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ABSTRACT pendence between measurements at different locations.
Methods currently in use include kriging, inverse-dis-Spatial interpolation methods are frequently used to characterize
tance weighting, and thin-plate smoothing splines, andpatterns in soil properties over various spatial scales provided that

the data are abundant and spatially dependent. Establishing these one can use numerous approaches with each of these
criteria involved comparisons of abundant data from many fine-scaled (see Journel and Huijbregts, 1978; Cliff and Ord, 1981;
(,100 ha) investigations. In this study we investigated whether it was Isaaks and Srivastava, 1989; Watson, 1992; Cressie,
appropriate to use spatial interpolation methods with limited (n 5 1993). There is some debate, however, as to which is
46), coarse-scaled (1188 ha) soils data from a Vertisol plain. Methods the best or most appropriate method (Voltz and Web-
investigated included ordinary kriging, inverse-distance weighting, ster, 1990; Laslett, 1994; Hosseini et al., 1994; Wollen-
and thin-plate smoothing splines with tensions. Comparison was based

haupt et al., 1994; Gotway et al., 1996).on accuracy and effectiveness measures, and analyzed using ANOVA
Use of any spatial interpolation method is currentlyand pairwise comparison t-tests. Results indicated that spatial interpo-

based on a minimum sample size or pairwise comparisonlation was appropriate when the data exhibited smooth and consistent
criterion and certain characteristics of the data (Journelpatterns of spatial dependency within the study area and the selected

ranges of estimation and weighting used in this investigation. Nine and Huijbregts, 1978; Isaaks and Srivastava, 1989). The
of twelve soil properties we investigated exhibited characteristics other sample size and pairwise comparison criterion are im-
than these, however, including independent data, variable and erratic portant because of their effect on results. Specifically,
behavior, and extreme values. Our sample design may have been it has been demonstrated that accuracy improves as
an important factor as well. Ordinary kriging and inverse-distance sample size or the number of possible pairwise compari-
weighting were similarly accurate and effective methods; thin-plate sons increases (Journel and Huijbregts, 1978; Uehara
smoothing splines with tensions was not. Results illustrate that sample

et al., 1985; Isaaks and Srivastava, 1989; Englund et al.,size is as important for coarse-scale investigations as it is for fine-scale
1992; Wollenhaupt et al., 1994). Map resolution mayinvestigations with most soils data. However, our ability to predict
decline with fewer samples as well (Uehara et al., 1985;successfully with some of our data raises the question as to the exact
Gotway et al., 1996). Accuracy also depends on samplenature of the relationship between accuracy, sample size, and sample

spacing, and to what extent these factors are related to the property pattern and sample spacing (Voltz and Webster, 1990;
under investigation, particularly when data are limited. Englund et al., 1992; Laslett, 1994; Wollenhaupt et al.,

1994; Gotway et al., 1996). Data characteristics of impor-
tance include the coefficient of variation, skewness, and
kurtosis, and whether the data contains outliers or ex-Spatial interpolation methods offer a means of char-
treme values. These are considered important becauseacterizing a variety of factors or responses over dif-
it is not certain whether data transformation improvesferent spatial scales. Characterization over different spa-
spatial interpolation (Isaaks and Srivastava, 1989), in-tial scales has proven invaluable for pest management
creases accuracy (Weber and Englund, 1992), or has(Weisz et al., 1995), crop and soil management (Hosseini
little effect on results (Cooke et al., 1993). It is also notet al., 1994; Wollenhaupt et al., 1994), and soil properties
certain whether highly variable data affects accuracy inmapping (Uehara et al., 1985; Gotway et al., 1996).
general (Hosseini et al., 1994; Laslett, 1994) or the extentUnder the right circumstances it may also prove invalu-
to which extreme values exert an influence on resultsable to elucidating soil–vegetation interrelationships.
(Isaaks and Srivastava, 1989; Gotway et al., 1996).Spatial interpolation methods differ from classic mod-

Past research has focused primarily on how soil re-eling approaches in that they incorporate information
sources vary along a transect (Trangmar, 1984; Voltzabout the geographic position of the sample points
and Webster, 1990) or at fine scales (,100-ha study(Journel and Huijbregts, 1978; Cliff and Ord, 1981;
area) (Burgess and Webster, 1980; Diaz et al., 1992;Isaaks and Srivastava, 1989; Watson, 1992; Cressie,
Wollenhaupt et al., 1994; Gotway et al., 1996). Excep-1993). Some methods also have the benefit of incorpo-
tions include Uehara et al. (1985) analyses of differentrating information about the degree and extent of de-
data sets from Africa, and Hosseini et al. (1994) analyses
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coarse-scaled soil investigations. These same constraints of distant points) and as a result predict a more detailed
surface; while powers ,1 increase the importance ofhave also limited the amount of data one can collect.

