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Abstracts: Precipitation is a critical component of the water balance, and hence its variability is 23 

critical for cryospheric and climate change in the Tibetan Plateau (TP).  Mean annual and seasonal 24 

precipitation totals are compared between gridded observations interpolated to a high resolution 25 

(0.25°×0.25°) and multiple reanalysis type-datasets during 1979-2001. The latter include two 26 

NCEP reanalyses (NCEP1 and NCEP2), two  European Centre for Medium-Range Weather 27 

Forecasts (ECMWF) reanalyses (ERA-40 and ERA-Interim), three modern reanalyses (the 20
th

 28 

century reanalysis (20century), MERRA and CFSR) and three merged analysis datasets (CMAP1, 29 

CMAP2 and GPCP).  Observations show an increase in mean precipitation from the northwestern 30 

(NW) to the southeastern (SE) regions of the TP which are divided by an isohyet of 400 mm, and 31 

overall trends during the studied period are positive. Compared with  observations, most of the 32 

datasets (NCEP1, NCEP2, CMAP1, CMAP2, ERA-Interim, ERA-40, GPCP, 20century, MERRA 33 

and CFSR) can both broadly capture  the spatial distributions and identify temporal patterns and 34 

variabilities of mean precipitation. However, most multi-datasets overestimate precipitation 35 

especially in the SE where summer convection is dominant. There remain substantial 36 

disagreements and large discrepancies in precipitation trends due to differences in assimilation 37 

systems between datasets. Taylor diagrams are used to show the correlation coefficients, standard 38 

deviation, and root-mean-square difference (RMSD) of precipitation totals between  interpolated 39 

observations and assimilated values on an annual and seasonal basis. Merged analysis data 40 

(CMAP1, CMAP2 and GPCP) agree with observations more closely than  reanalyses. Thus not all 41 

datasets are equally biased and choice of dataset is important. 42 

 43 
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1. Introduction 45 

According to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 46 

Report (AR5),  global mean surface temperatures have warmed by 0.85 (+/-0.2) ℃ between 1880 47 

and 2012  [IPCC, 2013]. The Clausius-Clapeyron equation shows that the water holding capacity 48 

of air increases by about 7% per degree of warming, leading to increased water vapor in the 49 

atmosphere [Trenberth, 2011]. Thus warming could change the amount, intensity, frequency, type, 50 

extremes and patterns of precipitation,  accelerating the hydrological cycle and increasing extreme 51 

events (such as floods and droughts) [Ohmura and Wild, 2002; Trenberth, 2011]. While extreme 52 

precipitation events may become more common in a warmer climate, many predictions of future 53 

changes in precipitation extremes may be underestimated [Allan and Soden, 2008].  In recent 54 

decades, changes in precipitation have attracted much attention.  Precipitation is not only a major 55 

component of the global hydrological cycle, but also influences the development of all living 56 

organisms  [IPCC, 2007; Joshi and Pandey, 2011; Trenberth, 2011; Trenberth and Guillemot, 57 

1998]. Much societal infrastructure and property is becoming more sensitive to precipitation 58 

extremes, making the causes and predictability of precipitation variability of great importance. 59 

The Tibetan Plateau (TP) with an average elevation of over 4000 m a.s.l., is  called “the roof 60 

of the world”, and influences global atmospheric circulation through both thermal and mechanical 61 

forcing [Duan and Wu, 2005; Yeh and Gao, 1979]. The TP is also the source of many rivers in 62 

South and East Asia, such as the Indus, Ganges-Brahmaputra, Yangtze, and  is called “the world 63 

water tower” [X D Xu et al., 2008]. It is one of the most active centers of the hydrological cycle in 64 

the world [Feng and Zhou, 2012]. In recent decades, both climate and the cryosphere in the TP are 65 

undergoing rapid change [Kang et al., 2010; Qiu, 2008], which will have profound effects on the 66 
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Asian “water towers” [Immerzeel et al., 2010].  However, due to limited availability of accurate 67 

observations, especially in the western TP, there are limited studies focusing on hydrological 68 

responses to  climate change and the mechanisms are seldom discussed [Yang et al., 2011]. 69 

