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Abstract

Objective Intravoxel incoherent motion (IVIM) shows great potential in many applications, e.g., tumor tissue characteriza-

tion. To reduce image-quality demands, various IVIM analysis approaches restricted to the diffusion coefficient (D) and the 

perfusion fraction (f) are increasingly being employed. In this work, the impact of estimation approach for D and f is studied.

Materials and methods Four approaches for estimating D and f were studied: segmented IVIM fitting, least-squares fitting 

of a simplified IVIM model (sIVIM), and Bayesian fitting of the sIVIM model using marginal posterior modes or posterior 

means. The estimation approaches were evaluated in terms of bias and variability as well as ability for differentiation between 

tumor and healthy liver tissue using simulated and in vivo data.

Results All estimation approaches had similar variability and ability for differentiation and negligible bias, except for the 

Bayesian posterior mean of f, which was substantially biased. Combined use of D and f improved tumor-to-liver tissue dif-

ferentiation compared with using D or f separately.

Discussion The similar performance between estimation approaches renders the segmented one preferable due to lower 

numerical complexity and shorter computational time. Superior tissue differentiation when combining D and f suggests 

complementary biologically relevant information.

Keywords Diffusion magnetic resonance imaging · Monte Carlo method · Signal-to-noise ratio · Perfusion

Introduction

Diffusion and perfusion magnetic resonance imaging (MRI) 

are frequently used for in vivo tumor tissue characterization 

[1, 2]. Studies have shown that both techniques can have a 

predictive role in therapy response assessment, including a 

potential to indicate treatment effects earlier than standard 

morphological evaluation [3]. An improved ability to dif-

ferentiate between various malignant brain tumors has been 

shown for combined use of diffusion and perfusion MRI 

[4]. In liver metastases from neuroendocrine tumors (NETs), 

both techniques have been shown to reflect changes induced 

by therapy [5].

Both diffusion and perfusion are motion of water mol-

ecules on a subvoxel scale. The intravoxel incoherent motion 

(IVIM) model aims to describe the effect of these two 

motions on the signal intensity in diffusion-weighted images 

[6]. Successful estimation of the IVIM model parameters 

would thus provide both diffusion and perfusion informa-

tion noninvasively from a single imaging sequence. Since 
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diffusion weighting sensitizes the image to motion, perfu-

sion-related IVIM parameters contain information related to 

the amount of flowing blood in the capillaries and its veloc-

ity. On the other hand, dynamic contrast-enhanced (DCE) 

MRI, used in most studies on tumor microvasculature, also 

provides information on the permeability and surface area 

of microvessels [7]. Still, promising results on tumor tissue 

characterization based on IVIM have been shown that war-

rant further studies [8–10].

The IVIM model is commonly formulated as a two-com-

partment model, as follows:

where S(b) is the signal at a diffusion weighting with b value 

b, S0 is the signal without diffusion weighting, f is the per-

fusion fraction, D is the diffusion coefficient, and D* is the 

pseudodiffusion coefficient [6]. Due to the higher rate of 

motion of water molecules in blood, D* is usually expected 

to be at least one order of magnitude greater than D.

Because of the characteristics of the IVIM model and 

typical values of its parameters, estimating D* has proved 

to be difficult, demanding high-quality data and, as a result, 

long examination times [11]. Therefore, estimating only D 

and f has been employed in several recent studies [12–14]. 

This still enables extraction of both diffusion (D) and perfu-

sion (f) information while reducing the demands on image 

quality in terms of signal-to-noise ratio (SNR).

Multiple studies concerning approaches for fitting the 

IVIM model have been conducted, e.g., [16, 17, 20]. How-

ever, evaluation of approaches for estimating D and f only 

is, to our knowledge, limited to a subanalysis in a single 

study [16]. Furthermore, while Bayesian estimation tech-

niques have shown great promise for the full IVIM model, 

evaluation of the potential improvement in estimating D and 

f only is lacking [21–23]. When the performance of a set of 

estimators is compared, general measures such as the bias 

and variability of the estimates can be used. However, while 

small bias and variability are desired features, the clinical 

usefulness of the estimated parameters should also be taken 

into account [24]. This could, e.g., include the ability to dif-

ferentiate between tissue types, such as tumor and normal 

tissue.