Lack of abundant data in turn is the reason for fine- distant points and predict a more smoothed surface
(Watson and Philip, 1985), and the predictions tendscaled characterization by means other than spatial in-

terpolation methods. toward the sample mean (Isaaks and Srivastava, 1989;
Cooke et al., 1993). With ID one is also able to defineTo maximize success with coarse-scaled soils investi-

gations, it is important to understand the extent to which a maximum distance beyond which sample points are
excluded from local predictions (or their relative contri-limited data from a large geographic area can affect

the decision to use spatial interpolation methods. The bution is close to or is zero).
The thin-plate smoothing splines with tensionsobjective of this study was to investigate the appropri-

ateness of using spatial interpolation methods with lim- (splines) method calculates a two-dimensional mini-
mum curvature spline interpolation. The splines func-ited surface soils data (n 5 46) collected from a large

area (1188 ha). Methods investigated included ordinary tion used for surface interpolation is that described by
Mitas and Mitasova (1988):kriging and various approaches to inverse-distance

weighting and thin-plate smoothing splines with ten-
S(x,y) 5 t(x,y) 1 o

n

j51

ljR(rj) [5]sions. The surface soils data used in this study were
collected from the Omo Plain, located in Omo National
Park, Ethiopia. where n is the number of interpolation points, lj and

t(x,y) are coefficients found by a solution of a system
Review of Spatial Interpolation Methods of linear equations, rj is the distance from the (interpola-

tion) point to the jth point, while R represents a distance-Interpolation using either the ordinary kriging (OK)
dependent function (see Eq. [4]), which is controlled byor inverse-distance weighting (ID) methods presumes
a tension (or weight) parameter f2:that the predictions are a linear combination of the

available data, that is:
R(r) 5 2

1
2pf2 3ln1rf

2 2 1 c 1 Ko(rf)4 [6]
ẑ(so) 5 o

n

i51

liz(si) [1]
where r is the distance between the (prediction) point
and the sample point, c is a constant equal to 0.577215,where ẑ is the predicted value at interpolation point so,
and Ko is the modified Bessel function.z(si ) is the value of variable z at sample point si, li is

The tension parameter modifies the minimization cri-the weight given to observed value z(si ), and n is the
terion so that first-derivative terms are incorporatednumber of observed values used in the estimation. The
in the minimization criteria (ESRI, 1991). A weighttwo methods differ, however, by how the weights are
parameter enables one to control the amount of tensioncalculated. With OK, the weights are obtained by solv-
(stiffness) with higher values resulting in a coarser sur-ing the kriging equation (Isaacs and Srivastava, 1989):
face (that more closely conforms to the sample points)

o
n

j51

ljg[d(si,sj)] 1 m 5 g[d(so,si)] i 5 1, . . . , n (Weisz et al., 1995). Lower weight values generate a
smoother surface. Weights have to be $0. Again, the
spatial range of influence upon predictions at given loca-o

n

i51

li 5 1 [2]
tions can be limited. However, it is done by indicating
the number of points rather than by selecting a radius.where m is a Lagrange multiplier and d(si,so ) is the
Generally, the greater the number of points selecteddistance between si and so, obtained through the semiva-
for local predictions, the smoother the resulting surface.riogram:

g[d(si,so)] 5 var[z(si) 2 z(so)] [3] MATERIALS AND METHODS
As specified by Isaaks and Srivastava (1989), weights Study Area
are chosen to ensure that the average error for the

Omo National Park is located in the lower Omo Basin (Parkmodel is 0 and the model error variance is minimized.
Headquarters: 805 500 Easting, 648 200 Northing; 358459 E,With ID, the weights are instead inversely related to 58479 N), just north of Lake Turkana and east of the Sudan–

distance (Watson and Phillip, 1985): Kenya border (Fig. 1). The Omo Plain is a relatively large
(≈70 by 20 km) alluvial plain that spans the eastern half of

li 5
[d(si,s0)]2p

o
n

i51

[d(si,so)]2p
[4] the park and forms the northern portion of the lower Omo

Basin. The plain is bordered on the west by a north–south
trending mountain range, on the east by the Omo River, and
split north to south by the Mui River. Other features includewhere p is the power parameter that controls how fast
three low-lying (,800 m) volcanic outcrops in the northernthe weight of the points tends to zero with increasing half of the plain, a seasonal spring near the middle volcanic

distance from the interpolation site. Additionally, the outcrop, and a perennial thermal hotspring in the southern
inverse-distance power parameter option also enables half of the study area (Fig. 2).
one to control the weight assigned to sample points used The Omo Plain and its associated features are part of a
for prediction to the extent that powers .1 give higher more extensive landscape that formed during the late Miocene

and late Quaternary (Davidson, 1983). This landscape devel-weight to the nearest points (compared with the weights
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Fig. 1. Location of the lower Omo Basin, Ethiopia.

oped as a result of widespread rift activity (the Rudolf Rift), little across the Omo Plain, except for the volcanic outcrops.
Average elevation throughout the study area is 450 m; how-followed by repeated flooding and meandering events by the