Precipitation in the TP varies both in space and time, and has significantly increased during 70 

recent decades in certain areas based on adjusted station data [You et al., 2012]. Many studies 71 

have examined precipitation trends in the TP and demonstrate the link between precipitation and 72 

atmospheric/oceanic circulation indices, including the North Atlantic Oscillation (NAO), ENSO, 73 

the Indian Ocean Dipole, the Asian-Pacific Oscillation, and the Asian monsoon [Duan et al., 74 

2012; Joshi and Pandey, 2011; Liu and Yin, 2001]. However, different researchers calculate  75 

correlations using different gridded precipitation datasets, which leads to remarkable 76 

inconsistency among  results.  In addition, observations are particularly scarce in many regions 77 

because of rigorous environmental conditions (such as desert). Thus understanding of the current 78 

and future precipitation variability depends in part on rigorous evaluation of the many 79 

contrasting “datasets” in the region, often a difficult task. Datasets include reanalyses, satellite 80 

products, gauge observations, and mixtures of different data sources, often interpolated to a 81 

regular grid. Gridded “observations” have been widely used by climate community, because of 82 

their spatial and temporal continuity. Regular reanalyses include: The National Centers for 83 

Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR 84 

hereafter) [Kalnay et al., 1996; Kistler et al., 2001]; The European Centre for Medium-Range 85 

Weather Forecasts (ECMWF) 40 years reanalysis (ERA-40 hereafter) [Uppala et al., 2005]; and 86 

the new ECMWF reanalysis ERA-Interim [Dee et al., 2011].  NCEP/NCAR has two versions: 87 

NCEP/NCAR 1 reanalysis (NCEP1 hereafter) [Kalnay et al., 1996] and NCEP/NCAR 2 88 
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reanalysis (NCEP2 hereafter) [Kistler et al., 2001]. Both NCEP1 and NCEP2 share similar input 89 

raw data and vertical and horizontal resolution (T62, 28 levels, 6 hours), while NCEP2 is an 90 

updated and human error-fixed version of NCEP1 [Kanamitsu et al., 2002].  Modern reanalyses 91 

include the 20
th

 century reanalysis (20century hereafter) [Compo et al., 2011], the Modern-Era 92 

Retrospective Analysis for Research and Application (MERRA hereafter) [Rienecker et al., 2011] 93 

and the NCEP Climate Forest System Reanalysis (CFSR hereafter) [Saha et al., 2010].  94 

Precipitation estimates are also provided from merged satellite and gauge observations (gridded). 95 

The NOAA Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP hereafter) 96 

is  widely used, which produces monthly analyses of global precipitation in which gauge 97 

observations are merged with precipitation estimates from several satellite-based algorithms 98 

(infrared and microwave) [Xie and Arkin, 1997]. CMAP contains two versions: standard CMAP 99 

(CMAP1 hereafter) and enhanced CMAP (CMAP2 hereafter) [Xie and Arkin, 1997]. Compared 100 

with CMAP1, CMAP2 includes not only the satellite estimates, but also blended NCEP/NCAR 101 

reanalysis precipitation values. The Global Precipitation Climatology Project (GPCP) Version 102 

2.1 monthly precipitation dataset (GPCP hereafter) also combines gauge observations and 103 

satellite precipitation data [Adler et al., 2003; Huffman et al., 1997]. However it is produced 104 

using different techniques and types of input data [Yin et al., 2004].  105 

The objective of this study is to compare multiple datasets of precipitation (NCEP1, NCEP2, 106 

CMAP1, CMAP2, ERA-Interim, ERA-40, GPCP, 20century, MERRA and CFSR) with available 107 

gridded observations over the TP. Similarities and differences in precipitation on an annual and 108 

seasonal basis (summer: DJF; autumn: MAM; winter: JJA; spring: SON) are investigated. 109 

 110 
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2. Data and Methods 111 

2.1 Observations and multi-datasets 112 

Precipitation observations are derived from a new monthly gridded dataset at 0.25° resolution, 113 

provided by the National Climate Center of China Meteorological Administration (NCC/CMA). 114 

Interpolation is based on an “anomaly approach” using over 2400  stations  [Wu and Gao, 2013; 115 