The aim of this study was to investigate the impact of 

the estimation approach for the IVIM model restricted to 

the parameters D and f. Specifically, effects on estimation 

bias and variability as well as ability to differentiate between 

NET liver metastases and healthy liver tissue were studied.

(1)S(b) = S
0

(

(1 − f )e−bD + fe−bD∗)

Materials and methods

Parameter estimation

Two major approaches for estimating only D and f have been 

proposed: one is based on a specialized model-fitting proce-

dure, and one uses a special case of the IVIM model (Eq. 1), 

both assuming b values in certain ranges and that D* ≫ D. In 

the former approach, often referred to as segmented fitting, 

estimation is done in two steps [15–17]. In the first step, data 

from b values below a certain threshold (bthr) are omitted. If 

bthr is large enough, the signal from the perfusion compart-

ment is considered to be of negligible size and the IVIM 

model simplifies to a monoexponential model:

In the second step, f is estimated as f = 1 − A/S(0), where 

S(0) is the measured signal at b = 0. In the latter approach, a 

simplified version of the IVIM model (sIVIM) is considered:

 where �(b) is the discrete delta function, i.e., �(b = 0) = 1 

and �(b ≠ 0) = 0 [16, 18, 19]. The model is valid for the b 

values b = 0 and b ≥ bthr.

Four specific approaches for estimating D and f were con-

sidered in this study: 

1. Segmented fitting, where D is estimated from b val-

ues ≥ 120 s/mm2 (i.e., bthr = 120 s/mm2) and f from the 

intercept A (Eq. 2), as described above

2. Least-squares fitting of the sIVIM model (Eq. 3)

3. Bayesian fitting of the sIVIM model using the marginal 

posterior modes

4. Bayesian fitting of the sIVIM model using the posterior 

means.

Segmented fitting was performed using a custom-made 

MATLAB function with nonlinear least-squares fitting of D. 

Least-squares fitting of the sIVIM model was done with the 

MATLAB function fit with default arguments.

The Bayesian model fitting based on Eq. 3 was performed 

using a previously published MATLAB function for Bayes-

ian IVIM model fitting1 [21], which was adapted to the 

sIVIM model. The implementation uses a Markov chain 

Monte Carlo setup to sample the posterior parameter distri-

bution from which the marginal posterior mode or posterior 

mean was estimated. Uniform prior distributions were used 

for all parameters.

(2)S(b) = S
0
(1 − f )e−bD = Ae−bD

(3)S(b) = S0

(

(1 − f )e−bD + f �(b)
)

,

1 Available at: https ://www.mathw orks.com/matla bcent ral/filee xchan 

ge/65579 -ivim-model -fitti ng.

https://www.mathworks.com/matlabcentral/fileexchange/65579-ivim-model-fitting
https://www.mathworks.com/matlabcentral/fileexchange/65579-ivim-model-fitting
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For all four estimation approaches, the parameter esti-

mates of D, f, and S0 were constrained to the ranges [0 

5] µm2/ms, [0 1] and [0 2 Smax], respectively, where Smax is 

the maximum measured or simulated signal value depend-

ing on the context. For the segmented model fit, the con-

straint on f was applied by setting negative estimates to zero. 

For the Bayesian methods, the constraints were applied by 

setting the prior distributions to zero outside the specified 

ranges. Additional detailed information about the parameter 

estimation approaches can be found in the supplementary 

information.

Patients

MR imaging data from patients with liver metastases from 

small-intestine NET was obtained from a previously pub-

lished randomized clinical trial of embolization methods 

[25]. Patients were randomly assigned to either hepatic 

artery embolization or radioembolization treatment and 

were examined with MRI before and one and 3 months 

after treatment. Among the 11 patients in the previous study, 

one failed to undergo the MR examination due to cardiac 

pacemaker, and one was examined with a different MR pro-

tocol, resulting in nine patients for analysis. For detailed 

descriptions of inclusion criteria and treatments, the reader 

is referred to the previous paper [25]. The MR examinations 

included in the study we report here were those performed 

before (baseline) and 3 months after treatment.