Omo and Mui Rivers and alternating changes in the level of ever, the northern half is somewhat higher than the southern
half. The regional climate is semiarid, with mean annual pre-ancestral Lake Turkana in the extreme southern part of the
cipitation at park headquarters averaging 793 mm and esti-basin (≈3–4.3 mA) (Butzer and Thurber, 1969a; Butzer, 1971;
mated mean annual temperature for the entire lower basinBrown and Nash, 1976; Davidson, 1983). Currently, the Omo
averaging 208C (Gamachu, 1974). There is a gradient in rainfallRiver rarely floods beyond 5 km and the Mui River has been
across the western half of the lower Omo Basin (≈800–350described as ephemeral, beginning in the early 1970s (Sutcliffe,
mm; north to south), with rainfall typically occurring between1992). According to Butzer and Thurber (1969a), Lake Turka-
March and June (≈65% of the total precipitation) and betweenna’s historic shoreline extended up to 100 km north of its
October and December (≈20% of the total precipitation)current delta-fringe.
(Schloeder, 1999). Grassland and shrubland savanna vegeta-The alluvium on the Omo Plain is dated at ≈4.2 mA, at
tion characterizes the Omo landscape, and the study area isleast 100 m thick, and primarily of basaltic origin (Brown and
dominated by tall subhumid grasses in the northern part, shortNash, 1976). Colluvium occurs along the uplifted margins of
semiarid grasses in the southern part, and a range of subhumidthe plain and at the base of the volcanic outcrops in the north.
and semiarid adapted species in the central part (Jacobs, 1999).The source of this colluvium is salic-rich crystalline basement

rocks and volcanic rock, overlaying a layer of sedimentary
rock (Davidson, 1983). The soils associated with the mountain Soil Sampling and Analysesrange, volcanic outcrops, and at the base of each, are classified
as Stony Cambisols, and Vertisols are the predominant soil Surface soil samples were collected from 46 sites in the

Omo Plain (Fig. 2). Sample size and choice of sample sitestype throughout the entire basin (FAO, 1986; Sutcliffe, 1992).
In the northern half of the study area, the adjacent moun- were a function of our effort to contend with the minimum

sample size and pairwise comparison criterion, staying withintains range as high as 2500 m and there is a gradual altitudinal
transition between the mountain range and the plain (Fig. 2). the Vertisols and the grassland (termed soil-scape criteria)

and finances. Sampling at each site involved systematicallySouth of the Mui River, elevations do not exceed 1100 m and
there is an abrupt rather than gradual altitudinal transition collecting five 30-cm deep cores along a 20-m transect, using

a 10-cm-diam. soil push tube. Core sample size was determinedbetween the mountain range and the plain. Topography varies
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Fig. 2. Location of sample sites in the alluvial plain.

during a preliminary analysis, and core depth was based on Approach to Spatial Interpolation
average maximum rooting depth (Jacobs, 1999) and extent of

Predictions for comparison can be obtained using a varietyvariability reported in unpublished documents (Omo-Ghibe
of procedures. Because our data were limited, we used theproject, unpublished data, 1994). The five samples were bulked
cross validation procedure (also referred to as the jackknifeby site, air-dried, and passed through a 2-mm sieve. The Inter-
procedure) (Isaaks and Srivastava, 1989). This involved con-national Livestock Research Institute soils lab in Addis
secutively removing a data value from the sample data setAbaba, Ethiopia, performed all soil analyses following proce-
and interpolating to that site using the remaining data values.dures outlined in Miller et al. (1998).

Preliminary experimental analyses showed that the vario-Surface soil properties investigated in this study included
grams to be used with OK were best represented by the spheri-sand, silt, and clay content, pH, exchangeable Na, Ca, K, and
cal model:Mg content, cation-exchange capacity (CEC), base saturation

(BS), total available P, and organic matter (OM). Sand, silt,
and clay content was determined by the Andreasen pipette
method and by sieving, and pH was measured using the 1:1 5g(h) 5 c0 1 c332

h
a

2
1
2 1ha2

3

4
g(h) 5 c0 1 c 6 for 0 , h # a

for h . asoil/water saturation paste method. Exchangeable Na, Ca, K,
and Mg content was measured using a modification of the
Ammonium Acetate Method and CEC by the Ammonium where g(h) is the variogram for lag h, h is the distance between

observations, co is the nugget, c0 1 c1 is the sill, and a is theReplacement Method. Base saturation was calculated as the
ratio of the sum of exchangeable Na, Ca, K, and Mg content range. Our approach to OK involved estimating each vario-

gram with a classical variogram estimator, fitting each vario-to CEC, and expressed as a percentage. Olsen’s method was
used to determine P. All analyses were performed in triplicate gram with a spherical variogram model, and estimating the

weighting parameters by nonlinear least squares. The nonlin-and results were averaged. Descriptive summary statistics in-
cluding the mean, range, standard deviation, coefficient of ear least squares approach does not necessarily fair well when

