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Abstract

This study was to compare several published methodologies for evaluating the nature of drug-drug

combination, i.e., curve-shift analysis, isobologram, combination index, and universal surface

response analysis. The comparison used the literature data on the combination of a glycinamide

ribonucleotide formyltransferase inhibitor AG2034 and trimetrexate in cultured tumor cells and the

published analysis results for the universal surface response method. All four methods provided

similar major conclusions: (a) the nature of interaction between AG2034 and trimetrexate depended

on the level of folic acid added to the culture medium (i.e., 2.3 or 78 μM), (b) at high folic acid, the

interaction was universally synergistic for all tested combination ratios and over the full range of

drug effect levels, and (c) at low folic acid, synergism was present but less extensive. Additional

information provided by the different methods is as follows. The curve shift analysis enabled the

inspection of the experimental data and visual evaluation of the approximate parallelism between

the dose response curves. Isobologram analysis provided the range of concentration ratios where

maximal synergy was obtained. The combination index analysis readily provided quantitative

estimation of the extent of synergy or antagonism. The universal surface response method

summarized drug-drug interaction in a single parameter, facilitating comparison of larger arrays of

combinations. Only the curve shift analysis and the universal surface response method yielded a

statistical estimate of differentiation between synergy, additivity, and antagonism. In summary, curve

shift analysis, isobolograms, combination index analysis, and the universal response surface method

are useful methods for analyzing drug-drug interaction, and provide complimentary information.
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2. INTRODUCTION

Evaluation of drug-drug interaction is important in all areas of medicine. The nature and the

extent of drug interaction are usually determined in in vitro studies. Computational approaches

have been used to analyze experimental data for the nature of interaction, i.e., synergistic,

additive or antagonistic. In situations where the mechanisms of drug actions and drug-drug

interactions are well understood, mechanism-based pharmacodynamic modeling is a valuable

tool (1). However, in the more common situations where there are insufficient mechanistic

understandings to allow a well defined method, empirical methods based on Loewe additivity

can be applied (2–4). The theoretical basis and methods for analyzing drug-drug interaction

have been reviewed previously (5,6).

Loewe additivity has become the basis for the following contemporary methods used to analyze

drug-drug interaction. The isobologram analysis (7) evaluates the nature of interaction of two

drugs, i.e., drug A and drug B, at a given effect level. Operationally, the concentrations required

to produce the given effect (e.g., IC50) are determined for drug A (ICx, A) and drug B (ICx, B)

and indicated on the x and y axes of a two-coordinate plot, forming the two points (ICx, A, 0)

and (0, ICx, B). The line connecting these two points is the line of additivity. Then, the

concentrations of A and B contained in combination that provide the same effect, denoted as

(CA, x, CB, x), are placed in the same plot. Synergy, additivity, or antagonism is indicated when

(CA, x, CB, x) is located below, on, or above the line, respectively.

Combination index (CI) is calculated by Eq. 1.

(1)

A CI of less than, equal to, and more than 1 indicates synergy, additivity, and antagonism,

respectively.

Our laboratory recently described the curve-shift analysis and proposed the simultaneous use

of isobologram, combination index, and curve-shift analyses for the evaluation of interaction

in anticancer agents (8). Curve-shift analysis is a two-dimensional graphical data representation

that directly compares the concentration-effect curves obtained for each of the dilution series

associated with the selected concentration ratios in the typical experimental design.

Concentrations of single agents and combinations are normalized to the corresponding IC50

equivalents of single agents, as previously introduced (5,9–11), and analyzed by nonlinear

regression using the Hill equation. A leftward shift of combination concentration-effect curves

relative to the curves for both of the single agents indicates Loewe synergy and a rightward

shift indicates Loewe antagonism. Because of the two-dimensional format, visual inspection

of goodness of fit of experimental data points, and of differences in slopes of the family of the

dose response curves is facilitated.

We showed that non-linear regression analysis in the fitting of effect data to model equations

represented an improvement over the linear regression fitting to transformed equations

frequently used for the combination index analysis (8).

