
BioMed Central

Page 1 of 14

(page number not for citation purposes)

BMC Structural Biology

Open AccessResearch article

Comparison of molecular dynamics and superfamily spaces of 
protein domain deformation
Javier A Velázquez-Muriel†1,3, Manuel Rueda†2,4,9, Isabel Cuesta1, 
Alberto Pascual-Montano5, Modesto Orozco*2,6,7,9 and José-María Carazo*1,8

Address: 1Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain, 2Molecular Modeling and 
Bioinformatics Unit, IRB-BSC Joint Research Program in Computational Biology, Institute for Research in Biomedicine, Josep Samitier 1-5, 
Barcelona 08028, Spain , 3University of California, San Francisco, Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, 1700 
4th St. UCSF/MC 2552, Byers Hall Room 503, San Francisco, CA 94158-2330, USA, 4The Scripps Research Institute, Department of Molecular 
Biology, 10550 North Torrey Pines Road, Mail TPC-28, La Jolla, California, 92037, USA, 5Departament Arquitectura de Computadores y 
Automática, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain, 6Departament de Bioquímica i Biología Molecular, 
Facultat de Biología, Universitat de Barcelona, Avgda Diagonal 645, Barcelona 08028, Spain, 7National Institute of Bioinformatics, Parc Científic 
de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain, 8National Institute of Bioinformatics, Centro Nacional de Biotecnología, CSIC, Madrid, 
Spain and 9Barcelona Supercomputing Center, Jordi Girona 29, Barcelona 08034, Spain

Email: Javier A Velázquez-Muriel - javi.velazquez@gmail.com; Manuel Rueda - mrueda@scripps.edu; Isabel Cuesta - icuesta@cnb.csic.es; 
Alberto Pascual-Montano - pascual@fis.ucm.es; Modesto Orozco* - modesto@mmb.pcb.ub.es; José-María Carazo* - carazo@cnb.csic.es

* Corresponding authors    †Equal contributors

Abstract

Background: It is well known the strong relationship between protein structure and flexibility, on

one hand, and biological protein function, on the other hand. Technically, protein flexibility

exploration is an essential task in many applications, such as protein structure prediction and

modeling. In this contribution we have compared two different approaches to explore the flexibility

space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural

changes within superfamily (SF-space).

Results: Our analysis indicates that the MD-space and the SF-space display a significant overlap,

but are still different enough to be considered as complementary. The SF-space space is wider but

less complex than the MD-space, irrespective of the number of members in the superfamily. Also,

the SF-space does not sample all possibilities offered by the MD-space, but often introduces very

large changes along just a few deformation modes, whose number tend to a plateau as the number

of related folds in the superfamily increases.

Conclusion: Theoretically, we obtained two conclusions. First, that function restricts the access

to some flexibility patterns to evolution, as we observe that when a superfamily member changes

to become another, the path does not completely overlap with the physical deformability. Second,

that conformational changes from variation in a superfamily are larger and much simpler than those

allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are

complementary, and have different size and complexity. We expect this fact to have application in

fields as 3D-EM/X-ray hybrid models or ab initio protein folding.
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Background
The central dogma of structural biology asserts that the
aminoacid sequence has all the information needed for a
protein to adopt a structure, and that structure determines
function. The connection between sequence and structure
has centered a great amount of work and detailed theories
of protein folding exist [1], but still predicting structure or
function from sequence is a extremely complex task
except in cases of high sequence identity between the tar-
get protein and a well annotated homolog [2]. There are
many cases of non-homologous proteins sharing a given
fold or function as well as proteins with reasonably simi-
lar sequences having quite different structures.

Flexibility seems to play an important role in protein
function, as in many cases movements are key for activity.
Unfortunately, still less information exists on this connec-
tion between flexibility and function and, specifically,
regarding the conformational changes that need to hap-
pen in a protein to perform its biological function [3-5].
In the very same way as structures that are able to perform
a specific function are conserved by evolution by not tol-
erating mutations that seriously modify that structure, it is
plausible to think that mutations disrupting the flexibility
pattern of a given protein are not going to be accepted
either [3,6-9].