the points in the variogram have unequal weighting, howevervariation, skewness, and kurtosis were computed in SYSTAT
(SPSS, 1997), where the coefficient of variation is calculated (Cressie, 1983). We addressed this concern by using a mini-

mum pair criterion 5 20 when estimating with the classicalas the standard deviation as a percentage of the mean, and
skewness and kurtosis measures are centered at zero. variogram estimator. Ordinary kriging was implemented using
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the S1 (SPLUS) software (Kaluzny et al., 1996) using a spheri- magnitude of differences such that small MSE values indicate
more accurate predictions, point-by-point.cal covariance function with the estimated weighting parame-

ters and, because our data were limited, an isotropic search The G measure gives an indication of how effective a predic-
tion might be, relative to that which could have been derivedradius (equal to the range of each variogram).

With ID and splines we opted to use six different ap- from using the sample mean alone (Agterberg, 1984):
proaches per method because we wanted to evaluate the level
of subjectivity involved in the choice of parameter values. G 5 11 2 5o

n

i51
3z(xi) 2 ẑ(xi)4

2

/ o
n

i51
3z(xi) 2 z̄4

2

62100 [9]
For ID the approaches involved using combinations of three
different distance power parameter (p) values: 0.5, 1, and 2, where z̄ is the sample mean. A G value equal to 100% indicates
and two different search radii (r): 22 and 12 km, when calculat- perfect prediction while negative values indicate that the pre-
ing the individual predictions. These power parameter values dictions are less reliable than if one had used the sample
represented commonly used weighting values and the two mean instead.
search radii represented distances slightly less than half the Interpolation methods were statistically analyzed using the
study area’s length and width. The larger search radius also Analysis of Variance (ANOVA) procedure, using the lowest
was similar to the range used when first estimating each vario- MAE and MSE values and the highest G values. Pairwise
gram with a classical variogram estimator. For splines, the comparison t-tests were calculated to determine whether the
approaches involved using combinations of three variations methods predicted the same at the same locations (Hollander
of the weight (w) parameter: 0.01, 0.10, and 0.50; and two and Wolfe, 1973). All analyses were performed in SYSTAT
variations of the number of points parameter (p): 8 and 16, (SPSS, 1997). Significance was based on a probability of 0.05
when calculating the individual predictions. For comparison, using a Bonferroni-correction (Cooper, 1968) to take into
the two values selected for the number of points parameter account multiple testing, when applicable.
represented the average number of points that would fall
within either of the search radii used with ID, and within the

RESULTS AND DISCUSSIONrange of the variogram. We used the GRID-module in Arc/
Info (ESRI, 1991) to calculate the ID and splines predictions. These soils data were consistent with what was ex-

pected from a Vertisol-dominated landscape (Table 1).
Prediction Comparison and Statistical Analyses However, the calculated coefficient of variation was

high for P content, sand content, silt content, and clayComparison of predictions was based on two measures of
content because of a few extreme values (n 5 2, 2, 1,accuracy: the mean absolute error (MAE) and the mean-

squared error (MSE) measure; and one measure of effective- and 3, respectively). Furthermore, the exchangeable Na
ness: the goodness-of-prediction (G) estimate. The MAE is a data exhibited bimodality. In general, the soils in this
measure of the sum of the residuals (e.g., predicted minus specific soil-scape were highly alkaline, high in clay con-
observed) (Voltz and Webster, 1990): tent, and low in sand content, and exhibited high base

saturation (.75%).
MAE 5

1
n o

n

i51
3uz(xi) 2 ẑ(xi)u4 [7]

Interpolation Success
where z(xi ) is the observed value at location i, ẑ(xi ) is the

Spatial interpolation of the sand content, silt content,predicted value at location i, and n is the sample size. Small
exchangeable K content, CEC, and BS data proved un-MAE values indicate a method with few errors, overall.
reliable, using the OK method. Furthermore, we alwaysThe MAE measure, however, does not reveal the magni-
obtained negative G values for these same properties,tude of error that might occur at any point (Voltz and Webster,

1990; Laslett, 1994; Gotway et al., 1996). For this reason we when using the ID and splines methods (data not pre-
chose to calculate the MSE measure, which is a measure of sented because OK was not possible). One reason for
the sum of the squared residuals: this may have been that the scale of our sampling scheme

(e.g., sample distance $2 km) was either too small or
MSE 5

1
n o

n

i51

[z(xi) 2 ẑ(xi)]2 [8] too large. Limited data may be another reason because
on occasion, we did observe some degree of spatial
dependency in the variograms at distances ,10 km.Squaring the difference at any point gives an indication of the

Table 1. Summary statistics for all soil properties: mean, range, standard deviation (SD), percentage coefficient of variation (CV%),
skewness, and kurtosis.

