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ABSTRACT: Four methods for deriving partial atomic charges from the
Žquantum chemical electrostatic potential CHELP, CHELPG, Merz-Kollman, and

.RESP have been compared and critically evaluated. It is shown the charges
strongly depend on how and where the potential points are selected. Two
alternative methods are suggested to avoid the arbitrariness in the point-selection
schemes and van der Waals exclusion radii: CHELP-BOW, which also estimates
the charges from the electrostatic potential, but with potential points that are
Boltzmann-weighted after their occurrence in actual simulations using the
energy function of the program in which the charges will be used, and CHELMO,
which estimates the charges directly from the electrostatic multipole moments.
Different criteria for the quality of the charges are discussed. The CHELMO
method gives the best multipole moments for small and medium-sized polar
systems, whereas the CHELP-BOW charges reproduce best the total interaction
energy in actual simulations. Among the standard methods, the Merz-Kollman
charges give the best moments and potentials, but they show an appreciable
dependence on the orientation of the molecule.

We have also examined the recent warning that charges derived by a
least-squares fit to the electrostatic potential normally are not statistically valid.
It is shown that no rank-deficiency problems are encountered for molecules with
up to 84 atoms if the least-squares fit is performed using pseudoinverses
calculated by singular value decomposition and if constraints are treated by
elimination. Q 1998 John Wiley & Sons, Inc. J Comput Chem 19: 377]395,
1998
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Introduction

olecular simulation methods have becomeM an important technique in many areas of
chemistry with the recent advent of effective and
widespread software for molecular mechanics,
molecular dynamics, and Monte Carlo simula-
tions, along with procedures for the estimation of
free energy differences. In all such methods, a
proper description of the electrostatic interactions
within the simulated system is of key importance,
insofar as the electrostatics dominates the non-
bonding energy between polar molecules. Electro-
static interactions can be treated at various levels
of sophistication in classical simulation. However,
in most implementations, especially in the multi-
purpose biochemical simulation packages, the sim-
plest possible solution is used, an atom-centered

Žpoint-charge model in which each atom or groups
. Ž .of atoms is assigned a partial electric charge and

only the charge]charge Coulombic interaction is
considered. Thus, most classical simulation meth-
ods require a point-charge parameterization of the
molecules of interest.

Unfortunately, atomic charges are not observ-
ables; i.e., they cannot unambiguously be deter-
mined by experiments or quantum chemical calcu-
lations. Therefore, many methods have been sug-
gested for the estimation of point charges.1 Several
groups have tried to derive the charges directly
from experimental quantities, e.g., dipole mo-
ments, electrostatic potentials, or free energy dif-
ferences,2 ] 4 yet, relevant data are usually missing
or too scarce to allow a determination of all charges
in interesting molecules. Instead, most techniques
derive atomic charges from quantum chemical cal-
culations.

The simplest way to determine quantum chemi-
cal charges is the Mulliken population analysis. In
this method, the charge is distributed according to
the atomic orbital occupation, and the overlap
population between pairs of atoms is evenly di-
vided between the two atoms, without taking any
account of differences in atom type, coefficients,
electronegativity, etc.5 Although Mulliken charges
are known to depend strongly on the basis set6

and to reproduce electrostatic moments poorly,1

they are still widely used because of their simplic-
ity. Several other orbital-based methods have been
devised to solve the problems of the Mulliken

charges,1 e.g., Lowdin population analysis7 and¨
Ž . 8natural population analysis NPA .

Another quantum chemical approach is to di-
vide the molecule into volumes occupied by each
atom and to assign all electron density within each
volume to the corresponding atom. In the atoms-

Ž .in-molecules AIM method, the volumes are de-
fined by the zero-flux surfaces of the electron den-
sity.9 This is a very attractive approach, in that it
removes all arbitrariness in the division of the
charge among the atoms. However, the procedure
is computationally tedious, and the resulting
atomic charges reproduce the electrostatic poten-
tial rather poorly when they are used in a monopole

Žapproximation as they are in most simulation
. 10packages .

The most widely used methods for estimating
atomic charges derive them from a least-squares fit

Žto the electrostatic potential ESP; or to the electro-
11, 12 .static field calculated in a large number of

points around the molecule of interest. Examples
of such potential-based methods are CHELP,
CHELPG, and the Merz-Kollman scheme. They
differ mainly in the choice of the points where the
electrostatic potential is calculated. In the CHELP
Ž . 13charges from electrostatic potential method,
points are selected symmetrically on spherical

Ž .shells around each atom 14 points on each shell .
The Merz-Kollman scheme14, 15 instead uses points
on nested Connolly surfaces, with a density of 1

˚ 16pointrA, whereas, in the CHELPG method,
points are selected on a regularly spaced cubic
grid with over 10 times higher point density than

˚Žfor the other two methods 0.3 A between the
.grids . Recently, it has been suggested that the

points should be sampled randomly around the
molecule17 ] 19 to avoid any dependence on the
choice of coordinate axes.

The electrostatic potential methods do not in-
clude in the fit potential points within the van der
Waals radii of the atoms, nor points that are too far
from the molecule. Unfortunately, the exclusion
limits, as well as the van der Waals radii them-
selves, vary appreciably among the different meth-
ods. The Merz-Kollman scheme14, 15 samples points
at 1.4, 1.6, 1.8, and 2.0 times the van der Waals
radius of the atoms. The CHELP method13 samples

˚points at 2.5, 3.5, 4.5, 5.5, and 6.5 A from each atom
and excludes points within the van der Waals
radius of any atom. The CHELPG method16 in-

˚cludes points between 0 and 2.8 A plus the van der
Waals radius. Several other schemes have been
suggested,12, 17, 19 but normally no points within

˚the van der Waals radii or more than 3]7 A from
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all atoms are used in the fit. Naturally, this arbi-
trariness in the choice of the potential points will
affect the resulting charges.

In the electrostatic potential methods, charges
are determined by a least-squares fit to the poten-
tial, usually under the constraint that the total
charge of the molecule should be correct. Recently,
it has been noted that such a fit does not always
behave properly.18, 19 Even if the number of poten-
tial points is much greater than the number of
atoms, it is not certain that the system is overde-
termined. On the contrary, linear dependence of
the potential in nearby points might make the
system underdetermined, leading to nonsense
charges. The method of choice for detecting such
problems is singular value decomposition
Ž . 18, 19SVD . By this method, the rank of a matrix
can be determined, and it can be unambiguously
concluded whether a system is overdetermined.
Francl et al.18 have used this method to examine
the least-squares matrix in a modification of the
CHELP method, and they observed for 16 typical
medium-sized molecules that the matrix in all
cases is rank deficient. Hinsen and Roux19 have
suggested an improved least-squares procedure,
which uses pseudoinverses calculated by singular
value decomposition. In this way, the problem
with ill-conditioned matrices becomes less severe.

Another problem with the least-squares fit is
that some charges might be less well-determined
than others. This is especially pronounced for the
charges of buried atoms, e.g., sp3 carbons. It has
been suggested that this might explain why poten-
tial-derived charges are less transferable than are

ŽMulliken charges similar chemical groups have
.widely differing charges in related molecules , why

they depend so strongly on the conformation of
the molecule, and why they often seem to be too
large, giving rise to exaggerated intermolecular
interactions. Bayly et al.20 have suggested that
these problems can be prevented if all charges are
restrained to zero using a hyperbolic penalty func-
tion. This method is called the restrained electro-

Ž . 20static potential model RESP .
In this paper, we make a critical analysis of the

four most popular potential-based point-charge
methods, Merz-Kollman, CHELP, CHELPG, and
RESP. It is shown that these methods can give
widely different results, and possible explanations
for this are discussed. Two alternative methods for
deriving atomic charges are suggested, which
avoid the arbitrariness in the selection of potential
points, and their performance is judged using a
number of different quality criteria.

Methods

COMPUTATIONAL DETAILS

If not otherwise stated, all calculations were
performed with the 6-31GU basis set,21 except for
copper and iron, for which the double-z basis sets
Ž . 2262111111r33111r311 of Schafer et al. were used,¨
enhanced with diffuse p, d, and f functions with
exponents 0.174, 0.132, and 0.39 for copper, and

Ž .0.134915, 0.041843 two p functions , 0.1244, and
Ž .1.339 for iron called DZpdf . The electrostatic

moments, the electrostatic potentials, CHELP,
CHELPG, Merz-Kollman, Mulliken, NPA, and AIM
charges were calculated with the quantum chem-
istry software Gaussian 9423 using the hybrid den-
sity functional method B3LYP,24 which has been
shown to give charges of the same quality as
correlated ab initio methods.25 The default values
for all methods were used, including point densi-

˚Ž .ties and atomic radii 2.0 A was used for copper .
The RESP fitting was performed with the Amber
4.1 software,26 using the standard two-stage
method.20 The potential points in the RESP method
were sampled with the Merz-Kollman scheme in
Gaussian 94, and the potentials were printed out

Ž .using the undocumented IOp 6r33 s 2 option. In
some cases, calculations were performed also with

Ž .the ab initio Hartree-Fock HF method and with
Møller-Plesset second-order perturbation theory
Ž .MP2 . These calculations also employed the 3-21G
w x21 basis sets.