MR imaging

Respiratory-triggered diffusion weighted images (DWIs) 

of the upper abdomen were acquired on a Philips Achieva 

dStream 3T with software release 5.1.7 (Best, The Neth-

erlands) using a single-shot spin-echo echoplanar imag-

ing (SE-EPI) sequence with five b values (0, 120, 350, 

575, 800 s/mm2, Δ ≈ 26 ms, δ ≈ 16 ms). For b > 0, three 

orthogonal diffusion-encoding directions were acquired. 

Number of directions × number of signal averages = total 

number of measurements at each b value, were 1 × 6 = 6, 

3 × 3 = 9, 3 × 3 = 9, 3 × 6 = 18 and, 3 × 6 = 18, respectively. 

Other imaging parameters were: TE = 54 ms, TR = 2600 ms, 

half scan = 0.70, acquisition pixel size = 3 × 3 mm2, recon-

structed pixel size = 1.8 × 1.8 mm2, slice thickness = 6 mm, 

and slice gap = 0.6 mm. Phase encoding was performed in 

the anterior–posterior direction, with sensitivity-encoding 

(SENSE) factor = 2 and a resulting bandwidth of 13.7 Hz/

mm. Regions of interest (ROIs) were produced by manual 

delineation of the tumor border using the DWI with b = 0. 

ROIs were also drawn in healthy liver and spleen in the same 

images, avoiding large vessels. ROIs in liver and spleen were 

drawn such that their size was similar to the overall average 

tumor size. This strategy was employed to get approximately 

the same number of voxels for each tissue type. SNR was 

calculated as the signal in the image with b = 0 divided by 

the standard deviation of the noise, taking into account the 

effects of averaging. The noise level was estimated from the 

residuals of a monoexponential fit of data with b > 0. The 

resulting median SNR estimates in tumor, liver, and spleen 

were 16, 20, and 18, respectively.

Simulations

Simulated data were generated from the sIVIM model 

(Eq. 3) for the same b values and total number of measure-

ments at each b value as for the in vivo acquisitions at three 

SNR levels: 10, 20, and 40. At each level 10,000 data series 

with Rician noise were generated based on values of D and 

f randomly drawn from uniform distributions with bounds 

[0.5, 1.5] µm2/ms and [0, 0.3], respectively. SNR refers to 

the measurement at b = 0 after averaging. The noise level 

after averaging was thus lower at the higher b values due to 

the larger number of averages.

Statistical analysis

The quality of parameter estimates obtained from the differ-

ent estimation approaches using simulated data were com-

pared in terms of bias and variability. This was done by stud-

ying the quantiles of the distribution of differences between 

estimated and simulated parameter value. For parameter esti-

mates based on in vivo data, where the true parameter values 

are unknown, the relative bias and variability were studied 

by comparison of results between estimation approaches. To 

evaluate whether the b-value threshold was sufficiently high, 

D and f were estimated excluding data with b = 120 s/mm2 

and compared with estimates based on all b values.

The ability of different estimation approaches to differen-

tiate between tumor and healthy liver tissue was studied by 

constructing a classifier for each approach separately based 

on kernel density estimation. The performance of classifi-

ers was quantified using a leave-subject-out cross-validation 

where the classifier was trained on data from all but one 

patient. Data from that patient was then used for testing. 

The training and testing procedure was repeated such that 

all patients were used for testing once. The classifier was 

trained on voxel parameter data from all patients such that 

for each tissue type, the tissue-specific probability density 

function (pdf) was estimated using the MATLAB function 

ksdensity with a Gaussian-shaped kernel and default argu-

ments. Classification was performed on all voxel data from 

the test patient by identifying the tissue type with the highest 

probability based on the estimated tissue-specific pdf. The 

analysis was performed both in one dimension for D and f 

separately and in two dimensions with D and f combined. 