Inspection of structural databases such as SCOP [10],
CATH [11] or FSSP [12] shows the existence of super-
families of proteins which display very similar folds and
are evolutionary related. Analysis of these superfamilies
allows us to determine the structural variation within a
common fold [13,14], thus defining the flexibility of that
fold. Other works, using mostly coarse-grained models
[14-17], suggest that, at least for some proteins, the most
important deformation modes are preserved within
superfamilies, supporting the idea that structural flexibil-
ity patterns tend to be conserved. However, these findings
immediately raise a new question: Are flexibility patterns
conserved because if disrupted, the function would be
lost, or instead, are they conserved because these are the
ones better tolerant to change? In more precise terms, the
following two extreme scenarios, equally reasonable a pri-
ori, are possible:

i) If physical deformability is crucial to protein function,
conformational changes introduced by sequence modifi-
cations will happen as orthogonal as possible to the phys-
ical deformation pattern.

ii) The physical deformation pattern traces movements
that allow quite significant conformational changes with-
out disruption of the function(s) associated to a fold.
Mutations leading to conformational changes along this
pattern of flexibility are going to be better tolerated, as

they won't affect the function. This would suggest a good
overlap between the physical space studied by MD and the
conformational space explored by the members of a
superfamily.

Following pioneering work by Ortiz and others [18,19],
here we have performed a thorough comparison of the
space of protein domain flexibility shown by the mem-
bers of a CATH superfamily (SF-space) with the space of
protein flexibility sampled by one reference member of
the superfamily by molecular dynamics (MD-space), aim-
ing at investigating the potential overlap between both
spaces and consequently, testing the possibility of using
them in a combined way for applications that require pro-
tein deformation exploration. The dataset used in this
work includes 55 different superfamilies selected to cover
all topologies, a good distribution of domain size and pre-
senting enough number of non-redundant members. A
satisfactory reference domain to perform MD was chosen
for each superfamily based on having enough sequence
percentage in the core of the alignment and providing
good alignments to define such as core with at least 10
members (see Methods for details). The MD-space was
obtained using atomistic MD simulations in explicit water
[20] and the SF-space was derived from alignment of
experimental structures. Both ensembles were subjected
to decomposition algorithms such as single value decom-
position (SVD) and incremental singular value decompo-
sition (ISVD), to capture and compare the essential
components of their spaces (Figure 1). The use of ISVD
when treating the SF-space [21] allowed us to consider
regions only partially aligned within the members of the
superfamily, consequently increasing the number of resi-
dues incorporated in the analysis.

Our results show that the relative flexibility among
domains of a given superfamily is restricted to just a few
"directions of change" (SF-space), which overlap only par-
tially with the "directions of change" indicated by MD
(MD-space). For technical purposes, the conclusion is that
both spaces can be combined to increase the dimension-
ality of the search space when performing any kind of
computational-biology task that requires the exploration
of possible protein deformations.

Results and discussion
To study the relative size of the MD- and SF-spaces, we
computed their variance after matrix decomposition (see
Figure 1) by summing the squares of all the singular val-
ues (see Methods section for details). We clearly observe
that, in general, the SF-space of deformation is larger, hav-
ing a variance between 2 and 25 times (in average 10
times, see Figure 2a) bigger than the MD-space. These
results do not seem to be influenced by the fact that the
MD-space is defined using many more structures than the
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SF-space, since the basic trend is kept when we restrict the
calculations to a partial MD-space (named MDp) with just
as many snapshots as experimental structures in the
superfamily. There are only 3 cases among the 55 super-
families analyzed in which this pattern is, without any
clear reason, different (1piqA00, 1bo0000 and 1a17000).
We have not found any apparent correlation between
these three cases, neither structurally (they are mostly α, β
and α, respectively) nor functionally (binding, enzyme,
signaling). Interestingly, we do not find any relationship
between the variance of the MD-space and the number of
aminoacids of the domain, which can be explained con-
sidering that the factors producing more structural varia-
bility, such as flexible loops, are not affected by the size of
a domain. On the contrary, the variance of the SF-space
increases with the number of aminoacids of the protein
(Figure 2a), which is reasonable given the linear relation-
ship between protein length and possibilities of variation
in composition through mutation. As a consequence of
this different behavior of variance versus size, a rough
increase in the ratio between SF- and MD-space variances
with protein size is found (Figure 2b), and the same incre-
mental tendency is observed for the variance ratio plotted
against the number of superfamily members (Figure 2c).