For the comparison of different charge models,
the charges of 20 small molecules were calculated
Ž .see Table VI . The geometries of these molecules
were optimized with the B3LYP method, except
for propane, for which an extended, model-built
conformation was used. In addition, a small model
of the copper coordination sphere in the blue cop-

Ž . Ž .Ž .per proteins was used: Cu NH SH SH with3 2 2
Ž . Ž .either Cu I or Cu II . These models are called the

Ž . Ž .Cu I and Cu II complexes, respectively. The com-
plexes were optimized with the B3LYP method, as
described by Ryde et al.27

To study the rank of least-squares matrix, 14
Ž .additional molecules were studied Table XI .

These were optimized at the SCF level with the
ŽU . 53-21G basis set, as described by Francl et al.

Moreover, the haem group of myoglobin was stud-
ied, including the axial histidine and dioxygen

Ž .ligands 84 atoms . The coordinates of this system
were taken from the PDB file 1MBO,28 and the
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moments and potentials were calculated by the
B3LYP method using the DZpdfr6-31GU basis sets.
All calculations were run on IBM RISC RS6000
workstations.

CHARGE FITTING PROCEDURE

The fitting procedure described here is a slight
modification of the one suggested by Hinsen and
Roux.19 They use this procedure to fit charges to
electrostatic potential points, but because it is gen-
eral it may be used for fitting the charges directly
to electrostatic moments as well.

General linear constraints and restraints can be
expressed as

Ž .w B q s w c ; k s 1, 2, . . . , n 1aÝk k i i k k c
i

or in matrix notation

Ž .wBq s wc 1b

where q are the partial charges, c are the con-i k
straints or restraints, and w are weight factors. Allk
restraints or constraints that are linear in the
charges can be expressed in this way, e.g., the total
charge, electrostatic moments, electrostatic poten-
tial, or equality of certain charges resulting from
symmetry. For example, for an electrostatic poten-
tial, c is the calculated potential and B is thek k i
distance between the point where the potential is
calculated and atom i, whereas for the z-compo-
nent of the dipole moment, c is the dipole mo-k
ment and B is the z-coordinate of atom i.k i

Ž .Equation 1 is a linear equation for the partial
charges q . It has a solution if and only ifi

X Xq Ž .B B wc s wc 2

where BX s wB and BXq is the pseudoinverse of
the BX matrix. If this is fulfilled, the general solu-
tion is given by

Xq Ž Xq X . X Ž .q s B wc q 1 y B B q 3

where qX is an arbitrary vector.
In the following we use B and c for constraints

and A and f for restraints. For the constraints, it is
meaningless to use different weights, so w is omit-

Ž X .ted in these formulae so B s B . To find the
optimal point charges for the restraints, we mini-
mize the quantity

2 < < 2x s wAq y wf .

Constraints are imposed in this equation by insert-

Ž .ing equation 3 :

2X2 q qŽ . Ž .x s wAB c q wA 1 y B B q y wf . 5

The general least-squares solution of this equation
is

X XqŽ q . Ž Xq X . Ž .q s A wf y wAB c q 1 y A A ? y 6

where

X Ž q . Ž .A s wA 1 y B B 7

and y is an arbitrary vector. To make sure that the
smallest charges consistent with the fit are chosen
if the A matrix is rank deficient, y is set to be zero.

Ž .This choice turns equation 6 into

X XqŽ q . Ž .q s A wf y wAB c 8

and the final charges can be found by inserting qX

Ž .in equation 3 .
Pseudoinverses were calculated using the nu-

merically stable singular value decomposition
Ž .SVD method. This method also gives the singular
values of the matrix, and the quotient of the small-
est and largest singular values is the condition
number that reflects the rank of the matrix. Fol-
lowing Francl et al.,18 we considered the least-
squares matrix rank deficient if the condition num-
ber is less than 10y5. We used the singular value
decomposition procedure DGESVD from the La-
pack library.

THE CHELMO METHOD

To avoid the large number of adjustable param-
eters in the electrostatic potential methods, we
have developed a new method for estimating par-

Žtial charges, CHELMO for charges from electro-
.static moments . In this method, charges are fitted

directly to the electrostatic multipole moments,
and no potentials are needed. The choice of the
form of the multipole moments is important. It is
mandatory that the moments are in the traceless
form, but linearly dependent moments do not have

Žto be removed they are automatically removed by
.the fitting procedure . We used the real spherical

harmonic form of the moments, because then the
resulting charges are independent of the orienta-
tion of the molecule.

All Cartesian electrostatic moments are linear in
the charges; for example, the components of the
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second Cartesian moment are given by

Q s q x x , Q s q x y ,Ý Ýx x i i i x y i i i
i i

and so on. Furthermore, the transformation of the
Cartesian moment to the multipole moments in
the traceless form or to the spherical harmonics

Žform is a linear transformation a matrix multipli-
.cation , so the multipole moments are still linear in

the charges. Thus, the multipole moments can be
used as constraints or restraints in the charge fit-
ting procedure described above, and, if the num-
ber of independent moments is greater than the
number of independent atoms, no further informa-
tion is needed to estimate the point charges. Thus,
no potential points are needed, and the charges
will not depend on van der Waals radii or on the
way the potentials are sampled.

Only two choices have to be made in this fitting
procedure: the division of the moments to be used
as constraints or restraints and the weight factor
for the different restraints. It is customary to con-
strain the charges so that the total charge of the
molecule is exactly reproduced when calculating
atomic charges, and we will follow this rule. Fur-
thermore, we will argue that it is also important to
constrain the charges to reproduce also the dipole
moment, if possible, because the dipole moment
determines the leading electrostatic energy term of
uncharged, polar molecules. In addition, it is nec-
essary, at least in molecular dynamics simulations,

Žthat equivalent atoms have the same charge i.e.,
atoms that exchange rapidly on a molecular dy-
namics time scale, e.g., hydrogen atoms bound to

.the same heavy atom . In most electrostatic poten-
tial methods, this is accomplished by simply aver-
aging the charges after the fit; however, as was
noted by Bayly et al.,20 this gives an appreciably
worse result than if the charges are constrained to
be equal within the fit. Therefore, we always con-
strain charges of equivalent atoms to be equal in
the fit.

ŽThe higher moments including the dipole mo-
ment if the number of independent atoms minus
the number of nonvanishing elements of the dipole

.moment is less than two are used as restraints.
Moments up to hexadecapole moments are used,
because they are obtained in the output of ordi-
nary quantum mechanical programs such as
Gaussian. From a multipole expansion, it is clear
that it is more important to reproduce the lower
moments than the higher moments. Moreover, the

unit of the different moments, Cmn, varies with
the order of the moment n. Therefore, the re-
straints must be weighted with a factor with the
unit myn , and we suggest a factor of the form

1
Ž .w s 9nŽ .r q x

where r is the radius of the molecule and x is a
parameter. We used the distance from the center of
nuclear charge to the most distant atom in the

˚molecule as an estimate of r, and 3 A was found to
Ž .be an appropriate choice for x see below .

THE CHELP-BOW METHOD

As will be discussed below, the only reasonable
Žway in terms of the accuracy of the total electro-

.static interaction energy to select potential points
for the fit of atomic charges, which are intended to
be used in molecular dynamics simulations, is by
weighting them after their occurrence in actual
simulations. To illustrate the performance of such
a technique, we here propose a simple implemen-
tation. In a forthcoming publication, we will refine
the method and optimize its performance.

Coordinates at which the electrostatic potential
˚was calculated were selected randomly within 8 A

from any atom in the molecule. A point density of
2,500 pointsratom was used, because the charges
of all atoms have been shown to be converged at
this density.17, 29 Points with a weight of less than

y6 Ž .10 were directly discarded see below .
In the fitting procedure, the total charge, the

Ždipole moment if the number of independent
atoms minus the number of nonvanishing compo-

.nents of the dipole moment is more than one , the
Žquadrupole moment if the number of indepen-

dent atoms minus the number of nonvanishing
components of the dipole and quadrupole mo-

.ments is more than two , and equal charges on
equivalent atoms were used as constraints. The
charges were restrained to fit the electrostatic po-
tential, but the potentials were weighted by a
Boltzmann factor calculated from the distance be-
tween the potential point and the atoms in the
molecule:

yE r RT Ž .w s e 10

where the E is the Lennard-Jones potential be-
tween the atoms and a probe molecule at the
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potential point:

A ry6 q B ry12 if r F ri i i i i i min Ž .E s 11Ý ½ E if r G r .i min i i minatom i

Here, r is the distance between the electrostatici
potential point and atom i, and A and B are thei i
Lennard-Jones constants obtained from the force
field of the simulation package to be used in the
simulations. E is the minimum energy of thei min
Lennard-Jones potential, and it is the energy as-
sumed at the distance r s r . Thus, only thei i min
repulsive part of the Lennard-Jones potential is
considered.