The proportion of correct classifications was averaged across 
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the repetitions to calculate the overall performance of the 

classifier. The classification was performed for each time-

point separately. MATLAB 2016b (MathWorks, Natick, 

USA) was used for all calculations and visualization.

Results

Simulations

All estimation approaches in general showed similar per-

formance with negligible average bias, except for f based 

on Bayesian estimation of the posterior mean, which was 

positively biased (Fig. 1). By studying the dependence of 

quantiles on simulated values, it is apparent that the bias 

was exclusive to small true values of f (Fig. 2 for SNR = 20, 

and Supplementary Figs. S1 and S2 for SNR = 10 and 40, 

respectively). In Fig. 2 one can also observe that the bias 

of D from the same estimation approach depends strongly 

on the true value of f. Note that this is hidden in Fig. 1, 

which only shows the average bias. A similar but weaker 

trend was found for D when estimated with the Bayesian 

marginal posterior mode. No considerable differences in 

variability between estimation approaches were seen.

Fig. 1  Estimation error (estimated minus true parameter value) for 

f (a) and D (b) based on simulated data at different signal-to-noise-

ratio (SNR) levels for all four evaluated approaches: SEG segmented 

fitting, LSQ least-squares fitting, BMO Bayesian fitting using the 

posterior marginal modes, BME Bayesian fitting using the  posterior 

means. Whiskers indicate the 1st and 99th percentiles. The horizontal 

black line shows zero error

Fig. 2  Parameter estimation 

error for simulated data [signal-

to-noise ratio (SNR) = 20] plot-

ted as a function of simulated 

parameter value. Each plot 

shows the 1st, 25th, 50th, 75th, 

and 99th percentiles. The hori-

zontal dotted black lines show 

zero error
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In vivo

Tumors were clearly visible on the b = 0 image, enabling 

manual delineation without the use of information from 

other images. A b = 0 image from an example patient is 

shown in Fig. 3, along with parameter maps of D and f over 

a region including the delineated tumor for all estimation 

approaches.

Results based on in vivo data showed similar trends 

as those from simulations when comparing estimation 

approaches, although somewhat less pronounced. The bias 

of f based on Bayesian estimation of the posterior mean was 

apparent for tissues with low perfusion fractions (tumor 

and spleen) but not in the liver, which in general showed 

higher f values. The bias manifested as a larger value of the 

lower quartile in Fig. 4 and is more clearly visible in Fig. 5, 

where parameter estimates from the segmented approach are 

compared with those from the other estimation approaches 

in a similar way as for simulated data in Fig. 2. The more 

subtle bias trends seen for D in Fig. 2 are, however, not 

manifested in Fig. 5. The difference in D and f estimates 

obtained with or without excluding b = 120 s/mm2 was of 

negligible size (median difference −0.04/ −0.05/0.001 µm2/

ms and 0/0.019/0, respectively, for tumor/liver/spleen). 

All tissue types displayed distinctly different distributions 

of D and f (Fig. 4). The variability of D was substantially 

smaller in healthy liver and spleen than in tumor tissue, indi-

cating highly heterogeneous tumor tissue. Tumor and spleen 

tissue showed similar distribution of f. In scatter plots show-

ing D vs. f, tumor and healthy liver tissue displays distinctly 

different patterns (Fig. 6). At baseline, tumor and healthy 

liver were observed to be more separated in the scatter plot 

than in separate histograms of D or f (Fig. 6). The same 

trend could be seen in the classification analysis where the 

combined use of D and f resulted in a substantially higher 

proportion of voxels correctly classified as tumor tissue 

(Fig. 7). The ability to differentiate between tissue types was 

similar for all evaluated estimation approaches (Figs. 6, 7). 

At 3 months after treatment, the tissue-specific joint dis-

tributions of D and f were substantially less structured, 

especially for tumor tissue (Supplementary Fig. S3), which 

resulted in a reduced ability to differentiate between tissue 

types compared with baseline (Supplementary Fig. S4). Still, 

the results were comparable among all evaluated estimation 

approaches.