An additional analysis method, proposed and applied by Greco et al. (6,12–13), is the “universal

response surface method”. This method assumes that the concentration-effect relationship for

each drug separately follows the Hill equation and is designed to simultaneously fit all

combination data to a single function. The fitting function (Eq. 2) defaults to Loewe additivity

when the “synergism-antagonism parameter” α has a value of zero. Deviation from additivity
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results in a positive fitted value of α for synergistic interaction, and a negative value of α for

antagonistic interaction.

(2)

Considerable debate remains with respect to the method-of-choice for analyzing drug-drug

interaction data (14). The goal of the present report is to compare several methods of data

analysis. The comparison used the literature data on the combination effect on tumor cell

growth of two anti-folate agents, i.e., the dihydrofolate reductase inhibitor trimetrexate and the

glycinamide ribonucleotide formyltransferase inhibitor AG2034 (12). The anti-proliferation

effects of these agents, alone or in combination, were studied in the presence of low and high

concentrations of folic acid to determine the effect of folates on the interaction between the

two agents acting through inhibition of different members of the de novo purine and

thymidylate synthesis pathways; the results were analyzed using the universal response surface

method. The current study compared the results of curve shift analysis, isobolograms and

combination index analysis to the results of the universal response surface method.

3. MATERIALS AND METHODS

3.1 Experimental data

The experimental data was provided by Dr. William Greco (Roswell Park Cancer Institute,

Buffalo, NY) and was previously reported by Faessel et al. (12). In brief, exponentially growing

mycoplasma-free HCT-8 human ileocecal adenocarcinoma cells were treated with AG2034

alone, trimetrexate alone, and their combinations, for 96 h. The trimetrexate -to-AG2034

concentration ratios were 1:0.1, 1:0.2, 1:0.5, 1:1.25, 1:2.5, 1:5, 1:10, 1:20, 1:50, 1:125, and

1:250 in the presence of 2.3 μM folic acid, and 1:1, 1:2, 1:5, 1:12.5, 1:25, 1:50, 1:100, 1:200,

1:500, 1:1250, and 1:2500 in the presence of 78 μM folic acid (5 replicates per data point). To

examine the effects of folic acid, the culture medium was supplemented with either low or high

concentrations of folic acid (i.e., 2.3 or 78 μM).

Drug activity was measured by the sulforhodamine B (SRB) method; the absorbance readings

(OD values) were corrected for the reported, extrapolated background reading of 0.133 (12).

We usually correct with the asymptotic minimum OD value for each dilution series (8), but

deviated slightly from this practice for a more direct comparison with the data analysis

presented in Faessel et al. (12), which used a single background value for correction. The

deviation was minimal, averaging 0.9 % of the OD reading for control cells. All SRB

absorbance readings at zero drug concentration are averaged and the mean is used as OD at

control. The drug effect is measured by (OD at control-OD after treatment)/OD at control

*100%.

3.2 Data analysis

Isobologram, combination index, and curve shift analysis are derivatives of Loewe additivity

model (5–6), which is based on the assumption that a drug cannot interact with itself.

3.2.1 Isobologram analysis—The isobologram analysis provides a graphical presentation

of the nature of interaction of two drugs, i.e., drug A and drug B (7). First, in a two-coordinate

plot with one coordinate representing concentration of drug A and the other representing

concentration of drug B, the concentrations of drugs A and B required to produce a defined

effect x (e.g., IC50, A and IC50, B when x=50%), when used as single agents, are placed on the
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x and y-axes, respectively. The line of additivity is constructed by connecting these two points

(e.g., (IC50, A, 0) and (0, IC50, B) for a 50% effect isobologram plot). Second, the concentrations

of the two drugs used in combination to provide the same effect x (e.g., x=50%), denoted by

point (CA, x, CB, x), are placed in the same plot. Synergy, additivity, or antagonism is indicated

when this point is located below, on, or above the line, respectively.

3.2.2 Combination index analysis—Combination index provides a quantitative measure

of the extent of drug interaction at a given effect level (5,6,15). That is, the combination

concentrations of drug A and drug B to produce a effect x, CA, x and CB, x, are normalized by

their corresponding concentrations that produces the same effect as a single agent, ICx, A and

ICx, B, respectively. The sum of CA, x/ICx, A and CB, x/ICx, B is defined as the combination

index at effect x as indicated by Eq. 1. If not available from experimental data, predicted

concentrations of CA, x and CB, x, based on regression-derived Hill parameters of the studied

combination ratio, were used to calculate combination index at any effect x (8,15). Therefore,

combination index curves can be generated by plotting combination indices against a series of

effect levels. It is worth noting that combination index curves generated by Zhao et al (8) did

not use the CALCUSYN program made available by Chou and Talalay (15), and instead were

obtained by performing data fitting using nonlinear regression without logarithmic

transformation.