In the present implementation of CHELP-BOW,
we used the Amber 4.1 force field30 and the TIP3P
water parameters for the probe at the potential
point. Thus,

6UŽ . Ž .A s y2« r 12i iw iw

12UŽ . Ž .B s « r 13i iw iw

Ž .« s « « 14'iw i w

U U U Ž .r s r q r y r 15iw i w c

where « and « are the potential well depths ofi w
the atoms and of the water probe, respectively, rU

i
and rU are the van der Waals radii of the atomsw
and the probe, and r is a factor that corrects forc
the neglect of electrostatic interactions. For sim-
plicity, the same « and rU were used for all atomsi i

Žof the same element except for polar and nonpolar
.hydrogen ; the values used are collected in Table I.

˚Moreover, we used r s 0.4 A, because this givesc
a correct O—O and O—H distance in water. With
these parameters, we simply have r s rU andi min iw
E s « .i min iw

TABLE I.
van der Waals Parameters Used in the CHELP-BOW

30, 38Method.

U ˚( ) ( )Element r A « kJ / molei i

H polar 0.6 0.0657
H nonpolar 1.487 0.0657
C 1.908 0.3598
N 1.824 0.7113
O 1.6686 0.6360
P 2.100 0.8368
S 2.000 0.8368
Cl 2.47 0.4184
Cu 1.17 4.7698
Water probe 1.7683 0.6360

Results and Discussion

THE PROBLEM WITH THE
POTENTIAL-DERIVED CHARGES

The starting point of the present investigation
was to obtain atomic charges of copper complexes
for the use in classical simulations of blue copper
proteins. Therefore, we started to test the three
electrostatic potential methods available in the
Gaussian software and the RESP method on the

Ž .Cu II complex. As can be seen in Table II, the
charges obtained with the four methods differ ap-
preciably. The variation is most pronounced for
the charges on the copper and nitrogen atoms,
which vary between 0.11 and 0.38 e and between
y0.13 and y0.56 e for the various methods, re-
spectively. In classical simulations, such a varia-
tion is unacceptable. The rank of the least-squares
matrix indicated no deficiency, so this is clearly
not the problem.

TABLE II.
( )Charges of the Cu II Complex Calculated with Five Different Methods.

Merz-
Mulliken CHELP CHELPG RESP Kollman

Cu 0.40 0.11 0.24 0.26 0.38
S y0.26 y0.20 y0.29 y0.28 y0.34SH2
H 0.17 0.18 0.21 0.19 0.22SH2
S y0.07 y0.16 y0.20 y0.24 y0.23SH
H 0.13 0.13 0.16 0.19 0.15SH
N y0.94 y0.13 y0.42 y0.33 y0.56
H 0.38]0.39 0.16]0.18 0.25]0.26 0.23 0.28]0.30N

VOL. 19, NO. 4382



METHODS FOR DERIVING ATOMIC CHARGES

TABLE III.
Dependence of the Electrostatic Potential Charges on the Copper Radius.a

˚ ˚ ˚ ˚ ˚ ˚r = 0.5 A r = 1.0 A r = 1.5 A r = 2.0 A r = 2.5 A r = 3.0 A

Cu 2.20 0.70 0.25 0.24 0.31 0.40
S y0.57 y0.36 y0.30 y0.29 y0.30 y0.31SH2
H 0.27 0.22 0.21 0.21 0.20 0.20SH2
S y0.54 y0.29 y0.20 y0.20 y0.22 y0.25SH
H 0.11 0.14 0.15 0.16 0.16 0.16SH
N y3.41 y0.94 y0.41 y0.42 y0.46 y0.52
H 0.87]1.16 0.35]0.41 0.25]0.26 0.25]0.26 0.25]0.27 0.26]0.29N

a ( )The charges of the Cu II complex were determined by the CHELPG method using different radii for copper and the default radii
for the other atoms.

There is no default van der Waals radius for
copper in these methods; for the calculations in

˚Table II we used a value of 2.0 A, which is the
default value in the Mulliken31 software. Table III
shows how the CHELPG charges vary when the

˚copper radius is varied from 0.5 to 3.0 A. For small
˚Ž .radii 0.5]1 A , the magnitude of all charges is

˚high. Between 1.5 and 2.0 A, the charges are rather
constant, but, at even larger radii, the charges
begin to increase again. This shows that the elec-
trostatic potential charges strongly depend on the
van der Waals radii, and it also gives a clue to
why the charges in Table II vary so much.

The copper complex is approximately spherical,
with the copper ion at the center. For a small
copper radius, many electrostatic potential points
are selected near the copper ion. There, the electro-
static potential is large and varies rapidly in space
in a way that is hard to describe by a point-charge
model. Because the electrostatic potential is high in
magnitude, these points are very important for the

fit, and in principle the charges will be determined
by a small number of potentials close to the copper
ion. Thus, the charges will strongly depend on the
exact position of these potential points. When the
copper radius is increased, these points are ex-
cluded, and the fit becomes more stable. The in-
crease in magnitude of the charges seen at an even
larger radius is probably due to the fact that the
charges become less well determined, because the
electrostatic potentials at large distances from the
complex are determined mainly by the lowest one
or two multipole moments.

The point selection scheme also differs among
the three methods, and this may explain some of
the variation in the charges. Table IV shows the
charges calculated with the CHELP, CHELPG, and
Merz-Kollman methods using the same van der

ŽWaals exclusion radii those of the CHELPG
˚ .method and 2.0 A for copper . A comparison of

these charges to those in Table II directly shows
that the charges do not change much when the van

TABLE IV.
Dependence of the Charges on the Point-Selection Scheme.a

Merz- Merz-
bCHELP CHELPG Kollman Kollman

Cu 0.11 0.24 0.32 0.22
S y0.20 y0.29 y0.35 y0.28SH2
H 0.18 0.21 0.22 0.20SH2
S y0.15 y0.20 y0.23 y0.18SH
H 0.11 0.16 0.16 0.15SH
N y0.14 y0.42 y0.47 y0.43
H 0.16]0.18 0.25]0.26 0.26]0.27 0.25]0.26N

a ( )The charges of the Cu II complex were calculated with three different methods, all using the same van der Waals radii, viz. those
˚( )of the CHELPG method and 2.0 A for copper .

bUsing CHELPG radii divided by 1.4.
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der Waals radii are altered; the Merz-Kollman cop-
per and nitrogen charges change 0.06]0.09 e,
whereas all the other charges change by less than
0.03 e. Moreover, the charges hardly converge.
This might indicate that the difference between the
three methods lies mainly in the way in which the
points are selected. However, the CHELPG method
includes in the fit all points directly outside the
van der Waals envelop, whereas, in the Merz-Koll-
man scheme, points are sampled between 1.4 and
2.0 times the van der Waals radii. Thus, in princi-
ple the Merz-Kollman method uses radii that are
1.4 times larger than those of the other methods.
To estimate the effect of this difference, we com-
puted a third set of Merz-Kollman charges using
the CHELPG radii divided by a factor of 1.4. With
these radii, the charges almost coincide with those

Ž .obtained by the CHELPG method within 0.02 e .
Thus, we can conclude that the main difference
between the Merz-Kollman and the CHELPG
methods is the 1.4 times larger effective radii of
the former method, whereas the sampling schemes
are almost equivalent.

The reason for the difference between the
CHELP and CHELPG is similar. In the CHELPG
method, points are sampled on a dense cubic grid,
which means that they in essence are sampled
directly outside the van der Waals radii. The
CHELP points, on the other hand, are sampled on

˚spherical shells, starting at 2.5 A distance from
each atom. This means that most points are sam-
pled at this distance and larger distances, whereas
only a few occasional points are sampled near the

Žvan der Waals radii points from the shells of
.nearby atoms . Thus, the effective van der Waals

˚radius of all atom in the CHELP method is 2.5 A,
and we again see that the charges are determined
mainly by the location of potential points near the
molecule.

CRITERIA FOR THE QUALITY OF
ATOMIC CHARGES

A main problem in comparing different point-
charge models is that there is no clear criterion for
the quality of the charges. This is probably the
reason why so many charge models have been
suggested. Furthermore, different applications put
different demands on the charges. For example, in
molecular dynamics, the molecules move, so the
charges must be able to describe the electrostatics
properly in all accessible points in the phase space,
and they should also be invariant to changes in the
internal coordinates of the molecule. On the other

hand, in some calculations of redox potentials or
free energies, the molecule and the surroundings
are fixed, and it is then clear where other molecules
actually are encountered; thus, it may suffice to
describe the electrostatics well in these points.