Again, a similar reasoning explains it: a greater size of the
superfamily implies a parallel increase in the possibilities
of sequence variation, while it does not affect the variance
of the MD-space.

Quite surprisingly, we found that the SF-space is less com-
plex (Figure 3a) than the MD one: i.e., it requires a smaller
number of singular vectors to explain a given threshold
(90%) of the variance. The difference in complexity (in
general a factor of 6) can be partly explained as a natural
consequence of the fact that microstates that are accessible
to MD are not present among the experimentally resolved
structures that form a superfamily. However, when we cal-
culate the complexity of MDp, we still see that it is larger
than the complexity of SF-space (30% more), indicating
that is a defined characteristic between the two spaces. As
expected, the unbalance in complexity between MD- and
SF-spaces generally decreases when the number of mem-
bers in the superfamily increases (Figure 3b3c and 3d).
However, we observe the existence of a threshold around
40–50 members after which the ratio of complexities
remains approximately 3. We interpret this fact as an indi-
cation that the superfamily has saturated its possibilities
to gain complexity in the MD-space with a reasonably
small number of structures, in other words the "evolu-
tionary" deformation space of the superfamily seems to be
saturated rather quickly. The other types of deformation
movements present in the MD trajectories seem physically
possible, but they are not well populated within the exper-
imental ensembles of the superfamilies, meaning that
they have not been tolerated by evolution.

We employed a complementary way to analyze the ability
of a superfamily to cover the MD-space, determining the
coverage of its domains on the essential MD-space, the
subspace defined by the first two MD singular vectors (see
Methods). The results in Figure 4 show that the structures
in the superfamilies do not cover well the essential MD-
space, with 70% of them showing 0.5 coverage or lower,
and a total average value of 0.4. The limited number of
elements in the superfamilies is not responsible for this
moderate coverage, since MDp covers 80% of the essential
MD-space. Finally, it is worth noting that larger number of
elements in the superfamily does not lead to better abso-
lute (versus complete MD-ensemble) or relative (versus
reduced MDp-ensemble) coverage (Figure 4), confirming
that larger superfamilies do not necessarily sample better
than the smaller ones the physical deformation space.

To study the overlap between the SF- and MD-spaces, we
computed the Hess metric employing as many vectors as
members in the superfamily (see Methods). In the super-
families studied in this work, the Hess metric ranges from
0.05 to 0.6, with mean equal to 0.3 (Figure 5a). The best
overlaps are found for class α and β proteins, which are

Workflow of the comparison between SF and MD-spaces of protein domain deformability done in the studyFigure 1
Workflow of the comparison between SF and MD-
spaces of protein domain deformability done in the 
study.
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explained by their simple dynamics (α) or intrinsic rigid-
ity (β) when compared to class α+β. We found that the
Hess metric values are statistically significant and not due
to simple chance (see Z-scores in Figure 5b) when the
results are compared to a pure random background
model. Large Z-scores were also obtained when the back-
ground protein model is obtained by forcing the random
trajectory to maintain covalent connectivity (Figure 5c)
and to avoid steric clashes. We interpret this low, but sta-
tistically significant overlap of the SF- and MD-spaces, as

a proof that proteins sharing the same fold conserve at
least some part of their physical deformability pattern in
order to conserve function. The rest of the deformations
happening inside a superfamily by modification of the
composition occur orthogonally to the deformations in
the MD-space.