Xu et al., 2009], which is similar to the method used to create the CRU (Climatic Research Unit) 116 

dataset  [New et al., 2002]. This consists of two steps  [New et al., 2002; Wu and Gao, 2013; Xu et 117 

al., 2009]. Firstly, a 30-year mean daily temperature for 1971–2000 is calculated for each Julian 118 

date at each station. Then, the mean is interpolated to a regular 0.25° × 0.25° grid. In the second 119 

step, a daily deviation for 1961–2005 is created relative to the 1971–2000 reference period for 120 

each contributing station. The deviations are then gridded as anomalies. Finally, the high 121 

resolution-gridded observation for the full 1961-2005 period is derived by adding the anomalies to  122 

the climatology. This dataset has been widely used to validate regional and global atmospheric 123 

model simulations of extreme precipitation indices.  Compared with station density over eastern 124 

China, there are few stations over western China, where the density of population and urban 125 

establishments is much lower. In particular no stations are found over the northwestern part of the 126 

Tibetan Plateau, a region largely uninhabited [Xu et al., 2009]. Thus, the TP can be divided into 127 

northwestern (NW) and southeastern (SE) regions using the mean annual isohyet of 400 mm 128 

(Figure 1 top left).  129 

Monthly mean precipitation rates from NCEP1 and NCEP2 reanalyses are provided by  130 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. The short-term precipitation rate is converted 131 

to monthly amount NCEP1 and NCEP2 start from January 1948 and January 1979 respectively, 132 
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and both have a spatial resolution of 2.5°×2.5° [Kalnay et al., 1996; Kistler et al., 2001]. Monthly 133 

mean precipitation rates (mm/day) were converted to mm/month. Both NCEP1 and NCEP2 134 

precipitation reanalyses use intermittent data assimilation based on a T62 model with 28 vertical 135 

sigma levels and the Operational Statistical Interpolation (SSI) procedure [Serreze and Hurst, 136 

2000].  Convective and large-scale precipitation are computed separately. The convection scheme 137 

has been shown to improve precipitation simulations over the Continental United States and in the 138 

tropics, and the large-scale precipitation is parameterized using a top-down approach with 139 

checking for super-saturation [Kalnay et al., 1996]. Both NCEP1 and NCEP2 have produced 140 

realistic precipitation in high latitudes over both Asia and North America [Kistler et al., 2001]. 141 

They have the same spatial and temporal resolution, but NCEP2 (after 1979) uses an improved 142 

assimilation procedure based on 4D-variational assimilation. Additional errors in NCEP1 143 

including the issue of Southern Hemisphere bogus data (1979-1992) and errors in snow cover 144 

(1974-1994) have been fixed in NCEP2 [Kanamitsu et al., 2002]. 145 

CMAP contains a collection of precipitation datasets with a spatial resolution of 2.5°×2.5°, 146 

constructed from gauge data and satellite-derived  estimates [Xie and Arkin, 1997]. CMAP1 147 

merges gauge observations and satellite estimates without NCEP/NCAR reanalysis, but CMAP2 148 

also includes a reanalysis component [Xie and Arkin, 1997].  Gauge observations contain 149 

precipitation distributions with full global coverage and improved quality. Satellite estimates are 150 

obtained through combining the Geostationary Operational Environmental Satellite (GOES) 151 

Precipitation Index (GPI); an outgoing longwave radiation (OLR)-based Precipitation Index (OPI); 152 

a Special Sensor Microwave/Imager (SSM/I) scattering index; and Microwave Sounding Unit 153 

(MSU) [Xie and Arkin, 1997].  Therefore both CMAP1 and CMAP2 are dependent on the amount 154 
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of gauge data and the accuracy of  satellite estimates (best in the tropics and weakest in the polar 155 

regions). However past study has demonstrated their use in climate analysis, numerical model 156 

validation and hydrological research  [Xie and Arkin, 1997]. 157 

The monthly mean surface precipitation in ERA-40 reanalysis is obtained from ECMWF,  158 

available from September 1957 to August 2002 with a spatial resolution of 2.5°×2.5° [Uppala, et 159 

al., 2005]. This is based on a fixed intermittent data assimilation scheme. The forecast model has a 160 

horizontal resolution of T106 with 31 vertical levels and uses three-dimensional semi-Lagrangian 161 

advection. An intermittent statistical optimal interpolation is used in ERA-40 precipitation output 162 

which requires model initialization [Serreze and Hurst, 2000]. ERA-40 calculates liquid 163 

precipitation and snowfall separately, and convective and large-scale precipitation are added to 164 

produce total precipitation [Ma et al., 2009].  165 

The newer ECMWF reanalysis ERA-Interim [Dee et al., 2011] has improved correction of 166 

satellite observations and the more recent ECMWF model is used for the period since 1979 with a 167 

spatial resolution of 1.5°×1.5°. Many have concluded that ERA-Interim yields much more realistic 168 

results, with significant improvements in the global hydrological cycle [Betts et al., 2009]. 169 