Several different quality criteria for atomic
charges have been used. A natural demand is that
the charges are independent of the basis sets used
and the orientation of the molecule during the
calculation.10, 12, 16 Furthermore, they should be
reasonably independent of the internal geometry
of the molecule.20 Other important issues are the

Želectrostatic properties the electrostatic potential,
electrostatic field, dipole moment, and higher
moments calculated from the atomic charges
should reproduce those calculated from the wave-

.11 ] 13, 32, 33 Žfunction and chemical trends introduc-
tion of substituents should affect the charge of
adjacent atoms according to the electronegativity

. 10, 33of the introduced group . Sometimes, charges
have also been judged by how well they reproduce
experimental quantities, e.g., dipole moments,
solvation free energies, or conformational
energies.34, 35 Unfortunately, no charge model is
best in all respects. Topological and orbital-based
methods give charges that are independent of the
orientation of the molecule and usually give the
best chemical properties. On the other hand, the
potential-based methods give the best description
of the electrostatic properties of the molecule.1, 10

Because our aim is to obtain charges to be used in
molecular simulations, we have concentrated on
the latter methods.

All potential-based charge models involve the
implicit assumption that the key quality criterion
is a minimal quadratic sum of the difference be-
tween the electrostatic potential calculated from
the charges and from the wave function at the
points used in the fit. Such a criterion is quite
natural; it minimizes the error in the Coulomb
interaction energy between the molecule and

Žcharges at the electrostatic potential points the
Coulomb energy is simply the product of the
charge of a particle and the electrostatic potential

.at the position of the particle . However, it is not
clear that a square sum of the deviations is the best

Žquantity apart from its nice properties in the fit-
.ting procedure . On the contrary, the square sum

gives a high weight to large electrostatic potentials
Žand large deviations because the deviations are

.squared , which is not physically motivated. In-
stead, the total or average absolute deviation might
be more just.
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Furthermore, it is far from clear which electro-
static potential points should be included in the
fit, a point illustrated by the fact that the three
electrostatic potential methods tested in this inves-
tigation use different point sampling schemes. All
potential-based methods use points only in the
vicinity of the molecule. The motivation for this is
that the electrostatic potentials are largest there,
and these values might therefore seem most im-
portant. Moreover, it has been shown that these
points are important in obtaining well-determined
charges.17, 29 However, the electrostatic potential of
a charged or polar molecule decreases with the
first or second power of the distance from the
molecule, respectively, whereas the number of in-
teractions increases with the third power of the
distance. Therefore, for the total interaction en-
ergy, it is more important to reproduce the poten-
tial far from the molecule than close to it.

Another argument against the choice of only
nearby points in the fit is that this gives unfairly
great weights for these points. Logically, the only
valid criterion for the choice of electrostatic poten-

Žtial points in terms of the accuracy of the total
.electrostatic interaction energy would be their oc-

currence in the actual simulations. Seen in this
Žway, a Boltzmann average based on the potential

.function of the program to be used would be most
appropriate for charges intended for a molecular
dynamics simulation. Thus, points close to the
molecule should have a low weight, insofar as
they occur relatively seldom in actual simulations
due to the molecule]molecule repulsion.

A third argument against using nearby points is
that the electron density is significant at these
points, thereby perturbing the potential. In fact,
Colonna and Evleth37 have shown that such elec-
tron-cloud penetration effects are significant up to

˚ ˚3 A from heavy atoms and up to 2 A from hydro-
˚gen atoms. For example, they find that, at 1.5 A

Ž .the CHELPG radius from the carbon atom in
formamide, the ab initio potential is less than 50%
of the potential without penetration effects. The
effect can be avoided by special methods to calcu-
late the potential, e.g., the overlap multipole ex-
pansion technique.37

In the following, we have chosen two different
criteria for the quality of estimated charges. The
first is based on the absolute deviation of the
electrostatic potential calculated from the wave
function and the charges. We have decided to
employ the merged four sets of electrostatic poten-
tials used in the Merz-Kollman, CHELP, CHELPG,

Ž .and CHELP-BOW methods see below . This was
done to avoid any bias from the sampling tech-
niques and van der Waals radii. However, because
an unweighted fit gives unfairly high weights to
the potential points close to the molecule and
ignores distant interactions, we have compared
both the unweighted and the Boltzmann-weighted
potentials. The second criterion is the average ab-

Žsolute deviations of the multipole moments in the
.real spherical harmonics form calculated from the

charges and the wave function. The absolute devi-
ation is judged to be a better criterion than the
relative or maximal deviation, because the total
energy is linearly related to the moments as well
as to the electrostatic potential.

THE CHELMO METHOD

To illustrate better our discussion of the quality
criteria of the charges, we have developed two
new methods to calculate atomic charges from

Žquantum chemical calculations, CHELMO charges
.from electrostatic moments and CHELP-BOW

Žcharges from Boltzmann-weighted electrostatic
.potentials . Both are devised to minimize the num-

ber of arbitrary choices in the fitting procedure
and to give the optimal atomic charges in terms of
the total electrostatic interaction energy in actual
simulations.

The CHELMO method does not use the electro-
static potential; instead, the charges are fitted di-
rectly to the electrostatic moments. Therefore, all
choices related to the selection of potential points
are avoided, as are effects of electron-cloud pene-
tration. In fact, CHELMO involves only two
choices, the weight factors for the different re-
straints and the moments to be used as constraints.

As was discussed under Methods, we have used
a weight factor for the restraints to the multipole

Ž .yn Ž .moment of the form r q x eq. 9 , where r is
the radius of the molecule, n is the order of the
moment, and x is a parameter. We have tested
different values of x for 12 different molecules
and compared the mean absolute deviation of the
electrostatic potential calculated from the fitted

Žcharges and from the wave function results avail-
.able as Supplementary Material . The x value that

gives the minimal deviation varies for the different
˚molecules. We have chosen x s 3 A, because this

was the average of the optimal x values for the
various molecules. It is notable that, for most of
the molecules, the minimal average deviation of
the electrostatic potential for the CHELMO method
is smaller than the deviation obtained for a direct
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fit to the electrostatic potential. This is because the
fitting procedure uses least-squares fitting to the
electrostatic potential, whereas we compare the
absolute deviation. Pentane and imidazole were
included in the test set to ensure that the weight in

Ž .equation 9 also works well for elongated and flat
molecules. Encouragingly, the results obtained
with these two molecules do not differ from those
of the other molecules.

We have used as constraints in CHELMO the
Ž .total charge, the dipole moment if possible , and

equal charges on equivalent atoms. Whether the
dipole moment should be used as a constraint or
restraint depends on the number of independent
atoms in the molecule and the number of nonvan-
ishing components of the dipole moment. Natu-
rally, the number of independent atoms has to be
larger than the number of nonvanishing dipole
components if it is to be possible to constrain the
dipole moment. It turned out that already when
the number of independent atoms is one more
than the number of nonvanishing dipole compo-
nents, the dipole moment can safely be used as a
constraint without deterioration of the higher mo-

Ž .ments data not shown . Of course, it would be
possible also to constrain the quadrupole moment
if the number of independent atoms is high
enough. However, we have not seen any advan-
tage with such a procedure.

THE CHELP-BOW METHOD

Above we suggest that electrostatic potential
points should be selected according to their occur-
rence in actual simulations and that points far
from the molecule are more important for the
charges than points close to the molecule. To illus-
trate the effect of these suggestions, the CHELP-
BOW method was developed. In the present im-
plementation, the CHELP-BOW method involves
many approximations, but this is acceptable for
our illustrative purposes. However, the prelimi-
nary results are so promising that, in a forthcom-
ing publication, we will thoroughly test and cali-
brate the method for general use.

In the CHELP-BOW method, points are sam-
pled within a large box enclosing the molecule. In
principle, no selection of points is necessary before
the fit, but we have decided to remove points with
a very small weight in order to minimize the
number of potential points. The points are sam-
pled at random; this has been recommended lately
to avoid any orientational dependence.17 ] 19 Ran-
dom sampling also gives points that are evenly

distributed in the box, i.e., points with a correct
frequency at different distances from the molecule
if no interactions were present. Furthermore, the

Ž .point density is very high 2,500 points per atom ,
to ensure that the charges are well determined
and do not depend on the orientation of the
molecule.16, 17, 29

In the least-squares fit, the potential points are
weighted according to their distance from the
atoms in the molecule. More specifically, the points
are weighted by the Boltzmann factor of the inter-
action energy of a probe atom at the potential
point and all the atoms in the molecule. The atoms
in the molecule are assigned parameters directly
from the molecular simulation package in which
the atomic charges will be used. By this choice, the
van der Waals parameters are no longer arbitrary.
On the contrary, they are completely determined
by the force field in which the charges will be
used. This clearly shows the connection between
the estimated charges and the force field to be
used.