3.2.3 Curve shift analysis—Curve shift analysis allows simultaneous presentation of the

studied concentration-effect curves of singe-agent and combination treatments in a single plot.

Single agent dose-response relationships were analyzed using the Hill equation (Eq. 3).

(3)

Where E is the measured effect; C is the drug concentration; Emax is the full range of drug

effect, and was set at 100%; IC50 is the drug concentration producing the median effect of 50%;

and n is the curve shape parameter describing the steepness of the concentration-effect

relationship.

The combination concentrations of drugs were normalized to their respective single agent

IC50. Eq. 4 states the IC50-equivalent concentration of Drug A or Drug B, used alone or in

combination with each other, required to produce x% effect. Note that for single agent, one of

the two terms (CA,x or CB,x) on the right hand side of the equation becomes zero.

(4)

Where IC50, X is the IC50 value of drug X. Substituting Eq. 4 into Eq. 3 yielded Eq. 5, which

describes the effects of combination therapy as a function of IC50-equivalent concentrations.

IC50,combo and ncombo are the values for the combination therapy.
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(5)

Plotting the effects of single agents and combinations against IC50-equivalent drug

concentrations enables the simultaneous presentation of these concentration-effect curves in a

single plot. Due to the normalization, the curves for the single agents will have an IC50 value

of one “ IC50 equivalent”, while synergistic combinations will have a lower IC50 value resulting

in a leftward shift, and antagonistic combinations will show a rightward shift.

3.3 Computer software packages and procedures

All programming codes and calculations used SAS language and procedures (SAS, Cary, NC).

Nonlinear regressions were performed using the SAS/STAT Proc NLIN routine with the

unweighted Marquardt iteration method. Graphical presentations were generated by S-plus

(Insightful, Seattle, WA).

4. RESULTS

4.1 Results of curve-shift analysis

Figure 1 shows the dose response curves for trimetrexate, AG2034, or their combinations, in

the presence of 2.3 or 78 μM folic acid. Table 1 summarizes the nonlinear fitting results.

In general, the plots showed well-spaced concentration points, with several data points near

the IC50 value. The experimental design used approximately three-fold steps in concentration

dilution; this practice provided, in most curves, at least two points in the middle range of

approximately 20 to 80% effect. All concentration-effect curves for various trimetrexate and

AG2034 combinations were situated close to or to the left of the curves for the two single

agents, indicating additivity or synergy. Differences were observed for the curves obtained at

low and high folic acid concentrations.

At the high folic acid concentration (78 μM), all concentration-effect curves for the

combinations exhibited a strong leftward shift compared to single-agent curves, indicating

synergistic interaction between trimetrexate and AG2034. The IC50 equivalents for the

combinations ranged from 0.1 to 0.72. The corresponding extent of synergy ranged from a 1.5-

to 10-fold leftward shift in the concentration-effect curves. The maximal 8- to 10-fold synergy

was observed at about 1:50 trimetrexate:AG2034 molar concentration ratio. Note that most of

the concentration-effect curves were in parallel, with the exception that AG2034 showed a

shallower slope. The analysis of nonparallel curves for drug-drug interaction is considered

more challenging compared to parallel curves (4, 5).

At low folic acid concentration (2.3 μM), several differences were observed. First, the IC50

values for single agents AG2034 and trimetrexate were about 10 and 100 fold lower compared

to their IC50 values at high folic acid concentration. Second, not all concentration-time curves

for the combinations showed an apparent leftward shift; five of the twelve combinations

overlapped with the curves of single agents. This indicates additivity, which is in agreement

with the finding that their combination concentrations expressed in IC50 equivalents (as

calculated by Eq. 4) were not statistically different from 1.0 at 50% effect level (Table 1). A

second cluster of six curves showed a shift to the left; the combination concentrations expressed

in IC50 equivalents were between 0.5 and 0.6 at 50% effect level, indicating a synergy of about
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two-fold at this level. Finally, one combination (trimetrexate:AG2034 ratio of 1:50) showed

the furthest shift to the left, which appeared to be largely the result of a single data point.