GPCP is the result of an international project of the WMO/WCRP/GEWEX designed to 170 

provide improved long-record estimates of precipitation over the globe. The monthly dataset at 171 

2.5° resolution from 1979 to present incorporates estimates from low-orbit satellite microwave 172 

data, geosynchronous-orbit satellite infrared data, and surface rain gauge observations [Adler et al., 173 

2003; Huffman et al., 1997].  The final merged product incorporates the advantages of each data 174 

type, and removes bias in a stepwise approach. GPCP has been applied to validate climate models, 175 
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model-based reanalyses, calibrate hydrological models, and has been compared with experimental 176 

precipitation estimation techniques [Adler et al., 2003; Huffman et al., 1997]. 177 

Reanalysis of 20century is based on objectively-analyzed four-dimensional weather maps 178 

from 1871-2011, including uncertainty estimates. An ensemble filter is used to assimilate surface 179 

pressure reports and uses observed monthly sea-surface temperature and sea-ice distributions as 180 

boundary conditions [Compo et al., 2011].  It is also a valuable resource to the climate research 181 

community for both model validation and diagnostic studies.  182 

MERRA has been produced by NASA’s Global Modeling and Assimilation Office with two 183 

primary objectives: (1) to place observations from NASA’s Earth Observing System satellites into 184 

a climate context and (2) to improve  hydrological cycle representations in earlier generations of 185 

reanalyses [Rienecker et al., 2011]. Focusing on the satellite era from 1979 to the present, 186 

MERRA claims significant improvements in precipitation and water vapor climatology compared 187 

with older reanalyses, providing vertical integrals and analysis of increment fields for the closure 188 

of atmospheric budgets [Rienecker et al., 2011].  189 

Finally,  CFSR produced at NCEP covers the period from 1979 to the present, which is 190 

considerably more accurate than the previous global reanalysis made at NCEP  [Saha et al., 2010]. 191 

Meanwhile, it is more comprehensive because it includes analyses of both the ocean and sea ice, 192 

and has higher resolution in space and time  [Saha et al., 2010]. Similar to ERA-Interim, these 193 

latest  reanalysis systems (20century, MERRA and CFSR) are more advanced than the earlier 194 

versions. Meanwhile, these reanalyses provide higher spatial resolution and yield more detailed 195 

climate features at small scales [Zhang et al., 2013]. 196 
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All of these 10 datasets are compared with the observational dataset over the TP region. The 197 

domain covers the area from 25°N-40°N and 86°E-105°E. Table 1 provides a summary of critical 198 

features of each dataset. A comparable period of 1979-2001 is selected for all analyses. 199 

2.2 Methods 200 

To quantify similarities and differences between the observations and the other datasets, a 201 

Taylor diagram [Taylor, 2001] is employed to facilitate comparisons. This provides a concise 202 

statistical summary of how well each dataset matches the observations in terms of their correlation 203 

coefficient (R), their root-mean-square difference (RMSD), and the ratio of their standard 204 

deviations [Taylor, 2001].   205 

All datasets are converted to a common 2.5°×2.5° longitude-latitude grid using an 206 

interpolation scheme present in Climate Data Operators (CDO) software.  207 

The Mann-Kendall test for a trend and Sen’s slope estimates were used to detect and quantify 208 

trends in annual and seasonal precipitation  [Sen, 1968]. A trend is considered to be statistically 209 

significant at p<0.05. 210 

 211 

3. Results 212 

3.1 Annual precipitation climatology and trends: A comparison of multiple 213 

datasets  214 

The spatial pattern of mean annual precipitation derived from high resolution gridded 215 

observations (Figure 1a – top left) is broadly similar to studies based on individual stations [You et 216 

al., 2012]: mean annual precipitation decreases gradually from southeast to northwest. The TP can 217 

be divided into northwestern (NW) and southeastern (SE) areas using the isohyet of 400 mm 218 
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which represents the boundary between semi-arid and semi-humid regions. The dry NW TP is 219 

dominated by the westerlies for almost the whole year whereas monsoon precipitation-producing 220 

weather systems increase annual precipitation to over 1200 mm in the SE region (Figure 1a).  221 