Unfortunately, there are some problems with
such an approach. First, the probe molecule is not
defined; in the simulation it might be any molecule.
However, without further information, a water
molecule would be the most natural choice. We
have selected a TIP3P water molecule; this is the
default water model in the Amber software, which
we intend to use. Such a probe is appropriate also
because its van der Waals interaction is deter-
mined only by the oxygen atom, so we do not
have to speculate about the position of the hydro-
gen atoms. Second, the interaction energy of the
molecule with a probe depends on the charge of
the atoms in the molecule, i.e., on the charges we
want to determine. Moreover, it also depends on
the charge and position of the atoms in the water
probe. There are methods to solve these problems,
but for simplicity we decided to ignore the charges
and only use the van der Waals interaction energy.
However, this gives too long a distance between

˚Žthe probe and the molecule e.g., 3.43 and 2.37 A
.between O—O and O—H, respectively . We have

corrected this artefact by decreasing the van der
˚Waals radius of the water probe by 0.4 A, which

gives O—O and O—H equilibrium distances close
to the experimentally observed distances.

Normally, the van der Waals interaction energy
is strongly repulsive at short distances, shows an
attractive minimum at the sum of the van der
Waals radii of the two interacting atoms, and
slowly increases to zero at long distances. Because
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the van der Waals interaction in practice is signifi-
cant only for molecules in direct contact, whereas
the energy of more distant molecules is deter-
mined by the electrostatics and the location of all
other molecules, we use only the repulsive part of
the van der Waals interaction energy. Thus, if the
distance between the probe and an atom in the
molecule is larger than the sum of their van der
Waals radii, the interaction energy is set to the
minimum energy. In this way, all positions outside
the van der Waals envelope of the molecule will
have the same weight.

The wish to describe the electrostatics properly
at large distances from the molecule poses another
problem. Naturally, all points up to infinity cannot
be included; at some finite distance, the point
selection has to stop. A solution to the problem
would be to make a more sparse sampling of
points at larger distances from the molecule and
compensate for this by a higher weight in the fit.
However, we have chosen a simpler solution. We

˚include points up to 8 A from any atom in the
molecule, and, to get the correct asymptotic behav-
ior of the electrostatic potential, we constrain the
total charge and the dipole moment to reproduce
the actual charge and the dipole moment calcu-
lated from the wave function. Thus, the two lowest
moments, with an interaction energy that falls off
more slowly than the increase in the number of
interactions, are constrained to be correct. If the
number of independent atoms is more than about
12, we recommend that the quadrupole moment
also be used as a constraint; its interaction energy
falls off with the same pace as the increase in
interactions. However, this is not the case for any
molecule in the present investigation.

If the Boltzmann weight behaves properly, it
would compensate for most of the differences in
the point-selection schemes in the traditional po-
tential-based methods. In fact, this is the case, as is
illustrated for methane in Table V. With normal,
unweighted fits, the CHELP, CHELPG, and Merz-

ŽKollman charges differ considerably the charge on
.the carbon atom varies between 0 and y0.5 e .

However, if the electrostatic potential is Boltz-
mann weighted as in the CHELP-BOW method,
the charge on the carbon atom converges towards
y0.52 to y0.57 e. Interestingly, this is close to the
charge obtained with the full CHELP-BOW method
Ž .y0.55 e as well as with the CHELMO method
Ž .y0.57 e . Thus, the Boltzmann weight works
properly, eliminating most of the differences re-
sulting from different sampling schemes. More-
over, CHELP-BOW gives results that are similar to

TABLE V.
Charges for Methane Calculated with and without

aBoltzmann Weights.

Method C H

Merz-Kollman y0.50 0.12
CHELP y0.00 0.00
CHELPG y0.37 0.09
Weighted Merz-Kollman y0.52 0.13
Weighted CHELP y0.54 0.13
Weighted CHELPG y0.57 0.14
CHELMO y0.57 0.14
CHELP-BOW y0.55 0.14

aThe electrostatic potential points were sampled with the
CHELP, CHELPG, and Merz-Kollman methods. Charges
were fitted to the electrostatic potential points with or without
a Boltzmann weight as described for the CHELP-BOW
method. The charges on the four hydrogen atoms were
constrained to be equal.

those of the CHELMO method, although the latter
method estimates the charges directly from the
electrostatic moments instead of the electrostatic
potentials. Thus, we have constructed two meth-
ods that are based on different techniques, but
nevertheless give very similar results, which is
quite satisfactory.

COMPARISON OF THE DIFFERENT
METHODS

To test the performance of the different meth-
ods, partial charges were calculated for 22 small

Ž .and medium-sized molecules Table VI using
the CHELP, CHELPG, Merz-Kollman, RESP,
CHELMO, and CHELP-BOW methods. For com-
parison, Mulliken, NPA, and AIM charges were
also included in the investigation. The quality of
the charges was estimated from the mean absolute
deviation of the multipole moments and the elec-

Žtrostatic potential both Boltzmann-weighted and
.unweighted calculated from the wave function

Ž .and from the charges Table VII . To get compara-
ble results, the charges of equivalent atoms were
constrained to be equal for all the electrostatic
potential methods, and our numerically stable sin-
gular value decomposition procedure was used for
the fits.

As can be seen from Table VI, the charges
obtained with the various methods vary apprecia-

Ž .bly by up to 1.24 e . In general, the charge on
carbon atoms varies most, but the charges on other
buried atom such as copper and nitrogen also vary
appreciably. Interestingly, this variation is most
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TABLE VI.
Charges for 22 Molecules Calculated with the Various Methods.

aMulliken NPA AIM CHELP CHELPG RESP MK CHELP-BOW CHELMO

CH C y0.63 y0.92 y0.07 0.00 y0.37 y0.23 y0.50 y0.55 y0.574
H 0.16 0.23 0.02 0.00 0.09 0.06 0.12 0.14 0.14

C H C y0.29 y0.43 y0.28 y0.23 y0.25 y0.08 y0.30 y0.31 y0.302 4
H 0.14 0.21 0.14 0.12 0.13 0.04 0.15 0.15 0.15

Pentane C1 y0.44 y0.67 y0.13 y0.18 0.01 y0.20 y0.22 y0.12
H1 0.14 0.22 0.02 0.04 0.00 0.05 0.04 0.01
C2 y0.25 y0.45 0.13 0.14 y0.01 0.10 0.29 0.33
H2 0.13 0.23 y0.03 y0.03 0.00 y0.01 y0.08 y0.09
C3 y0.24 y0.46 y0.02 y0.04 y0.01 y0.09 0.00 y0.15
H3 0.13 0.22 y0.01 0.00 0.01 0.03 y0.04 0.00
C4 y0.25 y0.45 0.13 0.14 0.00 0.11 0.31 0.33
H4 0.13 0.23 y0.03 y0.03 0.00 y0.01 y0.09 y0.09
C5 y0.44 y0.67 y0.13 y0.18 y0.04 y0.22 y0.21 y0.12
H5 0.14 0.22 ; 0.23 0.02 0.04 0.01 0.05 0.04 0.01

CH OH C y0.21 y0.31 0.49 0.26 0.18 0.04 0.07 0.14 y0.023
H 0.13]0.16 0.18]0.21 0.00]0.03 y0.02 0.01 0.04 0.04 0.02 0.06
O y0.61 y0.74 y1.07 y0.55 y0.55 y0.52 y0.53 y0.51 y0.48
H 0.39 0.47 0.54 0.33 0.35 0.35 0.35 0.33 0.33

yCH O C 0.00 y0.19 0.80 0.72 0.62 0.35 0.54 0.44 0.473
H y0.09 0.03 y0.17 y0.26 y0.24 y0.18 y0.22 y0.20 y0.21
O y0.73 y0.91 y1.31 y0.94 y0.90 y0.82 y0.87 y0.84 y0.85

H CO H 0.12 0.13 0.04 y0.04 y0.01 0.02 0.00 y0.01 0.012
C 0.08 0.23 1.04 0.47 0.42 0.33 0.38 0.40 0.35
O y0.32 y0.49 y1.11 y0.39 y0.39 y0.36 y0.38 y0.39 y0.37

yHCOO H y0.12 y0.02 y0.13 y0.30 y0.23 y0.19 y0.21 y0.22 y0.21
C 0.32 0.61 1.75 0.90 0.70 0.59 0.66 0.66 0.63
O y0.60 y0.79 y1.31 y0.80 y0.74 y0.70 y0.72 y0.72 y0.71

( )CH O C y0.19 y0.31 y0.08 0.01 y0.04 y0.14 y0.32 y0.443 2
H 0.13]0.16 0.19]0.22 0.07 0.05 0.06 0.09 0.13 0.16
O y0.44 y0.56 y0.26 y0.30 y0.28 y0.24 y0.14 y0.09

CH CN C y0.52 y0.78 0.05 y0.37 y0.25 y0.07 y0.45 y0.57 y0.623
H 0.21 0.28 0.08 0.14 0.11 0.07 0.17 0.19 0.21
C 0.35 0.28 0.99 0.42 0.38 0.28 0.42 0.47 0.49
N y0.46 y0.33 y1.27 y0.48 y0.46 y0.43 y0.47 y0.48 y0.49