Discussion

The segmented approach has been studied extensively both 

as part of evaluations of estimation approaches for the full 

IVIM model (e.g. [15, 16, 26]) and more recently for esti-

mation limited to D and f [27, 28]. However, comparison of 

estimation approaches for D and f only is, to our knowledge, 

limited to a single study in which the segmented approach 

was compared with least-squares fitting of the sIVIM model 

[16]. That comparison was part of a larger evaluation of 

Fig. 3  The b = 0 image and corresponding intravoxel incoherent 

motion (IVIM) parameter maps for an example patient. Manual delin-

eation of the tumor of interest is marked with a red dashed line in 

the image and a black dotted line in the parameter maps. The image 

region shown in the parameter maps is depicted by a red rectangle in 

the b = 0 image. Note that maps of a particular parameter are almost 

indistinguishable when compared visually
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estimation approaches for DWI data and their applicability 

in prostate cancer. The current study extends beyond the 

previous one by applying simulations over a range of values 

of D and by including Bayesian approaches in the compari-

son. It complements the previous study by analyzing other 

in vivo tissue types.

The major difference between using the segmented 

approach and estimation based on the sIVIM model is how 

the parameter constraints are applied. In the segmented 

approach, the estimate of D is only affected by its own 

constraint, meaning that A > S(0) may occur. On the other 

hand, estimates of D obtained from fitting the sIVIM model 

are affected by constraints on both D and f, resulting in an 

implicit constraint of A ≤ S(0), which resulted in a negative 

bias on D for small values of f where the constraint has a 

large impact. No such trend could be seen for the segmented 

approach. Estimates of f are affected by constraints on both 

D and f regardless of estimation approach. The similar 

results for all estimation approaches regarding f is therefore 

expected (Fig. 2, Supplementary Figs. S1, S2, and Fig. 5).

The results based on simulated and in vivo data agreed in 

the sense that no major differences on parameter estimates 

could be seen between estimation approaches, except for 

the bias of f based on Bayesian estimation of the posterior 

mean. Some of the bias trends seen in the simulation were 

not distinguishable in the results from in vivo data. This 

could in part be due to the somewhat different ranges and 

combinations of D and f in the simulations and in vivo data, 

where from a parameter-estimation perspective, least favora-

ble combinations of D and f potentially were missing or less 

frequently represented in the in vivo data. Still, the overall 

trend from both simulations and in vivo evaluation is that 

only minor differences in bias and variability can be seen 

between estimation approaches, which is in concordance 

Fig. 4  Estimated values of f (a) 

and D (b) in different tissues for 

the evaluated approaches: SEG 

segmented fitting, LSQ least-

squares fitting, BMO Bayesian 

fitting using the posterior mar-

ginal modes, BME Bayesian fit-

ting using the posterior means. 

Whiskers show the 1st and 99th 

percentiles. Note the elevated 

lower quartile of f from BME 

seen in both tumor and spleen 

and compare with Fig. 1a

Fig. 5  Comparison of parameter 

estimates from in vivo data 

between each model-fitting 

approach and the segmented 

approach plotted as a function 

of parameter estimates from the 

segmented approach. Each plot 

shows the 1st, 25th, 50th, 75th, 

and 99th percentiles. Note that 

the y-axis when comparing f 

estimates has a different range 

than that in Fig. 2. The x-axis 

for D is also different compared 

with Fig. 2 due to the narrower 

range of estimated values of D 

in vivo
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with previous findings [16]. The same trend is seen for the 

ability to differentiate between tumor and healthy liver tis-

sue, which was similar for all estimation approaches, includ-

ing the substantially biased Bayesian posterior mean of f.

Since none of the studied estimation approaches was 

superior regarding bias/variability or tissue differentiation, 

the numerical complexity and computational speed may be 

included as factors when choosing a preferred approach. 