Putting together all the analysis commented above, we
conclude that there appear to be many deformation pat-
terns that are physically possible but are not explored

Comparisons based on varianceFigure 2
Comparisons based on variance. a) Total variance for the performed decompositions: ISVD of the SF-space, SVD of the 
partial MD-space containing as many snapshots as members in the superfamily (average values for 100 windows), and SVD of 
the MD-space containing the entire MD trajectory. The domains in the x-axis are sorted by increasing number of aminoacids. 
b) Ratio of SF- and MD-space variances against the number residues in the reference domain. c) Ratio of SF- and MD-space var-
iances against number of superfamily  members (log scale).
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Comparisons based on complexityFigure 3
Comparisons based on complexity. a) Vectors required to explain 90% of the variance for the performed decompositions: 
ISVD of the SF-space, SVD of the partial MD-space containing as many snapshots as members in the superfamily (average values 
for 100 windows), and SVD of the MD-space containing the entire MD trajectory. The domains in the x-axis are sorted by 
increasing number of superfamily members. b) Ratio of required vectors from SF- and MD-spaces to explain 90% of the vari-
ance against the number of superfamily members. c. Cumulative variance described by the SF singular vectors versus the size of 
the SF-space (normalized) and the number of SF-members. d. Cumulative variance described by the SF singular vectors versus 
the size of the SF-space (normalized) and number of aminoacids of the domain.
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within a superfamily and that the overlap between MD-
and SF-spaces is only partial. The reasons for these find-
ings could be related to the bias of the SF-space towards
insertions, deletions, and changes of aminoacids leading
to bigger deformations in the structure than the simple
variation of the torsion angles explored in the physical
space. Others reasons are probably related to the inability
of the SF-space to explore movements that might chal-
lenge protein functionality.

The structural changes inside a superfamily can be severe
in extension but are easily represented by a few essential
movements. We cannot completely rule out the possibil-
ity that when the structures of more members of a given
superfamily were solved, the overlap between spaces
increased, but according to our results it seems to be an
inherent limit. In summary, as suggested in the complex-
ity analysis, the SF-space is quickly saturated.

After analyzing the global deformability patterns, we
turned our attention to local residue flexibility. We com-
puted the B-factor (see Methods) for each residue using
the same data sources as before: the structural alignment
of the superfamily members, and the MD trajectory of a
reference domain. As expected from the previous global
variance calculations, much larger B-factors are obtained
from the superfamily data than from the MD trajectory

(three typical cases are shown in Figure 6). Variations in
sequence composition introduce dramatic local changes
in a fold that would be difficult to obtain modifying the
physical deformation pattern alone. We, however,
observe some cases of residues with B-factors derived from
MD larger than those obtained considering superfamily
variation. Typically they correspond to regions involved
in interactions with other macromolecules. For example,
the loops (Figure 7, green) of the anticodon-binding
domain of Methionyl-tRNA synthetase from Thermus ther-
mophilus (1a8h001) are very flexible in our MD simula-
tions performed in the absence of RNA, but they are
frozen in the biologically-relevant RNA-bound form [22].
Similarly, the C-terminal region of Germin from Hordeum
vulgare (1fi2A00, Figure 8, red), required for dimer forma-
tion [23], is exposed and flexible in the MD trajectory of
the monomer while in the dimer the contacts trap it.

Taking into account local and global behavior together,
we distinguish three groups among the 55 studied super-
families:

i) Superfamilies (with both small and large number of
members) showing poor overlap between SF- and MD-
spaces (Hess index < 0.15, Additional file 1) and low cor-
respondence between B-factor plots (Figure 6a). This
group is largely enriched in enzymes of the α+β structural

Coverage factors for the superfamily members (SF) in the essential MD-space, and coverage factors for the partial MD-space (MDp) in the essential MD-spaceFigure 4
Coverage factors for the superfamily members (SF) in the essential MD-space, and coverage factors for the 
partial MD-space (MDp) in the essential MD-space. The x-axis is sorted by increasing number of members in the super-
family (the name of the reference member is written).
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class. We can expect that flexibility will be a crucial issue
in these proteins and accordingly the deformation pattern
should be very well preserved, which means that changes
in the SF-space happen as orthogonal as possible to the
functionally relevant MD-space [24-26].