4.2 Results of isobologram analysis

In contrast to curve shift analysis which provides the entire spectrum of effect levels,

isobologram analysis is typically conducted for single effect levels, e.g., 50% effect level.

Figure 2 shows the isobolograms at 50% effect level, and Table 2 summarizes the results. At

the high folic acid concentration, the isobologram analysis showed extensive synergy, with the

maximum extent of about 10-fold synergy occurring at a fairly broad range of concentration

ratios (the median ratio was slightly higher than 1.0).

At the low folic acid concentration, all data points for trimetrexate and AG2034 combinations

were below the line of additivity, indicating synergy. Maximal synergy of approximately 2-

fold was achieved at a trimetrexate-to-AG2034 IC50, equivalent concentration ratio close to one.

4.3 Results of combination index analysis

Figure 3 shows the CI values, and Table 3 summarizes the results. At the high folic acid

concentration, the CI values were consistently below 1, indicating synergy. CI decreased at

increasing effect levels, indicating increasing degree of synergy at higher effect levels. Synergy

of greater than 5- fold at the 50% effect level was observed for the curves with

trimetrexate:AG2034 concentration ratios of 1:12.5, 1:25, 1:50, 1:100, 1:200, and 1:500 (Table

3).

At the low folic acid concentration, the results were more complex. First, the CI-vs-effect lines

showed inconsistent trends. Six of twelve CI-vs-effect lines showed CI values between 0.23

and 0.6 at the 50% effect levels, indicating a 1.7- to 4-fold synergy. The remaining six curves

showed higher CI values that at times were close to or greater than 1. Second, very different

CI-vs-effect lines were observed for combinations consisting of similar trimetrexate-to-

AG2034 concentration ratios. For example, the lines for sequential trimetrexate:AG2034

concentration ratios increasing from 1:0.1 to 1:2.5, showed increasing CI values with

increasing effect levels (trimetrexate:AG2034 = 1:0.1, 1:0.2), a horizontal relationship

(trimetrexate:AG2034 = 1:0.5), and decreasing CI values with increasing effect

(trimetrexate:AG2034 = 1:1.25, 1:2.5). This trend was not easily noted in the curve shift

analysis, but was shown previously based on isobologram analysis at effect levels ranging from

0.1 to 0.9 (12). The pattern was described as a highly reproducible “snaking” of the

isobolograms around the line of additivity and was observed for several of the combinations.

4.4 Results from universal surface response analysis

This was obtained from the previous publication (12). The conclusions were as follows. (a)

The combination of trimetrexate and AG2034 showed synergy at high and low folic acid levels;

the value for the interaction parameter α was 1.50±0.25 (mean ± SE) at 2.3 μM and 146±20 at

78 μM. (b) The combination consistently showed the highest degree of synergy at high folic

acid concentration. (c) The extent of synergy at high folic acid level was significantly higher

than at low folic acid level. (d) The extent of synergy was lower at very low and high effect

levels compared to medium effect levels. These general findings are consistent with the results

of isobologram, combination index and curve-shift analyses.

It is noted that the IC50 values for single agents AG2034 and trimetrexate determined using

Eq. 3 differed from the values obtained using the universal response surface method by 0–44%

(Table 1). This may be due to the different ways of fitting the parameter value, including the

manner of background correction for absorbance at infinite drug concentration, the manner of
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handling control absorbance under drug-free conditions, the manner of weighting, and the

fitting of a whole response surface vs fitting of individual single agent curves.

5. DISCUSSION

This report compared different methods of evaluating drug-drug interaction, using the

published results for the combinations of trimetrexate and AG2034. The results indicate that

isobologram, combination index, curve-shift and universal surface response analyses yielded

similar conclusions, i.e., (a) the degree of synergistic interaction between AG2034 and

trimetrexate depended on the level of folic acid added to the culture medium (i.e., 2.3 or 78

μM) and (b) at the high folic acid level, the interaction was universally synergistic for all tested

combination ratios and over the full range of drug effect levels.