H NCHO N y0.70 y0.87 y1.24 y0.85 y0.86 y0.65 y0.87 y0.87 y0.822
H 0.34 0.41 0.42]0.43 0.38 0.39 0.33 0.40 0.40 0.39
C 0.36 0.51 1.55 0.62 0.62 0.40 0.58 0.58 0.52
O y0.45 y0.60 y1.20 y0.49 y0.51 y0.44 y0.49 y0.49 y0.47
H 0.10 0.14 0.03 y0.04 y0.03 0.03 y0.02 y0.02 0.00

imidazole C 0.02 y0.11 0.34 y0.29 y0.25 y0.24 y0.32 y0.34 y0.30
H 0.15 0.23 0.08 0.15 0.16 0.16 0.19 0.20 0.19
N y0.55 y0.57 y1.28 y0.22 y0.21 y0.10 y0.16 y0.18 y0.18
C 0.21 0.17 1.05 0.22 0.20 0.06 0.15 0.14 0.11
H 0.15 0.22 0.08 0.04 0.07 0.12 0.10 0.10 0.12
C y0.03 y0.10 0.42 0.31 0.17 0.05 0.15 0.16 0.11
H 0.14 0.23 0.06 y0.02 0.06 0.11 0.09 0.09 0.11
N y0.42 y0.49 y1.18 y0.49 y0.49 y0.42 y0.47 y0.47 y0.46
H 0.33 0.43 0.43 0.29 0.29 0.26 0.29 0.30 0.30

CH SH C y0.58 y0.81 y0.11 0.19 y0.06 y0.13 y0.32 y0.51 y0.593
H 0.19 0.24]0.25 0.04]0.05 y0.02 0.07 0.09 0.14 0.19 0.22
S y0.08 y0.06 y0.05 y0.28 y0.30 y0.30 y0.28 y0.22 y0.21
H 0.10 0.13 0.02 0.13 0.16 0.16 0.17 0.15 0.15

yCH S C y0.47 y0.79 y0.11 0.10 0.21 y0.02 y0.01 y0.48 y0.573
H 0.08 0.18 y0.05 y0.06 y0.07 0.00 0.00 0.12 0.15
S y0.77 y0.75 y0.75 y0.92 y1.02 y0.98 y0.98 y0.88 y0.87
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TABLE VI.
( )Continued

aMulliken NPA AIM CHELP CHELPG RESP MK CHELP-BOW CHELMO

( )CH SO C y0.63 y0.90 y0.17 0.29 y0.25 y0.18 y0.49 y0.77 y0.923 2
H 0.17]0.20 0.24]0.26 0.04]0.06 y0.05 0.11 0.09 0.18 0.26 0.30
S 0.75 1.26 1.27 0.08 0.22 0.17 0.28 0.35 0.40
O y0.62 y0.96 y1.25 y0.39 y0.40 y0.39 y0.39 y0.38 y0.38

H O O y0.77 y0.93 y1.09 y0.75 y0.75 y0.74 y0.75 y0.74 y0.732
H 0.39 0.47 0.55 0.38 0.37 0.37 0.37 0.37 0.37

( )H O O y0.83 y0.97 y1.15 y0.79 y0.81 y0.80 y0.81 y0.81 y0.812 2 donor
H 0.40 0.48 0.58 0.35 0.37 0.36 0.37 0.37 0.37
H 0.38 0.46 0.54 0.39 0.38 0.38 0.38 0.38 0.39H-bond
O y0.75 y0.94 y1.10 y0.76 y0.74 y0.73 y0.74 y0.75 y0.75accep tor
H 0.41 0.49 0.57 0.41 0.40 0.40 0.40 0.40 0.40

yOH O y1.14 y1.28 y1.31 y1.11 y1.15 y1.14 y1.15 y1.14 y1.14
H 0.14 0.28 0.31 0.11 0.15 0.14 0.15 0.14 0.14

NH N y0.89 y1.11 y1.04 y0.98 y1.01 y1.01 y1.02 y1.01 y1.013
H 0.30 0.37 0.35 0.33 0.34 0.34 0.34 0.34 0.34

PH P y0.09 0.01 1.32 y0.19 y0.23 y0.25 y0.26 y0.26 y0.263
H 0.03 0.00 y0.44 0.06 0.08 0.08 0.09 0.09 0.09

HCl Cl y0.23 y0.28 y0.26 y0.27 y0.26 y0.26 y0.26 y0.25 y0.24
H 0.23 0.28 0.26 0.27 0.26 0.26 0.26 0.25 0.24

( )Cu I Cu 0.36 0.68 0.24 0.22 0.19 0.28 0.25 0.38
complex S y0.22 y0.30 y0.37 y0.34 y0.38 y0.38 y0.41 y0.46SH2

H 0.15 0.17 0.21 0.19 0.21 0.20 0.21 0.21SH2
S y0.67 y0.94 y0.56 y0.74 y0.76 y0.78 y0.78 y0.82SH
H 0.06 0.13 y0.02 0.12 0.13 0.13 0.14 0.14SH
N y0.94 y1.17 y0.46 y0.50 y0.37 y0.52 y0.48 y0.42
H 0.33]0.37 0.39]0.42 0.20 0.23 0.19 0.23 0.22 0.20N

( )Cu II Cu 0.40 0.65 0.13 0.23 0.26 0.35 0.38 0.38
complex S y0.26 y0.17 y0.22 y0.28 y0.28 y0.31 y0.34 y0.37SH2

H 0.17 0.10 0.19 0.20 0.19 0.21 0.22 0.22SH2
S y0.07 0.09 y0.15 y0.20 y0.24 y0.24 y0.26 y0.30SH
H 0.13 0.07 0.12 0.16 0.19 0.16 0.18 0.19SH
N y0.94 y0.56 y0.16 y0.41 y0.33 y0.52 y0.52 y0.32
H 0.38]0.39 0.21]0.22 0.18 0.25 0.23 0.28 0.28 0.22N

aAIM charges are missing for four molecules, because the program did not work for these.

pronounced in the five molecules involving sul-
phur. As has been noted previously,1 the AIM
charges and also the NBA charges differ apprecia-
bly from the other charges, often by being larger in
magnitude. It is also notable that, among the other
charges, the RESP method gives charges with
the lowest magnitude, whereas the CHELMO,
CHELP-BOW, and Merz-Kollman methods give
charges with the largest magnitudes. This is proba-

Ž .bly an effect of the fact that fewer or no electro-
static potentials near the molecule are used in the
fit of the latter three methods.

In general, the CHELMO and CHELP-BOW
charges are similar to at least some of the electro-
static potential charges. Thus, these new methods
give sensible charges. Moreover, the two new
methods give rather similar charges; the average
difference is only 0.031 e, and the largest difference
is 0.20 e. This is quite satisfactory, insofar as the

methods are constructed with the same philoso-
phy, although technically they are quite different.
The CHELP-BOW charges are also fairly similar to
the Merz-Kollman charges, with an average devia-
tion of 0.037 e. In fact, the CHELP-BOW charges
usually lie between the CHELMO and Merz-Koll-
man charges. The difference from the other poten-
tial-based charges is larger, especially that from

Ž .the CHELP charges average deviation 0.12 e .
If the multipole moments are used as a quality

criterion of the charges, the CHELMO method is
superior. It gives the best dipole, octupole, and
hexadecapole moments and the third best quad-
rupole moments. However, the CHELP-BOW
charges are not much worse, giving the best
quadrupole moment, the second best dipole and
octupole moments, and the third best hexadeca-
pole moment, and the Merz-Kollman charges also
give good moments. AIM, NPA, Mulliken, and
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Ž .CHELP charges in that order give the worst
moments, often with deviations twice as large as
the CHELMO or CHELP-BOW charges.

If instead the absolute deviation between the
electrostatic potentials calculated from the charges
and from the wave function is used as a quality
criterion, the Merz-Kollman charges are the best.

ŽHowever, all the potential-based methods except
.CHELP and CHELMO give similar results within

Ž10%. Again, AIM, NPA, and Mulliken charges in
.that order give poor results, with deviations up to

nine times larger than with the Merz-Kollman
method.