In most cases, the spatial patterns of mean annual precipitation derived from the multi-222 

datasets (Figure 2) are quite similar to the gridded-observations, increasing gradually from  NW to 223 

SE. However, the more subtle patterns are sometimes different. Some datasets (e.g. ERA-40 and 224 

GPCP), show the highest precipitation in the south-west of the region (as opposed to the south-225 

east) and longitudinal contrasts in precipitation are less consistent between datasets than latitudinal 226 

ones. Most multi-datasets, with the exception of CMAP2 and MERRA, tend to overestimate mean 227 

annual values, particularly in the south of the region.  228 

Spatial trends during 1979-2001 for all the multi-datasets are compared in Figure 3. Patterns 229 

show more small-scale spatial variance than the mean precipitation field. For the observations 230 

(refer back to Figure 1b, top right panel) increasing trends occur in parts of the south and east 231 

with weak drying over northern regions. This pattern is most closely replicated by CMAP1 and 232 

CMAP2 but NCEP2 and CFSR also show similarities. Other datasets show widely divergent 233 

trend maps. NCEP1 and MERRA have widespread negative trends which do not fit in with the 234 

observations. ERA-Interim and ERA-40 show lots of local scale variance in trends, with areas of 235 

drying and wetting in close proximity. 236 

These differences are summarized in Figure 4 for the two sub-regions of the plateau 237 

identified earlier (NW and SE). The mean annual precipitation in the NW and SE from 238 

observations is 324.3 mm and 751.2 mm, respectively (Figure 4 and also Figures 1c and 1d), with 239 

the largest contribution in summer. Mean figures for the NW region for  other datasets range from 240 
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312.9 mm (MERRA) to 1049.5 mm (20century) but in most cases figures are over-estimates. The 241 

same is true in the SE region where ERA-Interim estimates a mean precipitation of nearly 2000 242 

mm. The contrasts in overestimation between datasets are broadly consistent in both regions. 243 

CMAP1, CMAP2 and MERRA appear closest to the observations. Trends from observations for 244 

the NW and SE TP are +3.99 mm/decade and +16.84 mm/decade, respectively (Figure 4c and d), 245 

broadly consistent with  previous studies [Z X Xu et al., 2008; You et al., 2012]. Trends in 246 

precipitation from NCEP1 and MERRA in particular are strongly negative, and fail to match the 247 

wetting shown in the observations. However ERA-Interim, ERA-40 and CFSR show the reverse 248 

problem of over-prediction of wetting trends, particularly in the SE. The widely divergent trends 249 

in precipitation between datasets are not to be ignored and require further investigation.  250 

3.2 Seasonal patterns 251 

Precipitation in different seasons is dominated by different climate systems, and   252 

examination of each season separately may help explain some of the seasonal and regional 253 

differences shown in the previous section. The mean seasonal totals for the NW and SE regions 254 

for observations (Figure 1e) and each of the nine datasets (Figure 5) are shown. Meanwhile, 255 

similar information expressed as a percentage of the annual total is presented in Figure 1f and 256 

Figure 6. In the NW TP, most observed precipitation occurs in summer (212.4 mm, accounting for 257 

65.4% of the total annual precipitation) (Figures 1e and 1f),  associated with the summer monsoon. 258 