In such case, the segmented approach is highly preferable, 

since it reduces the estimation to a one-dimensional optimi-

zation problem for estimating D and a simple calculation of 

f. This is in contrast with when the sIVIM model is used, 

for which multiple parameters must be estimated simultane-

ously, resulting in substantially increased numerical com-

plexity and computational time.

Choice of prior distribution for Bayesian IVIM model 

fitting has previously been shown to have a substantial effect 

on parameter estimates from the full IVIM model [21]. Due 

to the exclusion of D* in the sIVIM model, the model is 

considerably less flexible and therefore is likely less sus-

ceptible to noise. Choice of prior distribution should thus be 

less influential when using the sIVIM model unless highly 

informative priors are employed. Uniform priors were cho-

sen in this study due to their simplicity and lack of subjectiv-

ity. Still, more informative priors may provide more robust 

parameter estimation if the assumptions incorporated in the 

priors are suitable. Data-driven informative priors have been 

proposed for the full IVIM model with promising results [22, 

29], but rigorous validation needs to be done to avoid errors 

due to inappropriate assumptions [30].

Combined use of D and f improved the ability to dif-

ferentiate between NET metastases and healthy liver tissue 

compared with the use of D or f alone, suggesting that com-

plementary biologically relevant information is provided by 

the two parameters. This is in line with previous findings 

regarding tumor tissue characterization and therapy-response 

assessment [8, 13], although contradicting results have been 

reported for prostate cancer [16]. The distribution of D and 

f was substantially altered by the treatments, suggesting a 

therapeutic effect on at least a subset of the studied tumors. 

However, due to the involvement of two different treatments 

in this relatively small patient group and a possible range 

of responses, no conclusions regarding treatment-specific 

response assessment using IVIM parameters can be drawn.

Only one set of b values was considered in this study. 

Consensus regarding b values for estimating IVIM D and f 

has not yet been established and thus varies between stud-

ies [12, 13], although some work has been done regarding 

optimization of three-b-value protocols [27, 28]. However, 

as long as the chosen model is valid for the particular b 

values, choice of b values should only have minor effects 

on the observed estimation trends. In our study, the signal 

contribution from the perfusion compartment is assumed 

to be of negligible size at b = 120 s/mm2. The validity of 

this assumption depends on a sufficiently large value of 

D* for the particular tissue type. While both liver and 

spleen are associated with large values of D* [11], thereby 

validating the chosen b-value threshold, IVIM studies of 

NET liver metastases are lacking. However, the separate 

analysis, which excluded b = 120 s/mm2, indicated only a 

very small bias for D. The effects of a b-value threshold 

that is potentially too low should thus be negligible for 

Fig. 6  Distribution of voxel values of D and f in tumor and healthy 

liver tissue at baseline for each model-fitting approach. Kernel den-

sity estimates of tumor (red) and liver (green) are overlaid on the 

scatter plots and histograms (solid line) and reproduced in the other 

tissue type (dashed line) for comparison. The two-dimensional kernel 

density estimate is represented by a contour at an arbitrarily chosen 

level (same in all plots)
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the chosen b-value scheme. Nevertheless, further studies 

regarding optimal sets of b values should be conducted for 

increased comparability between studies. To adhere to the 

in vivo data in which the contribution from the perfusion 

compartment was negligible at b ≥ 120 s/mm2, simulations 

were performed based on the sIVIM model (Eq. 3) rather 

than the IVIM model (Eq. 1) with some specific value of 

D*. This also enabled analysis of the bias related only 

to the estimation approach and not to the influence of a 

potential contribution from the perfusion compartment. 

Another possible limitation of this study is the manual 

tumor delineation, which may have included some non-

tumor voxels on tumor borders. Such voxels could poten-

tially bias the classification analysis and decrease the 

maximum attainable classification performance. However, 

the number of such voxels is likely small due to the high 

contrast between tumor and healthy liver in the images 

used for delineation. The effect on classification results 

should thus be negligible.

In conclusion, all evaluated estimation approaches 

showed similar performance, although the Bayesian poste-

rior mean of f was substantially more biased for small true 

values of f. Taking numerical complexity and computational 

time into account, the segmented approach is preferable.
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