It should be noted that the electrostatic poten-
tial points were the merged set of points used
for the Merz-Kollman, CHELP, CHELPG, and
CHELP-BOW fits. As we discussed above, these

Ž .potential sets especially the former three give an
unfair weight to points near the molecule and they
ignore points far from the molecule, where the

Žmost important interactions appear in terms of
.total energy and where the CHELMO and

CHELP-BOW methods can be predicted to be su-
perior. This is illustrated by the data in Table VIII,
where the mean absolute deviation of the electro-
static potentials is listed, grouped after the dis-
tance of the electrostatic potential point to the
closest atom in the molecule. We have also in-
cluded a large number of electrostatic potential

˚Ž .points far from the molecule up to 25.5 A . It can
be seen that CHELP-BOW and CHELMO actually
give the smallest deviation of the electrostatic po-

tentials for all distances except those closest
˚Ž .1.5]4.9 A to the molecule. However, it is only the

latter points that are used in the fit of the Merz-
Kollman and CHELPG methods. This clearly illus-
trates the difference between CHELMO and
CHELP-BOW on one hand and the other electro-
static potential methods on the other hand. In the
potential-based methods, the charges are deter-
mined mainly by the points close to the molecule,
whereas the CHELMO and CHELP-BOW fit is
constructed to reproduce preferentially the electro-
static potential at larger distances from the
molecule.

To compensate for the bias for potential points
close to the molecules, we also made a weighted
comparison of the potentials, using the same

Žweights as in the CHELP-BOW method Table
.VII . With weighted potentials, the CHELP-BOW

method performs best, whereas the Merz-Kollman
and CHELMO charges perform only slightly worse.
Thus, in conclusion, the CHELP-BOW method
seems to give the most general charges, which
reproduce the exact moments as well as the poten-
tial very well. In essence, it seems to provide a
good compromise between the excellent moments
of the CHELMO method and the good potential of
the Merz-Kollman scheme.

It is notable the Merz-Kollman scheme gives
better charges than the CHELP and CHELPG
methods. The reason for this is most likely that
this method selects electrostatic potential points
more distant from the molecules than the other

TABLE VII.
Quality of the Charges Calculated with the Various Methods.a

Merz] CHELP-
bMulliken NPA AIM CHELP CHELPG RESP Kollman BOW CHELMO

Dipole 8.372 19.103 33.786 3.105 1.125 1.076 1.118 0.142 0.084
Quadrupole 16.002 23.861 27.074 12.991 9.693 12.262 8.806 7.135 8.95
Octupole 63.971 68.819 36.897 74.336 67.629 68.272 63.612 62.059 60.923
Hexadecapole 95.490 109.756 47.768 91.836 78.170 81.049 68.993 71.415 68.055
Potential 0.03953 0.07420 0.12862 0.02402 0.01793 0.01933 0.01754 0.01787 0.01863
Weighted 0.08441 0.17562 0.15370 0.04430 0.02723 0.02695 0.02470 0.02365 0.02557

potential

a ( )The absolute mean deviation of the electrostatic moments in real spherical harmonics form and electrostatic potentials calculated
from the charges and directly from the wave function are given. Only the sum of the deviations for the 22 molecules listed in Table
VI is shown; individual results for the various molecules are available as Supplementary Material. The electrostatic potential points
employed are the merged sets of points used in the CHELP, CHELPG, Merz-Kollman, and CHELP-BOW methods. Moments and
potentials are given in atomic units.
b The sums for the AIM method are not comparable to those of the other methods, because four molecules are missing. If these
four molecules are omitted for all methods, AIM gives the worst result for all quantities.
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TABLE VIII.
Quality of the Various Point Charge Models for the Electrostatic Potential Calculated at Different Distances

a( )from the Cu II Complex.

˚( )Distances A

1.5]4.9 4.9]8.3 8.3]11.8 11.8]15.2 15.2]18.6 18.6]22.1 22.1]25.5 Total

No. of points 3,715 4,868 6,816 6,959 7,921 4,307 4,411 38,997
Mulliken 4,005 1,276 603 400 284 171 158 812
CHELP 1,747 362 142 88 59 38 32 272
CHELPG 1,280 184 72 45 33 20 18 176
RESP 1,287 155 62 39 28 17 15 169
Merz-Kollman 1,171 138 55 36 26 15 14 153
CHELP-BOW 1,191 85 19 8 4 2 1 130
CHELMO 1,454 101 27 12 6 4 2 160

aThe absolute mean deviation of the electrostatic potential calculated from the fitted charges and from the wave function at different
distances from the closest atom is listed for the two copper complexes. The points were selected in shells around the molecule, as
in the Merz-Kollman scheme, but between 1.0 and 8.5 times the van der Waals radii. Unit: 10 y 6 a.u.

methods, because points are excluded within 1.4
times the van der Waals radii. Judging from our
criteria, it is disadvantageous to include points too
near the molecule. It is also interesting that the
CHELP charges perform appreciably worse than
the other potential-based methods and that the
RESP charges give significantly worse moments

Ž .and potentials up to 40% than the Merz-Kollman
charges, although they are based on the same
potentials. Finally, we can conclude that the Mul-
liken, NPA, and AIM charges are unsuited to use
when electrostatic properties are of interest. In
particular, it is noteworthy that the NPA method
constitutes a significant impairment of the Mul-
liken charges in this respect.

We have also examined the extent to which
charges depend on the quantum chemical method
and the basis sets. In Table IX, Merz-Kollman,

Ž .CHELP-BOW, and CHELMO charges for the Cu I
complex are calculated with different methods and
basis sets. It can be seen that all three charge sets
show a moderate dependence on the basis set. This
is not a disadvantage of these methods, however,
but rather a necessary result of the variation of the
electrostatic moments and the electrostatic poten-
tial with basis sets; the charges cannot be expected
to converge more rapidly than the moments with
the size of the basis set. The Merz-Kollman charges
show the smallest variation, slightly smaller than
that for the CHELP-BOW charges, whereas the
variation is significantly larger for the CHELMO
charges. Apparently, the electrostatic moments
vary more than the electrostatic potential with the
level of theory and the basis sets. The charges

calculated with the MP2 and B3LYP methods are
very similar, whereas the Hartree-Fock charges are
quite different. This agrees with the conclusions of
De Proft et al.25 that partial charges calculated
with the B3LYP method are in good agreement
with high-level ab initio results.

ŽThe electrostatic potential methods especially
.CHELP have been criticized for being dependent

on the choice of the coordinate system.16 We have
therefore examined how the potential-based

Ž .charges vary when the Cu I complex is rotated.
As can be seen in Table X, all methods show a
rotational dependence, although it is minimal for

Žthe CHELPG and CHELP-BOW charges 0.001 e
.on average , i.e., the methods with a large number

of electrostatic potential points. For the CHELP-
BOW method, the variation of the charges with the
rotation reflects the uncertainty in the charges
rather than the rotational dependence, because the
points are selected randomly. The CHELP and
Merz-Kollman charges show an appreciable de-
pendence on the orientation of the molecule, on
average 0.04]0.05 e. If the real spherical harmonics
form of the multipole moments are used in the
CHELMO method, it is rotationally invariant, as
are the Mulliken, NBO, and AIM methods. Natu-
rally, this is an advantage of these methods.

The result in Table X represents a typical rota-
tion. A closer investigation of different rotations
shows that similar variations are obtained with
other rotations, independently of the rotation axis

Ž .and the magnitude of the rotation Fig. 1 . Thus,
Ž .even for very small rotations a few degrees , a

0.05 e variation of the Merz-Kollman charges can
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TABLE IX.
( )Merz-Kollman and CHELMO Charges Calculated for the Cu I Complex with Different Basis Set and

Quantum Chemical Methods.

Hartree-Fock B3LYP MP2
U U Ua a a a a a3-21G 6-31G / DZpdf 3-21G 6-31G / DZpdf 3-21G 6-31G / DZpdf

Merz-Kollman charges
Cu 0.48 0.54 0.17 0.28 0.19 0.28
S y0.49 y0.41 y0.47 y0.38 y0.45 y0.39SH2
H 0.24 0.20 0.21 0.20 0.22 0.21SH2
S y0.92 y0.88 y0.77 y0.78 y0.81 y0.80SH
H 0.15 0.12 0.16 0.13 0.15 0.14SH
N y0.83 y0.66 y0.60 y0.52 y0.59 y0.55
H 0.33 0.26 0.28 0.23 0.28 0.24N

CHELP-BOW charges
Cu 0.45 0.51 0.10 0.25 0.11 0.25
S y0.49 y0.44 y0.45 y0.41 y0.45 y0.42SH2
H 0.24 0.22 0.21 0.21 0.23 0.22SH2
S y0.91 y0.88 y0.76 y0.78 y0.80 y0.80SH
H 0.15 0.12 0.17 0.14 0.15 0.14SH
N y0.86 y0.63 y0.61 y0.48 y0.60 y0.51
H 0.34 0.25 0.29 0.22 0.29 0.23N

CHELMO charges
Cu 0.48 0.65 0.07 0.38 0.14 0.39
S y0.52 y0.50 y0.47 y0.46 y0.47 y0.48SH2
H 0.25 0.22 0.22 0.21 0.23 0.22SH2
S y0.94 y0.92 y0.77 y0.82 y0.82 y0.84SH
H 0.16 0.13 0.18 0.14 0.17 0.15SH
N y0.82 y0.57 y0.55 y0.42 y0.56 y0.45
H 0.33 0.23 0.27 0.20 0.27 0.21N

aBasis set.

be expected. This can partly explain the large vari-
ations in electrostatic potential charges encoun-
tered during quantum molecular dynamics simu-
lations.36

THE CONDITIONING OF THE
LEAST-SQUARES MATRIX

Recently, it has been pointed out that the least-
squares matrix for the electrostatic potential meth-
ods in general is rank deficient, meaning that the
corresponding charges are not statistically valid.
This is a very serious problem, so we have used
numerically stable algorithms based on singular
value decomposition for our fitting. The singular
values of a matrix directly show whether it is rank
deficient or not. We used the same criteria for rank
deficiency as Francl et al.,18 that the condition

Žnumber i.e., the quotient between the largest and
. y5the smallest singular values is less than 10 , on

Ž . Ž .both the constraint B and the restraint A matri-
ces. Quite unexpectedly, we did not encounter any
rank deficiencies for any of the molecules listed in
Table VI with any method.