Property† Mean Range SD CV % Skewness Kurtosis

Sand, g kg21 171 18–518 98 57 1.17 2.64
Silt, g kg21 213 100–560 95 44 1.68 3.28
Clay, g kg21 631 281–841 105 71 20.15 0.71
pH 7.82 6.87–8.49 0.38 5 20.44 20.41
Exchangeable bases

Na, cmolc kg21 3.61 0.24–8.77 2.40 66 20.05 0.50
Ca, cmolc kg21 27.56 14.36–39.11 5.49 20 20.27 0.28
K, cmolc kg21 1.22 0.65–2.34 0.35 28 0.93 1.41
Mg, cmolc kg21 7.64 0.92–14.43 3.24 42 0.30 20.37

CEC, cmolc kg21 43.22 26.06–62.79 8.14 19 0.13 0.41
BS, % 91.98 76.68–100.00 7.15 7 20.54 21.00
P, mg kg21 4.68 0.01–21.58 5.65 121 1.74 2.80
OM, g kg21 14 8–26 4 27 0.63 0.21

† CEC, cation-exchange capacity; BS, base saturation; P, total available phosphorus; OM, organic matter.
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The pattern was erratic, however. We would need more obtained reasonably accurate and effective predictions
(Tables 2–9). These were pH, exchangeable Na content,samples to determine whether the pattern was an arti-

fact of the data or evidence of spatial dependency, and and OM content. Analyses of the OK variance statistics
and variograms indicated the possible reasons for this.whether our sample design was inappropriate. What is

also interesting to note as a result of this exercise is that For all soil properties except these and P content, inter-
polation was based on models with either very highwe would not have been able to determine success if

we had based our decision solely on either the MAE nuggets or very high sill-to-nugget ratios (.30%). The
effect of high nugget values was a more equal distribu-or MSE measures. It was only because we had calculated

the G measure that we were able to determine that tion of weights that resulted in higher predictions, while
high sill-to-nugget ratios resulted in an increase in theinterpolation with these properties, using any of these

methods, was inappropriate. prediction variances. Both were a consequence of lim-
ited, variable, or weakly autocorrelated data, particu-Example variograms and the model fit obtained by

nonlinear least squares for those soil properties that larly with respect to clay content. These same character-
istics also contributed to similarly high MAE and MSEexhibited spatial dependency are illustrated in Fig. 3.

The variogram for clay content and interpolation of this values, and similarly low G values, using ID and splines.
A high nugget or high sill/nugget ratio could also havedata were based on cross validation using 44 rather than

46 samples, however. This was because the inclusion of resulted from using a spherical model as the pattern of
spatial continuity. The effect of an inappropriate choicetwo of the extreme clay content values (the lowest ones)

resulted in weak to no spatial dependency, whereas their of pattern of spatial continuity would have been specific
to only a few instances when a point was dropped duringexclusion resulted in spatial dependency.

There were only three soil properties for which we cross validation, however, rather than to all 46 instances.

Fig. 3. Example omnidirectional variograms from cross-validation exercises.
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Table 2. Range in variance statistics (range, sill, and nugget) and variances (vp) of predictions.

Property Range (km) Sill† Nugget† vp†

Clay, g kg21 11–17 618–996 357–580 40–112
pH 17–21 0.16–0.21 0.01–0.02 0.18–0.38
Exchangeable bases

Na, cmolc kg21 13–24 4.99–9.12 0.21–0.14 0.26–2.43
Ca, cmolc kg21 18–21 17.48–37.71 7.88–14.33 1.56–5.71
Mg, cmolc kg21 16–22 3.36–7.13 3.66–6.14 0.89–3.25

P, mg kg21‡ 24–38 1.75–2.61 0.19–0.51 0.48–1.22
OM, g kg21§ 20–47 0.59–1.10 0.35–0.55 0.20–0.30

† Values indicate squared units.
‡ P, total available phosphorus.
§ OM, organic matter.

Alternatively, either could have resulted because esti- with respect to clay content, because the inclusion of
two low values prevented interpolation with OK. Wemation by nonlinear least squares was based on un-

equally represented variogram values (range in data considered this same possibility for the P content data
and performed a separate cross validation exercise,pairs: 20 to 34; mean 5 24), despite our effort to mini-

mize differences. This would not explain why we ob- whereby we removed the three highest values from the
P data set (n 5 43) and recalculated the MAE, MSE, andtained accurate predictions (with low variances) for pH,

exchangeable Na content, and OM, however. G measures. Following, we determined that accuracy
increased and effectiveness declined (MAE 5 2.4 mgData clustering is another possible explanation, at

least for some of the soil properties. Clustering causes kg21; MSE 5 10.4 [mg kg21]2; G 5 15.3%; using ID:
p 5 0.50, r 5 16), and there was little change in thethe variogram to be more representative of a particular

region than of the entire study area, particularly when average nugget and sill-to-nugget ratios (nugget 5 0.14
and sill 5 1.61 [mg kg21]2). Unlike the results we ob-the data may actually represent two separate soil popu-

lations (Isaaks and Srivastava, 1989). However, in an- tained by removing the two low clay values, we found
that inclusion of the three highest P content values re-other investigation (Schloeder, 1999) it was determined