ii) Superfamilies with high number of members (n > 40),
good overlap of SF- and MD-spaces (Hess index > 0.25,
Additional file 1) and relatively good correspondence
between the B-factor plots (Figure 6c). Here we find
domains with structural or binding roles and fewer
enzymes, with preference for α and β motives. In this
group the superfamilies have been able to explore many
physically-available deformation modes of the MD-space
which do not interfere with function.

iii) Superfamilies with low number of members (n < 40),
some overlap in the deformation spaces (Hess index >
0.15, Additional file 1) and poor correspondence between
B-factor plots (Figure 6b). This group shows diverse fami-
lies both in structural and functional terms. The physical
deformability space has been explored to a little extent,
but the residues that are not essential for function intro-
duce large local structural changes reflected in poor B-fac-
tor correspondence.

Conclusion
Our technical analysis comparing the spaces of structural
variation within superfamilies (SF-space) and along atom-
istic MD simulations (MD-space) sheds light on the con-
nection between physical flexibility and conformational
variation with compositional change in the aminoacid
sequence. The overall picture showed a more complex sce-
nario than we originally thought, in part due to the fact that
we are comparing a set of different structures in a SF with
the MD of just one of them. First, we have observed that
when the sequence of a protein changes to become another
member of the superfamily, the change is produced follow-
ing a way that does not completely overlap with that
expected from the intrinsic physical deformability of the
protein, which suggests that functional restriction limits the
access to some flexibility patterns to evolution. This effect is
especially clear for enzymes, where there is the worst over-
lap between SF- and MD-spaces. Second, our analysis
shows that conformational changes resulting from
sequence variation tend to be larger and much simpler than
those allowed by individual physical flexibility. Interest-
ingly, the threshold for achieving the maximum overlap
between the SF and MD-spaces seems to be situated around
40 superfamily members (Figure 3b), suggesting some sat-
uration in the deformation along the superfamily when
compared to the physical space.

Comparisons based on space similarityFigure 5
Comparisons based on space similarity. a) Hess metric applied using as many singular vectors as members in the super-
family. The x-axis is sorted by increasing number of members in the superfamily (the name of the reference member is writ-
ten). b) Z-score of the Hess metric for a random model (See Methods for details). c) Z-score* of the Hess metric for a 
pseudo-random model (See Methods for details).
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Examples of per residue B-factor and core quality of the reference domain against the aminoacid number in the coreFigure 6
Examples of per residue B-factor and core quality of the reference domain against the aminoacid number in 
the core. The core quality q at a given core aminoacid is defined as the quotient of the number of times that this aminoacid 
has been structurally aligned and the number of superfamily members employed for the core. See Additional file 1. a) Example 
for superfamilies with low Hess index, H < 0.15. 1aps000. b) Example for superfamilies with n < 30 and H > 0.15. 1o08A01. c) 
Example for superfamilies with n > 30 and H > 0.25. 1b56000.
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MD and SF spaces are comparable, but they also have
important differences, and some words of caution are nec-
essary. Since superfamily members vary in sequence, in
some cases quite dramatically, and they will be expected
to have different structures, while MD simulation samples
the flexibility of a single sequence, it is not surprising that
MD does not explain instances where there are specific
chemical interactions.

The strength of our analysis relies in its interesting meth-
odological implications. As the deformation spaces have
different size and complexity and do not fully overlap,
they can be considered as complementary. Flexibility
analysis derived from the study of the structural variation
along superfamilies can provide easy to manage and use-
ful descriptions [21,27], although they will have a limit in
the physical complexity that they can describe. In much
the same way, physical descriptions of isolated domains
without considering their possible interactions have a
limited capability to predict their flexibility in the context
of protein-protein complexes, and variation along
domains in a superfamily is a good way of obtaining that
information. In other words, taking together SF and MD
spaces we enrich our view on the conformational freedom
of proteins.

