized variables. 
In combination with the command MODEL INDIRECT, it is possible to es-
timate the CI of the standardized indirect effect. Empirical verification 
shows that this is equivalent to the SEM approach proposed in the pres-
ent article. Mplus users may consider this option to simplify the speci-
fications of the model. TCALIS in SAS 9.2 also implements procedures 
to obtain the SE and Wald CI of the standardized indirect effect (Yung, 
2008). Since this option is not available in other SEM packages, such as 
LISREL and Mx, the approach proposed in the present article is still very 
useful to general SEM users.

4. Strictly speaking, there should be “hats” over a, b, and SE in the 
formulas, since these are estimated values. To simplify the presentation, 
the hats are dropped in the present article.

5. MacKinnon (2008, pp. 84–85) proposed an effect-size measure 
termed the standardized effect, which is defined as Iunstand. /V Y

0.5. It is 
different from the standardized indirect effect discussed in the pres-
ent article by the factor of VX

0.5. MacKinnon (2008) suggested that the 
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APPENDIX A 
Derivations of the Standard Errors of the Standardized Indirect Effects

The standardized indirect effect (Istand.) is defined as
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where a and b are the unstandardized regression coefficients in Figure 1, and VX, VM, and VY are the variances of X, 
M, and Y, respectively. If we treat both VX and VY as fixed and known (see, e.g., Bollen & Stine, 1990, p. 121; Cohen 
et al., 2003, p. 86), the estimated SE of the standardized indirect effect SEfixed can be easily obtained by
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where SEab is the estimated SE of the unstandardized indirect effect. By substituting the SEab on the basis of the work of 
Sobel (1982) and Aroian (1944), we may derive the approximate SEs for the standardized indirect effect:
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and
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A second approach to deriving the SE of the standardized indirect effect is to treat VX and VY as random variables 
that have their own sampling variances. The asymptotic sampling variances of VX and VY can be approximated by 
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respectively, where n is the sample size (Tamhane & Dunlop, 2000, pp. 177–178). In deriving the sampling variance 
of SEstand.-random, it is more convenient to treat ab as a single term. Assuming that ab, VX, and VY are independent, 
SEstand.-random can be approximated by using the multivariate delta method (e.g., Stuart & Ord, 1994),
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where

 
I

(z)  
is the partial derivative of Istand. with respect to z with the other variables held constant. By comparing Equation A5 
against Equation A2, we may also express Equation A5 as
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By substituting Sobel’s (1982) and Aroian’s (1944) estimates of SEab, we have the approximate SEs of the standard-
ized indirect effect:
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APPENDIX B 
Mplus, LISREL, and Mx Syntax for Constructing the Confidence Interval  

of the Standardized Indirect Effect

TITLE: Mplus code
DATA: FILE IS raw_data.dat; ! Raw data is required by bootstrap
VARIABLE: NAMES X M Y;  ! X: Independent variable;
     ! M: Mediator; Y: Dependent variable
 USEVARIABLES ARE ALL;
!ANALYSIS: BOOTSTRAP=2000;  ! Activate bootstrap CI
MODEL:
 S BY Y*;   ! Dependent variable, h in Figure 2
 R BY M*;   ! Mediator, g in Figure 2
 Q BY X*;   ! Independent variable, f in Figure 2

 S ON R (b)   ! b in Figure 2
       Q (c);   ! c in Figure 2

 R ON Q* (a);   ! a in Figure 2
 R* (d);   ! d in Figure 2
 S* (e);   ! e in Figure 2

 Q@1.0;    ! Fix the variance of Q

 ! No measurement error
 X@0.0;
 M@0.0;
 Y@0.0;
MODEL CONSTRAINT:
 NEW (p);
 d = 1 - a**2;
 e = 1 - b**2 – c**2 - 2*a*b*c;
 P = a*b;   ! Standardized indirect effect
OUTPUT:
 CINTERVAL(symmetric); ! Wald CI
! CINTERVAL(bootstrap); ! Bootstrap CI
! CINTERVAL(BCbootstrap); ! BC Bootstrap CI