that the only differences that existed between the north- sulted in an increase, rather than a decrease, in the
amount of spatial dependency in the P data. These re-ern and southern halves of the study area were that

there was a decreasing trend in OM (north to south), sults also explained why the G result was less than satis-
factory for P content when we used all 46 values, in thatand the ratio of exchangeable Na content to clay content

was twice as high in the south as it was in the north. the inclusion of all 46 values meant that a higher mean
value was used with the G measure. They also indicateData clustering can also lead to higher variances for

predictions in areas where the sample points are more that either response is possible if an investigator were
to remove an extreme value from their data. Cautionwidely spaced. In this investigation the sample points

were in general farther apart in the southern half of the should be exercised when considering their removal, as
a result, particularly when data are limited.study area than they were in the northern half, partly

because we limited our sampling to the Vertisol-domi- A pattern of smooth and nonerratic behavior, either
globally or locally (e.g., within the range of the searchnated grassland areas only (the northern half of the

grassland plain was smaller than the southern half). An neighborhoods) explains successful prediction of the
pH, exchangeable Na, and OM data. In another investi-analysis of the variances of the predictions from both

areas revealed that they tended to be lower in the north
Table 4. Mean absolute error values and standard errors (SE) bythan in the south for all properties except pH, exchange-

approach, using the inverse-distance weighting method.able Na content, and OM. These results suggest then
Approach†that our data do not come from separate soil populations

and that data clustering may in fact be the problem, at Property 1 2 3 4 5 6
least for most of the data sets.

Clay, g kg21 81.80 80.10 79.50 79.60 78.90 80.40Extreme values were certainly important, particularly SE 8.30 8.20 8.30 8.30 8.30 8.30
pH 0.26 0.25 0.22 0.25 0.24 0.21

SE 0.03 0.03 0.03 0.03 0.03 0.03Table 3. Mean absolute error (MAE) and mean square error
Exchangeable bases(MSE), standard errors (SE), and goodness-of-prediction val-

Na, cmolc kg21 1.53 1.43 1.29 1.41 1.33 1.21ues (G %), using the ordinary kriging method. SE 0.14 0.15 0.16 0.14 0.14 0.15
Ca, cmolc kg21 4.26 4.25 4.39 4.38 4.36 4.48Property MAE SE MSE† SE† G %

SE 0.36 0.41 0.44 0.37 0.40 0.42
Mg, cmolc kg21 2.16 2.14 2.10 2.19 2.16 2.11Clay, g kg21 83 9 1042 208 2.79

pH 0.21 0.03 0.08 0.02 44.27 SE 0.26 0.26 0.27 0.26 0.26 0.27
P, mg kg21‡ 3.49 3.43 3.61 3.44 3.45 3.63Exchangeable bases

Na, cmolc kg21 0.98 0.11 1.50 0.31 73.33 SE 0.48 0.52 0.54 0.48 0.50 0.51
OM, g kg21§ 2.10 2.20 2.20 2.20 2.20 2.20Ca, cmolc kg21 4.44 0.54 32.68 7.63 12.22

Mg, cmolc kg21 2.37 0.28 9.20 1.92 10.25 SE 0.30 0.30 0.30 0.30 0.30 0.30
P, mg kg21‡ 3.12 1.07 22.86 7.18 26.88

† Model parameters: Approach 1–3, r (search radii) 5 22; Approach 4–6,OM, g kg21§ 2.20 0.30 0.80 0.20 46.61
r 5 12; Approach 1 and 4, p (distance power) 5 0.5; Approach 2 and
5, p 5 1; Approach 3 and 6, p 5 2.† Values indicate squared units.

‡ P, total available phosphorus. ‡ P, total available phosphorus.
§ OM, organic matter.§ OM, organic matter.
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Table 7. Mean absolute error values and standard errors (SE) byTable 5. Mean square error and standard errors (SE) by ap-
proach, using the inverse-distance weighting method. Values approach, using the thin-plate smoothing splines with ten-

sion method.indicate squared units.

Approach† Approach†

Property 1 2 3 4 5 6 Property 1 2 3 4 5 6

Clay, g kg21 84.70 85.40 86.40 82.70 83.30 85.00Clay, g kg21 984 943 937 935 924 949
SE 177 160 158 188 174 170 SE 8.30 8.29 8.30 8.30 8.30 8.30

pH 0.25 0.25 0.25 0.24 0.24 0.25pH 0.11 0.10 0.09 0.10 0.09 0.08
SE 0.02 0.02 0.02 0.02 0.02 0.02 SE 0.03 0.03 0.03 0.03 0.03 0.03

Exchangeable basesExchangeable bases
Na, cmolc kg21 3.54 3.16 2.62 2.92 2.67 2.34 Na, cmolc kg21 1.07 1.07 1.07 1.06 1.06 1.06