This is expected to be of especial interest in the areas of
3D-EM/X-ray hybrid models or ab initio protein folding,

where the exploration of the physical conformational
space exclusively with high dimensionality methods such
as Molecular Dynamics or Normal Mode Analysis could
be over-conservative. We suggest that the use of the most
important singular vectors of the SF-space (about 6) will
provide a complementary deformation space that can be
very useful in sampling [27], since it will attract to the
common fold quite distant structures. A combination of
both spaces in a sequential way can help to improve these
areas of protein structure prediction.

Methods
Superfamily space of flexibility

In order to get results from a varied and representative
number of superfamilies, we looked for structural diver-
sity, non-redundancy, and good distribution of domain
size. Additionally, enough number of structures and a
good percentage of the reference domain sequence length
forming the core of the alignment was another selection
criterion. In total, we finally selected 55 superfamilies in
CATH version v3.0.0 containing at least 20 non-redun-
dant members (redundancy defined as 95% of sequence
identity or higher), belonging to all possible structural
classes (α, β, α+β), and with a good span in sequence size
(30–459 aa). The decomposition of the conformational
space defined by a given superfamily was done following
the same approach developed for flexible fitting in tridi-
mensional electron microscopy (3D-EM) in the presence

Structure and B-factor plot for 1a8h001 (red), the anticodon-binding domain of Methionyl-tRNA synthetase from Thermus ther-mophilusFigure 7
Structure and B-factor plot for 1a8h001 (red), the anticodon-binding domain of Methionyl-tRNA synthetase 
from Thermus thermophilus. According to MD, the loops depicted in green have high flexibility, with B-factors for MD 
higher than those obtained from superfamily information.
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of incomplete data [21]. All the domains of the super-
family were structurally aligned using MAMMOTH [28]
against the reference domain, that was studied with MD
(Figure 1). The domains with a statistical significance
score of -ln(E) > 5 as provided by MAMMOTH where used
to build the core of the structural alignment for the super-
family (red box, Figure 9), being the rest excluded (purple
discontinuous domain, Figure 9). The condition for an
aminoacid of the reference domain to be part of the core
is to be aligned at least once with the rest of the super-
family members (example in blue box, Figure 9). The 55
superfamilies selected for this study had at least 10
domains and 68% of the reference domain sequence
length belonging to the core, with most of them showing
even a higher value (90%), thus providing data with as
least missing values as possible.

Once the domains were aligned, the coordinates of the
aminoacids in the core were used to build the coordinate
displacement vectors (cdv's):

where x, y, z stand for the coordinates of the same back-
bone atom n (Cα, O, N and C) in two structurally aligned

aminoacids, each one belonging to one domain (i for the
reference, j for the aligned). A CDV vector was created by
using all the cdv's obtained for the atoms of a given
aligned domain, placing x, y, z coordinates in consecutive
indexes. Then a CDV matrix was built with all the CDVs
as its columns (one per aligned domain). The CDV matrix
was decomposed with the incremental singular value
decomposition (ISVD) algorithm [29] to capture the main
axes of variation (Figure 1). The use of ISVD, a variant of
the single value decomposition (SVD) method [30],
allows us to manage superfamilies with incomplete infor-
mation in the core due to gaps in the alignment, since it
can handle matrices for which some of the values of their
elements are unknown. In any case, aminoacids in the ref-
erence domain that cannot be aligned in any of the pair-
wise alignments using MAMMOTH (black box, Figure 9)
were excluded of further analysis. When ISVD is applied to
the CDV matrix it produces:

CDV = U·S·VT (2)

U - 4*3*m × n-1 matrix containing an orthogonal basis for
the multi-dimensional space defined by the CDVs, were m
is the number of aminoacids in the core and n is the
number of superfamily members used in the procedure. 4

cdv x x y y z zi j
n

i
n

j
n

i
n

j
n

i
n= − − −( , , ) (1)

Structure and B-factor plot for 1fi2A00 (green), oxalate oxidase from Hordeum vulgareFigure 8
Structure and B-factor plot for 1fi2A00 (green), oxalate oxidase from Hordeum vulgare. The red region (aminoac-
ids 174–184) is involved in forming dimers as part of the final hexamer that is the active complex. In this region the B-factors 
are higher for MD than for the superfamily alignment.
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comes for the 4 backbone atoms employed and 3 comes
from the x, y, z coordinates.