----------------------------------------------------------------------------
TI LISREL code to estimate SE
DA NI=3 AP=1    ! Create one additional parameter
CM FI=raw_data.dat   ! to store the standardized indirect effect
LA
X M Y
SE
M Y X /    ! Arrange into Y-variables and X-variables
MO NY=2 NX=1 NE=2 NK=1 LX=DI,FR LY=DI,FR BE=SD PH=ID PS=DI TE=ZE TD=ZE

APPENDIX A (Continued)

Structural equation modeling may also be used to obtain the SE of the standardized indirect effect, as is shown in 
Figure 2. To obtain the standardized indirect effect, we have to fix the variances of Q, R, and S at 1. The variance of 
Q can be easily fixed to 1, whereas nonlinear constraints are required to fix the variances of R and S:

 R  aQ  R

 var(R)  a2var(Q)  var( R)

 1  a2(1.00)  d.  (A9)

Thus, d  1  a2 is required to ensure that the variance of R is constrained at 1.

 S  bR  c Q  S

 S  b(aQ) R  c Q  S

 var(S)  (ab  c )2var(Q) b2var( R)  var( S)

 1  a2b2  2abc   c 2  b2 (1  a2)  e. (A10)

Thus, e  1  b2  c 2  2abc  is required to fix the variance of S at 1.
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APPENDIX B (Continued)

! Constraints to standardize the mediator and the dependent variable
CO PS(1,1) = 1 - GA(1,1)**2
CO PS(2,2) = 1 - BE(2,1)**2 - GA(2,1)**2 - 2*GA(1,1)*BE(2,1)*GA(2,1)

! Standardized indirect effect
CO PAR(1) = GA(1,1)*BE(2,1)
OU
----------------------------------------------------------------------------
Mx: Likelihood based CI on the standardized indirect effect
NGroups=2
Data NInput=3
RECTANGULAR FILE=raw_data.dat
LABELS X M Y

 Begin Matrices;
  S Symm 6 6
  A Full 6 6
  F Full 3 6
  I Iden 6 6
  J Full 1 4
  V Iden 3 3
  K Full 1 4
  N Full 1 4
  M Full 6 1
 End Matrices;

 Matrix S
  0
  0 0
  0 0 0
  0 0 0 1
  0 0 0 0 0.2
  0 0 0 0 0 0.2
 Specify S
  0
  0 0
  0 0 0
  0 0 0 0
  0 0 0 0 1
  0 0 0 0 0 2
 Label Row S
  X M Y D F H
 Label Col S
  X M Y D F H

 Matrix A
  0 0 0 1 0 0
  0 0 0 0 1 0
  0 0 0 0 0 1
  0 0 0 0 0 0
  0 0 0 0.5 0 0
  0 0 0 0.5 0.5 0
 Specify A
  0 0 0 4 0 0
  0 0 0 0 3 0
  0 0 0 0 0 5
  0 0 0 0 0 0
  0 0 0 6 0 0
  0 0 0 7 8 0
 Label Row A
  X M Y D F H
 Label Col A
  X M Y D F H
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 Matrix F
  1 0 0 0 0 0
  0 1 0 0 0 0
  0 0 1 0 0 0
 Label Row F
  X M Y
 Label Col F
  X M Y D F H

Matrix M
0
0
0
0
0
0
SPECIFY M
12
13
14
0
0
0

! Elements for constraints
Matrix J 4 4 6 6   ! elements for constraints
Matrix K 5 4 5 4   ! a: A(5,4)
Matrix N 6 5 6 5   ! b: A(6,5)

Begin Algebra;
 T=\part(A,J);
 U=\part(S,J);
 W=(V-T)~ & U;   ! standardized variables
 P=\part(A,K)*\part(A,N); ! standardized indirect effect
End Algebra;

 MEANS F*M;
 Covariance F & ((I - A)~ & S);
 Interval P 1 1
End Group;

Constraint Group for the standardized indirect effect
Constraint
Begin Matrices = Group 1
 Z Unit 1 3
End Matrices;

Constraint \d2v(W)=Z;
End Group;

(Manuscript received March 24, 2008; 
revision accepted for publication February 7, 2009.)