SE 0.10 0.10 0.10 0.10 0.10 0.10SE 0.53 0.61 0.66 0.48 0.54 0.59
Ca, cmolc kg21 30.06 29.55 30.80 31.51 31.14 32.25 Ca, cmolc kg21 5.90 5.97 6.06 5.76 5.88 6.06

SE 0.36 0.41 0.44 0.37 0.40 0.42SE 3.60 4.16 4.79 3.65 4.00 4.39
Mg, cmolc kg21 7.82 7.55 7.41 7.73 7.50 7.39 Mg, cmolc kg21 2.67 2.68 2.69 2.70 2.73 2.80

SE 0.35 0.34 0.34 0.34 0.33 0.33SE 1.80 1.70 1.74 1.82 1.70 1.71
P, mg kg21‡ 25.67 24.08 23.44 24.11 23.47 23.62 P, mg kg21‡ 4.14 4.21 4.30 3.90 4.01 4.17

SE 0.56 0.55 0.55 0.55 0.55 0.54SE 5.72 7.09 7.95 5.61 6.59 7.20
OM, g kg21§ 0.80 0.80 0.80 0.80 0.80 0.80 OM, g kg21§ 2.50 2.50 2.50 2.50 2.50 2.50

SE 0.30 0.30 0.30 0.30 0.30 0.30SE 0.20 0.20 0.20 0.20 0.20 0.20

† Model parameters: Approach 1–3, p (number of sample points) 5 16;† Model parameters: Approach 1–3, r (search radii) 5 22; Approach 4–6,
r 5 12; Approach 1 and 4, p (distance power) 5 0.5; Approach 2 and Approach 4–6, p 5 8; Approach 1 and 4, w (weight) 5 0.01; Approach

2 and 5, w 5 0.10; Approach 3 and 6, w 5 0.50.5, p 5 1; Approach 3 and 6, p 5 2.
‡ P, total available phosphorus. ‡ P, total available phosphorus.

§ OM, organic matter.§ OM, organic matter.

0.02) and exchangeable Ca content (MSE: P 5 0.04).gation, pH and exchangeable Na content were deter-
Splines tended to yield higher residuals because thismined to be positively correlated, and their spatial pat-
method, which is based on a polynomial function, usesterns related to the seasonal spring in the north, the
a smoothing approach when interpolating, which resultshotspring in the south, and the gradient in rainfall
in a loss of local detail at specific points. Ordinary krig-(Schloeder, 1999). The nature of the spatial pattern dis-
ing and ID, on the other hand, calculate an estimatedplayed by OM was a south-trending decrease in content,
value that is based on a direct summation of the datain response to a change in species composition, vegeta-
values within a specified distance or radii of the pre-tion height, and underground biomass, and the gradient
dicted point. This direct summation approach tends toin rainfall (Jacobs, 1999; Schloeder, 1999). This decreas-
preserve both local detail and trend. More localizeding trend was reflected in the higher nugget estimates.
detail in the exchangeable Ca and exchangeable Mg dataUnfortunately, using an anisotropic search radius would
were the cause of less accurate site-specific predictionshave led to fewer pairwise comparisons and worse,
using splines, and no difference in predictions whenrather than better, predictions.
comparing ID with OK.

An analysis of the G values indicated that splines wasAccuracy and Effectiveness
also for the most part not as effective an interpolator

Results from the ANOVA tests indicated that the as OK and ID because of its smoothing approach to
three methods did not differ in accuracy, and all ap- interpolation. Furthermore, splines was less effective
proaches were similar, regardless of which type of resid-

Table 8. Mean square error and standard errors (SE) by ap-ual measure or soil property we examined. The pairwise
proach, using the thin-plate smoothing splines with tensioncomparison t-test results, however, indicated that splines
method. Values indicate squared units.differed from ID by frequently producing residuals that

Approach†were of greater magnitude at specific locations, for ex-
changeable Mg content (MAE: P 5 0.03; MSE: P 5 Property 1 2 3 4 5 6

Clay, g kg21 1050 1067 1091 986 1016 1066Table 6. Percentage goodness-of-prediction values by approach, SE 177 160 158 188 174 170
using the inverse-distance weighting method. pH 0.10 0.11 0.11 0.10 0.11 0.11

SE 0.03 0.03 0.03 0.03 0.03 0.03Approach† Exchangeable bases
Na, cmolc kg21 1.65 1.66 1.64 1.64 1.61 1.60Property 1 2 3 4 5 6

SE 0.24 0.24 0.24 0.23 0.23 0.23
Ca, cmolc kg21 58.26 60.10 62.72 55.59 58.43 62.83Clay, g kg21 8.14 11.96 12.59 12.79 13.78 11.42

pH 23.94 31.15 40.36 28.21 35.24 43.02 SE 3.60 4.16 4.79 3.65 4.00 4.39
Mg, cmolc kg21 12.69 12.82 12.95 12.43 12.78 13.25Exchangeable bases