Spring, autumn and winter are much drier at 42.5mm (13.1%), 59.9mm  (18.5%) and 9.6 mm (3%), 259 

respectively (Figure 1f). Similar to the observations, summer precipitation in all the multi-datasets 260 

contributes largely to the mean annual total. The summer percentage is highest in the drier NW, 261 

but still high in the humid SE. 262 
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 The spatial patterns of mean seasonal precipitation are quite similar to the annual maps. In 263 

nearly all seasons most precipitation occurs in the SE part of the plateau. Although summer totals 264 

are much higher in the SE region than further NW, the percentage of precipitation which falls in 265 

summer in comparison with other seasons (Figure 6) is broadly similar to the NW region. Thus, 266 

although absolute amounts differ, there is relatively little difference between datasets in seasonal 267 

percentages, suggesting that all of them do simulate monsoonal moisture as the main precipitation 268 

source.   269 

Figure 7 shows trends in mean seasonal precipitation for each dataset. Trend magnitudes are 270 

larger in the SE than the NW but this is partly an artifact of higher seasonal amounts. The 271 

observations do not show pronounced seasonality in trends (weak wetting in all seasons). Some 272 

datasets on the other hand show pronounced drying in spring (NCEP1) or summer (MERRA), 273 

while ERA-40 shows strong wetting in summer. Trends in winter are usually small in all datasets. 274 

Thus the inconsistencies which exist between multi-datasets for trend analysis are probably driven 275 

by differences in the simulation of monsoonal moisture.  276 

 3.3 Taylor diagram analysis  277 

 Taylor diagrams provide a concise statistical summary of how well patterns in datasets 278 

match each other in terms of their correlation,  root-mean-square difference (RMSD) and the ratio 279 

of their variances [Taylor, 2001]. The Taylor diagrams show the correlation coefficients, standard 280 

deviation, and RMSD of precipitation estimates based on a comparison between observations and 281 

each multi-dataset in turn. Separate diagrams are shown for annual precipitation in the NW and SE 282 

regions (Figure 8) and for each season in the NW (Figure 9) and SE (Figure 10). The radial and 283 

angular coordinates represent the magnitude of standard deviation and correlation coefficients 284 
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between observed and modeled precipitation respectively. The radial distance from the origin is 285 

proportional to the standard deviation between the two patterns. Each multi-dataset is represented 286 

by a point on the diagram and the closer point is marked “obs”, which is the observations.  287 

On an annual basis, most multi-datasets are closer to the observations in the NW rather than 288 

the SE TP. This is particularly marked for GPCP, CMAP1 and CMAP2 (Figure 8 right column). 289 

The Taylor figure clearly shows which multi-datasets  perform relatively well and have higher 290 

correlation coefficients with the observations (e.g. 20century, ERA-Interim, NCEP2 and GPCP 291 

in the NW; ERA-Interim and GPCP in the SE).  The smallest RMSD is found in GPCP.  292 

The Taylor diagrams on a seasonal basis for the NW region (Figure 9) show the largest 293 

RMSD in summer (Figure 9b) and smaller differences in other seasons. GPCP seems closest to 294 

observations in the summer. In the SE region (Figure 10) the smallest RMSD in summer again 295 

occurs for GPCP. In other seasons differences between datasets are small. The main results 296 

represented in Figure 10 are very similar to those on the annual basis, with summer contributing 297 

mostly to differences between modeled and observed precipitation.  298 

Much of the difference between multi-data sets and observations has been shown to be in 299 

the ways in which they derive temporal trends. The process of removing the effects of a trend 300 

(de-trending) allows only short-term fluctuations in precipitation to dominate the variance 301 

(Figures 11 and 12). These figures show only the absolute changes in mean annual and seasonal 302 

precipitation values respectively, and identify both cyclical patterns and major turning points. 303 

These are shown to be similar in most datasets but with enhanced variance in ERA-Interim, 304 

particularly in the SE region (Figure 11b and Figure 12 right hand column). Thus inter-annual 305 

fluctuations are captured well by most datasets, even if trends are not.  The most successful 306 
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datasets are different in each region and each season, and there is no one dataset which is 307 

obviously the “best”. Most multi-datasets can capture the distributions of mean precipitation 308 

fairly well but not necessarily trends.  309 

 310 

4. Discussion and Conclusions 311 

Spatial and temporal distributions of mean precipitation in the TP during 1979-2001 based 312 

on a gridded-observation dataset with high resolution (0.25°×0.25°) have been examined [Wu 313 

and Gao, 2013; Xu et al., 2009]. Mean annual precipitation increases from NW to SE, and 314 

seasonal patterns are broadly similar in both regions. Most precipitation falls in summer [You et 315 

al., 2012].  Trends estimated by the Mann-Kendall test [Sen, 1968] show that precipitation in all 316 

seasons in both NW and SE regions has been increasing with a rate of 3.99 mm/decade in the 317 