S - n-1 × n-1 diagonal matrix containing the n-1 singular
values of the decomposition.

V - n-1 × n-1 matrix containing an orthogonal basis for the
space of the rows of CDV.

The elements of the columns of U define a new basis for
CDV which, ranked by the relative value of the singular
values in S, best explains the structural variation among
the aligned domains. The ISVD algorithm estimates the
incomplete columns of the original CDV matrix during
the decomposition procedure in an incremental fashion,
starting with the columns with less missing values. If the
next CDV vector c has missing values, denoted as c0, they
are estimated by:

where Z is the set of values that minimize the sum of
squared errors for the known values, denoted as c•, when
solving:

In eqs. (3) and (4),  and  are the corresponding

rows of U' for the missing and known data, respectively.

U' and S' are the decomposition matrices calculated in

intermediate steps of the ISVD procedure. The interested

reader is referred to [29] for the theory behind the ISVD,

and to [21] for a complete explanation of the adaptation

of ISVD to structural alignments of superfamilies. As in

Principal Component Analysis (PCA), the result of both

SVD and ISVD calculations is a transformation of the ini-

tial variation matrix into a set of orthogonal movements

characterized by a set of singular vectors (which indicates

the nature of the essential movement) and a set of singu-

lar values which, after transformation by eq. 5, are equal

to the PCA eigenvalues.

where n is the number of snapshots used for the decom-
position, li is the PCA eigenvalue and si is the [I]SVD sin-
gular value. Note that the original protein Cartesian
coordinates appear now as projections onto the space
defined by the singular vectors without any loss of struc-
tural information.

Molecular-dynamics space of flexibility

The range of conformations accessible for a protein under
normal physiological conditions can be well explored by
molecular dynamics (MD) simulations. The technique
samples the movements of macromolecules by integra-
tion of Newton equations of motion, with the forces
being obtained from an accurate potential functional (the
force field) fitted to reproduce high accurate quantum
mechanical data in small model systems [31,32]. In oppo-
sition to Normal Mode Analysis, atomistic MD does not
assume that the protein should be confined in a harmonic
well around the experimental structure, allowing then, if
required by the physics of the system, large conforma-
tional transitions. It is the best technique to explore the
physical deformation space for proteins.

The reference protein domains were simulated in the con-
text of the whole native protein. All protein structures
were titrated, neutralized by ions, minimized, hydrated,
heated and equilibrated (for at least 0.5 ns) using a well
established protocol [20]. Trajectories were collected
using AMBER parm99 force field [33] in conjunction with
Jorgensen's TIP3P model [34,35] for representing water
molecules. Particle Mesh Ewald approach was used to deal
with long-range effects [36]. Integration of motion equa-
tions was performed every 1 fs, the vibrations of bonds
involving hydrogen atoms being removed by SHAKE algo-
rithm [37]. Production runs were obtained with the pro-
gram AMBER8 [38] and were extended for 10 ns.
Computational effort performed here corresponds to
more than 20 CPU years and were done thanks to access
to large supercomputer resources.

c U S Z0 0= ′ ⋅ ′ ⋅ (3)

′ ⋅ ′ ⋅ =• •U S Z c (4)

′U0
′•U

l n si i= ⋅ 2 (5)