To deduce why our results differ so strongly
from those of Francl et al.,18 we decided to study
exactly the same system as was used in their
investigation. The molecules have between 6 and
36 atoms and they are studied with the CHELP
method. In addition, a molecule more than twice
as large was also included, the haem group and its

Žaxial ligands in oxygen-loaded myoglobin 84
.atoms . The results are collected in Table XI, show-

ing the condition numbers of the restraint matrix
Žin these calculations, the constraint matrix A is
one-dimensional and therefore always has a condi-

.tion number of one . It can be seen that the condi-
tion number decreases with the number of atoms
in the molecule, but even in the 84-atom myo-
globin model, it is still 0.001, i.e., 100 times larger
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TABLE X.
Dependence of the Various Charges on the Coordinate System.a

CHELP CHELPG Merz-Kollman CHELP-BOW

Cu 0.106 0.007 0.044 0.002
S 0.062 0.001 0.003 0.000SH2
H 0.017]0.079 0.000]0.001 0.000]0.004 0.000SH2
S 0.006 0.000 0.007 0.004SH
H 0.010 0.001 0.009 0.004SH
N 0.065]0.170 0.000 0.046 0.000
H 0.008]0.077 0.000]0.001 0.001]0.118 0.000N
Average 0.046 0.001 0.037 0.001

a ( )The change in the charges caused by a rotation of the Cu I complex 1108 around the x-axis is listed.

FIGURE 1. Variation of the carbon charge in CH SH3
on the orientation of the molecule. The charges are
calculated with the standard Merz-Kollman method. The
molecule is rotated around the x-axis starting from the
Gaussian 94 standard orientation.

than the limit for a rank deficiency. On the other
hand, Francl et al.18 encountered deficiencies in the
rank of the least-squares matrix for all molecules
Ž .between 1 and 12 .

This discrepancy is partly due to the method of
the least-squares fit. In our fitting procedure, the
equation Aq s f is solved using pseudoinverses,
whereas Francl et al.18 solve the equation ATAq s
ATf by forming the inverse of ATA. As was dis-
cussed by Hinsen and Roux,17 this latter multipli-
cation with AT effectively squares the condition
number of the A matrix, thereby strongly increas-
ing the risk of yielding an ill-conditioned problem.
However, this does not explain all the discrepancy.
Even if our condition numbers are squared, only
the condition number of the myoglobin model will
become less than 10y5. All the charges of the other
molecules will still be well determined. Probably,
the rest of the problem lies in the treatment of the

TABLE XI.
Rank Estimates of CHELP Least-Squares Fit.a

No. of Condition CHELP-
bMolecule atoms No. SVD

Formamide 6 0.079 1
Ethane 8 0.037 1
Acetamide 9 0.031 2
Methyl acetate 11 0.026 2
Dimethylphosphate 13 0.038 3
Phenol 13 0.023 3
L-cysteine 14 0.033 3
t-Butoxide 14 0.025 3
2,4-Pentanedione 15 0.020 3
Adenine 15 0.027 4
Neopentane 17 0.027 4

( )Alanine dipeptide tr 22 0.011 5
Glucose 24 0.014 7

cGPC 36 0.010 12
Myoglobin model 84 0.001 }

a (U )The molecules were optimized at the HF / 3-21G level,
except GPC and the myoglobin model, for which the coordi-
nates were taken from the literature.28, 3 9 The electrostatic
potential points were sampled with the CHELP method. The
fit was performed as described under Methods, with the total
charge as the only constraint. Therefore, the condition num-
ber of the constraint matrix is always 1. The condition
number of the restraint matrix is defined as the quotient of
the smallest and the largest singular values.
bRank deficiencies encountered with the CHELP-SVD
method.18

c
L-a-glycerylphosphorylcholin.

constraints. Francl et al. use Lagrangian multipli-
ers, which increase the dimension of the A matrix.
We, on the other hand, eliminate the constraints
using the B matrix, which effectively reduces the
size of the A matrix.

In summation, the results in Table XI illustrate
the advantage of our fitting scheme involving
pseudoinverses calculated by singular value de-
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composition and elimination of constraints. Clearly,
it is possible to estimate well-determined atomic
charges for molecules with at least 100 atoms if a
proper method for the least-squares fit is used.

Conclusions

Potential-based charges greatly depend on the
way the potential points are selected. We have
presented and tested a new method that avoids
such a dependence, CHELMO. It fits the charges
directly to the electrostatic moments, and it per-
forms as well as or better than the best electrostatic
potential method judging from the calculated elec-
trostatic potential and moments. In fact, it de-
scribes the electrostatic potential especially well
far from the molecule, which is appropriate insofar
as those interactions are most important for the
total interaction energy. The method is easy to use
and fast, because the electrostatic moments are
contained in the output of normal quantum chemi-
cal programs and no electrostatic potential has to
be calculated. Moreover, it avoids the problem of
electron-cloud penetration. The major disadvan-
tage of the method is that it cannot be used for
large molecules, because there is a limited number
of moments. No more than 25 independent charges
in a molecule can be determined if all moments up
to hexadecapole moments are used. In practice the
method should not be used for molecules with
more than about 20 atoms; otherwise, the higher
moments may be poorly reproduced and the
statistics of the fit may become poor. This could be
remedied if moments higher than hexadecapole
moments were calculated, but such moments are
not included in the output of normal quantum
chemical packages.

To develop a method that can be used for larger
systems, we constructed the CHELP-BOW method,
which estimates the charges from a Boltzmann-
weighted fit to the electrostatic potential. It has the
advantage over other electrostatic potential meth-
ods that it gives the best possible electrostatic
interaction energy in actual simulations by weight-
ing the electrostatic potential points according to
their occurrence in the simulations. Thus, it does
not give an unfairly high weight to electrostatic
potential points close to the molecule, as do the
other methods. Furthermore, it does not contain
any arbitrary parameters for the potential point
selection; instead, it employs the potential function
of the program for which the charges will be used.

The present implementation of the CHELP-BOW
method is very simplified, but in a future publica-
tion we will refine and thoroughly test the method.
However, the results are conclusive enough to
show that the method is very promising and shows
the desired behavior. In fact, it gives both excellent
electrostatic moments and electrostatic potentials,
thereby combining the attractive characteristics of
both the CHELMO and Merz-Kollman methods.
Clearly, this is the method we recommend for
general use.

An important advantage of the methods devel-
oped in this paper is that they are general; i.e.,
they can be used with any quantum chemical

Žprogram, and they can use experimental data e.g.,
.multipole moments as well. The only thing that

has to be changed is the input section of the
programs. Thus any quantum chemical basis sets
can be used, and any level of theory that gives a
wave function may be employed. Furthermore, the
methods can easily be adapted to use the same
hyperbolic restraints as in the RESP method. How-
ever, this means that a nonlinear fitting method
has to be used, and it is not clear how such a
method behaves with linearly dependent electro-

Žstatic potential points i.e., if the method is sensi-
.tive to the least-squares rank problem . Further-

more, our results show that RESP clearly impedes
Žthe electrostatic behavior of the fitted charges by

.up to 40% . On the other hand, with a nonlinear
method, it would also be possible to fit the charges

Ž .to the absolute instead of the squared deviation
of the electrostatic potentials or moments, which
we believe is an advantage.

Finally, a comment on the traditional electro-
static potential methods. As was discussed above,
the Merz-Kollman method gives the best charges
according to our electrostatic criteria, but the
charges show an appreciable dependence on the
orientation of the molecule compared to the
CHELPG method. Therefore, if any of the standard
electrostatic potential methods should be used, we
recommend the use of the Merz-Kollman method,
but with a much higher point density than the

Ž .default at least 2,000 points per atom . From our
results, it is also clear that the standard CHELP

Žmethod is inferior in all respects bad moments,
.electrostatic potentials, and rotational dependence

to the other potential-based methods. This is prob-
ably due to the highly uneven distribution of the
electrostatic potential points. Thus, we cannot see
any justification to use CHELP charges except for
backward comparisons.
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