It is noted that the four methods offer complimentary information. The curve shift analysis

method allows direct inspection of the experimental data, evaluation of whether the selected

concentration points were appropriate, and visual inspection of approximate parallelism

between the dose response curves. The latter enables an investigator to determine whether

equal or dissimilar effects are observed at low and high effect levels. However, the curve shift

analysis method is not well suited for evaluating the range of combination ratio values that

yield maximal or near maximal synergy. For the latter, the isobologram analysis provides the

changes in the extent of interaction as a function of trimetrexate-to-AG2034 concentration

ratios; the points that are located furthest away from the line of additivity correspond to the

maximal synergy or antagonism. For example, the current example showed the maximal

synergy at the concentration ratio of approximately 1:1 expressed in IC50 equivalents. On the

other hand, the isobologram analysis does not provide the exact extent of synergy, nor statistical

differentiation between synergy, additivity, and antagonism.

The combination index analysis provides an easy presentation of quantitative synergy data,

with some caveats. The method lends itself well to evaluation of trends between effect levels,

such as the increasing extent of synergy with increasing effect level for all combinations at

high folic acid concentrations, and the more complex trends at low folic acid concentration.

However, as we have shown previously (8), the combination index analysis is highly sensitive

to small changes in effect measurements at low and high concentrations (i.e. at low and high

effect levels). A further shortcoming is the lack of statistical evaluation of synergy, additivity,

or antagonism.

The universal surface model approach provides a single value summarizing the nature of

interaction for the totality of data on the combinations. As this method employs a simultaneous

fit of all combination data to a single function, it circumvents the interaction analysis at multiple

levels of effect (e.g., IC10 to IC90), or for multiple (drug A-to-drug B) concentration ratios

needed for 2-dimensional models. The method provides the convenience of a single value of

α to represent the extent of synergy. An excellent application of this method is in large screening

exercises, searching for the most highly synergistic drug combinations, where the single

parameter representing synergistic/antagonistic interaction allows the investigator to rank drug

combinations from least to most synergistic. The model further provides a statistical indication

of deviation from additivity. The method is, however, not suited to scrutinize the synergy of a

single combination in detail. A further limitation is that the model equation defining the

interaction surface is designed to describe interactions yielding smoothly bowing

isobolograms, and is not versatile for evaluating interactions with a more complex pattern, such

as the combination of LY231514 with trimetrexate, which shows synergy at certain

concentration ratios and antagonism at other ratios (12). Consequently, the value of α is not

indicative of the extent of interaction. A final limitation of the universal surface method is that

the value of α cannot be easily converted to an estimate of the extent of synergy. In summary,
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the four methods of synergy evaluation presented here have their utility and limitations, and

analysis of synergy by multiple methods is recommended. Further development of methods

that allow statistical differentiation between synergy, additivity, and antagonism is warranted.
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Abbreviations

CA,x and CB,x concentration of drugs A and B used in a combination that generates x% of

the maximal combination effect

CI combination index

ICx drug concentration needed to produce x% of the maximal effect

SRB sulforhodamine B
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Figure 1. Curve shift analyses

The experimental combination concentrations were normalized to IC50-equivalents of single

agents. Data were analyzed using nonlinear regression without weighting. The data points are

mean values of five replicates. The lines are best-fitted regressed lines. A leftward shift of

concentration-effect curves for combinations when compared to single agent curves indicates

synergism, and a rightward shift indicates antagonism. T:A indicates trimetrexate-to-AG2034

ratios in their molar concentration. Experiment with ratio of T:A=1:50 has been performed

twice; the second experiment is labeled T:A=1:50 repeat. Note that the legend gives the molar

concentration ratios of the trimetrexate:AG2034 mixtures. However, the X axis (logarithmic
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scale) is the total concentration of trimetrexate plus AG2034 expressed in IC50, equivalents as

calculated by Eq. 4.
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Figure 2. Isobologram analysis

The diagonal line is the line of additivity. Experimental data points, represented by dots, located

below, on, or above the line indicate synergy, additivity, or antagonism, respectively.
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Figure 3. Combination index curve analysis

CI values less than, equal to, or greater than 1 indicates synergy, additivity, or antagonism,

respectively. The horizontal line at Combination Index=1 is the line of additivity. T:A ratio

indicates trimetrexate to AG2034 ratio in their molar concentrations.
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