Example of structural alignment for a superfamilyFigure 9
Example of structural alignment for a superfamily. All 
the domains are pairwise aligned against the reference 
domain. Purple discontinuous box: Domain excluded of the 
analysis because -ln(E) < 5. Red box: core of the alignment, 
composed by all the aminoacids of the reference domain 
aligned at least once and their correspondences. Blue box: 
Example of reference residue aligned with gaps (core quality: 
1/6 = 17%). Green box: reference residue aligned without 
gaps (core quality: 6/6 = 100%). Black box: Reference residue 
that is not part of the core because there is not variation info 
for it (never aligned. Core quality 0/6 = 0%).
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Statistical descriptors for comparison

The MD and SF-spaces were subjected, for comparison
purposes, to a modified version of the essential dynamics
procedure [39] using SVD (with MD-space) and ISVD
(with SF-space) decompositions. Many comparisons can
be easily made using the singular vectors and values pro-
vided by the decomposition algorithms:

1) The size of deformability space was measured by the vari-
ance in MD or superfamily ensembles, summing the
square of the singular values obtained after the decompo-
sition. To avoid bias related to the limited number of
structures in most superfamilies, the analysis of MD vari-
ance was repeated also using as many equally spaced MD
snapshots as superfamily members (partial-MD space;
MDp). The average values for 100 windows were com-
puted.

2) The complexity of the deformability space was determined
by the number of singular vectors needed to explain 90%
of the variance.

3) The overlap between the SF- and MD-spaces was deter-
mined using the Hess metric [40] and associated Z-score
(eqs. 6 and 7; [41]).

where X and Y stand for the two methods, the indexes i
and j stand for the orders of the eigenvectors (ranked
according to their contribution to the structural variance),
and n stands for the number of superfamily members.

Pure random models were obtained by decomposition of
a pseudo-covariance matrix obtained by random permu-
tation of the backbone atoms for each snapshot in a tra-
jectory, and the standard deviation (std) was obtained by
considering 500 different pseudo-covariance matrices.

Additional Z-scores* (labeled with * to avoid confusion
with previous Z-scores derived from purely random mod-
els) showing the relevance of the values for H in a more
chemically sound environment were computed from
models where the chemical connectivity was maintained
and steric collapses were avoided. For this purpose, we
performed several 10 ns discrete dynamics simulations for
each protein with a simplified force-field defined by cov-
alent bonds plus a hard sphere potential for each atom
[42]. Essential dynamics from these trajectories provided
sets of singular vectors being representative from random

movements but still consistent with the basic physics of
the protein. The standard deviations needed for Z-score
calculations were evaluated from independent discrete
dynamics simulations.

4) The coverage of MD-space achieved by the SF-space was
measured by analyzing the distribution of the projections
of the superfamily members on the essential subspace
defined by the two first singular vectors of the MD-space
(essential MD-space). The essential MD-space was divided
into 9 equivalent portions were the maximum X and Y
values were determined by the smallest and largest projec-
tion values achieved during the 10 ns trajectories. The cov-
erage was evaluated as the number of portions of the MD-
essential space that were visited by at least one super-
family member (example in Figure 10). Similar results
were obtained changing the number of portions. Note
that a low coverage can obey to the intrinsic differences
between MD and superfamily-derived samplings, but also
to the limited number of superfamily members available.
In order to distinguish between both sources of deviation
we also computed the coverage for the partial MD-space.

5) Individual mobility of residues was determined by the res-
idue B-factors:

where 7Δr28 stands for the oscillations of atoms around
equilibrium positions.

Due to the fact that the structural alignment of the super-
families yields incomplete sets of coordinates, we applied
a Metropolis Monte Carlo algorithm with a Hamiltonian
method [41] which allowed us to obtain energetically per-
mitted projections along each singular vector within the
SF-space (see eq. 9). The displacements obtained can then
be projected to generate Cartesian "pseudo-trajectories"
which have complete coordinates and are representative
of the superfamily ensemble. The B-factors can be easily
obtained from this pseudo-trajectory.

where n is the number of superfamily members and 

stands for a displacement along a given mode (i) in the

space X.  is the stiffness constant associated with a

deformation mode, computed as kbT/(2li), with kb being

Boltzmann's constant, li the corresponding PCA eigen-

value and T the absolute temperature.
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