Na, cmolc kg21 36.92 43.65 53.32 47.92 52.47 58.31 SE 3.06 3.03 3.03 2.97 2.95 2.94
P, mg kg21‡ 30.11 30.98 32.20 27.73 28.94 30.94Ca, cmolc kg21 7.51 9.09 5.22 3.04 4.18 0.78

Mg, cmolc kg21 23.76 26.36 27.76 24.67 26.90 27.94 SE 6.97 6.80 6.71 6.51 6.37 6.22
OM, g kg21§ 1.00 1.00 1.00 1.00 1.00 1.00P, mg kg21‡ 17.90 22.97 25.04 22.90 24.93 24.45

OM, g kg21§ 49.17 49.37 48.99 44.04 45.63 47.11 SE 0.20 0.20 0.20 0.20 0.20 0.20

† Model parameters: Approach 1–3, r (search radii) 5 22; Approach 4–6, † Model parameters: Approach 1–3, p (number of sample points) 5 16;
Approach 4–6, p 5 8; Approach 1 and 4, w (weight) 5 0.01; Approachr 5 12; Approach 1 and 4, p (distance power) 5 0.5; Approach 2 and

5, p 5 1; Approach 3 and 6, p 5 2. 2 and 5, w 5 0.10; Approach 3 and 6, w 5 0.50.
‡ P, total available phosphorus.‡ P, total available phosphorus.

§ OM, organic matter. § OM, organic matter.
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Table 9. Percentage goodness-of-prediction values by approach, does not tend to produce a bullseye pattern around the
using the thin-plate smoothing splines with tension method. sample locations (Gotway et al., 1996).

Approach†

Property 1 2 3 4 5 6 CONCLUSIONS
Clay, g kg21 1.99 0.41 21.80 8.02 5.21 0.51

The results of this investigation demonstrated thatpH 23.94 31.15 40.36 18.12 35.24 43.02
Exchangeable bases spatial interpolation of coarse-scaled limited surface

Na, cmolc kg21 70.54 70.68 70.81 70.87 71.27 71.56 soils data was mostly inappropriate. For most of theCa, cmolc kg21 279.24 284.91 292.99 271.04 279.79 293.31
Mg, cmolc kg21 223.73 224.98 226.25 221.23 224.59 229.21 data sets our inability to predict, or the ability to predict

P, mg kg21‡ 3.71 0.90 23.00 11.30 7.45 1.03 without much accuracy, could be attributed to either
Om, g kg21§ 39.30 39.02 37.95 37.07 36.10 35.00

spatially independent data, limited data, sample spacing,
† Model parameters: Approach 1–3, p (number of sample points) 5 16; extreme values, and variable or erratic behavior. There

Approach 4–6, p 5 8; Approach 1 and 4, w (weight) 5 0.01; Approach
were three data sets, however, where spatial interpola-2 and 5, w 5 0.10; Approach 3 and 6, w 5 0.50.

‡ P, total available phosphorus. tion was not inappropriate. These were pH, exchange-
§ OM, organic matter. able Na content, and OM. Our ability to predict success-

fully with these data raises the question as to the exact
because this method calculated predictions of greater nature of the relationship between accuracy, sample
magnitude of error for sites located along the edge of size, and sample spacing, and to what extent these fac-
the study area. Ordinary kriging and ID, however, calcu- tors are related to the soil property under investigation,
lated edge-site predictions that were more similar to particularly when data are limited. It also leads us to
the actual data. Splines, OK, and ID differed in their speculate as to which data characteristics are important
calculation of edge-site predictions because in the ab- and when they might be important. To illustrate, the
sence of external data points for reference, predictions exchangeable Na data used in this investigation were
along the edge followed the specific pattern of the model highly variable and exhibited bimodality. However,
being used. For OK, this meant that each edge predic- these characteristics did not appear to negatively affect
tion was a product of our effort to predict what the the predictions because the characteristics represented
pattern in spatial continuity was from the variogram, statistical evidence of spatial dependency in the data
and solved for using a spherical covariance function, rather than a problem with the data. Alternatively, the
with the criterion of minimizing the error variance. Con- extreme characteristics exhibited by the clay data repre-
sequently, it was the model of the pattern of spatial sented a random pattern of data distribution as well as
continuity that determined the influence of the nearby a problem with the data. To date, there have been few
sample points when deriving a prediction for each of coarse-scaled, data-intensive soil investigations. This
the edge sites. Alternatively, ID conserved the nearest leaves us with little understanding of the exact pattern
values such that when the nearby values were high, ID and nature of spatial dependency that is inherent in
calculated a prediction that was similarly high. Follow- many soil resources, and few statistical means with
ing, when the nearest values were low, ID calculated which to spatially characterize a resource. The questions
a prediction that was similarly low. Splines, however, raised here, as well as the need for spatial characteriza-
followed the model trend such that when the nearby tion, suggest the need for more coarse-scaled data-inten-
values were on an increasing trajectory, splines calcu- sive soil investigations.
lated a prediction that was higher than the nearby val-
ues. Alternatively, when the nearby values were on a ACKNOWLEDGMENTS
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