NW and 16.84 mm/decade in the SE, respectively.  318 

 Comparison of precipitation between observations and numerous multi-datasets (reanalyses: 319 

NCEP1, NCEP2, ERA-Interim, ERA-40, 20century, MERRA and CFSR, merged analyses: 320 

CMAP1, CMAP2 and GPCP) has been performed in the TP during 1979-2001. These multi-321 

datasets capture the broad distributions of mean precipitation, but there exist discrepancies for 322 

trends.  323 

Most reanalyses (NCEP1, NCEP2, ERA-Interim, ERA-40, 20century, MERRA and CFSR)  324 

overestimate precipitation, particularly in the SE region but MERRA is much closer to the 325 

observations for mean precipitation. 20century has particularly large discrepancies. Compared 326 

with NCEP1, NCEP2 shows slightly better agreement with observations possibly because NCEP2 327 

incorporates new system components such as simple precipitation assimilation over land surfaces 328 
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for improved soil wetness [Kanamitsu et al., 2002]. This result is consistent with other findings 329 

that show that the spatial patterns of NCEP2 are closer to observations than NCEP1 [Ma et al., 330 

2009]. Similarly, ERA-Interim is better than ERA-40, due to improvement in aspects such as 331 

reduced spin-up and drift of  precipitation and some improvements in the simulation of the diurnal 332 

cycle [Betts et al., 2009]. It is also noted that ERA-40 produces reasonable comparisons over the 333 

Northern Hemisphere continent, but weak comparisons in the tropical oceans [Bosilovich et al., 334 

2008].  335 

 In recent years, several efforts have been made to improve reanalyses, such as 336 

implementing a four-dimensional data assimilation system (e.g. ERA-Interim), utilizing ensemble 337 

data assimilation and extending temporal resolution (e.g. 20century) and increasing the horizontal 338 

and vertical resolution (e.g. MERRA and CFSR) [Zhang et al., 2013]. These efforts have 339 

improved  precipitation modelling to some extent, but the precipitation from reanalyses is still to 340 

be treated with caution due to the complexity of the processes involved in data assimilation. 341 

Figure 13 shows the topography assimilated by NCEP1, NCEP2, ERA-40 and ERA-Interim. 342 

Because the TP is a region with sharp elevation bands and complex topography, the representation 343 

of surface terrain in the reanalysis systems is still different in different reanalyses. This could 344 

account for some of the discrepancies between them. In particular moisture convergence is 345 

sensitive to small scale terrain. This is shown by differences in mean annual water vapor (vector, 346 

unit is kg/(s·hPa·m)) and moisture divergence (shaded, unit is 10
-7

 kg/(s·hPa·m
2
)) at 500 hPa 347 

during 1979-2001 among NCEP1, NCEP2, ERA-40 and ERA-Interim (Figure 14). 348 

Most of the merged analysis datasets (CMAP1, CMAP2 and GPCP) also overestimate  349 

precipitation in both regions on an annual and seasonal basis, but biases are smaller than the 350 
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reanalyses. Overestimations appear worst in regions with complex topography. CMAP2 has the 351 

smallest biases, indicating the best choice for precipitation assessment. 352 

 Taylor diagrams are used to compare skill in precipitation modelling between multi-353 

datasets. The diagrams can clearly indicate which datasets are nearest to observations. Relatively 354 

low RMSD are found in CMAP2 and GPCP, suggesting that they may be used as the reference 355 

standard.  356 

Compared with the reanalyses (NCEP1, NCEP2, ERA-Interim, ERA-40, 20century, MERRA 357 

and CFSR), CMAP1, CMAP2 and GPCP show more similar trend magnitudes to the observations 358 

as well as more similar mean distributions. Thus merged analysis precipitation appears more 359 

reliable than reanalyses, consistent with other studies in China [Ma et al., 2009; Zhao and Fu, 360 

2006]. Over the whole of China, precipitation products from multi-datasets and observational 361 

stations have been compared [Ma et al., 2009; Zhao and Fu, 2006]. This indicated that CMAP1, 362 

CMAP2 and GPCP agreed more closely with the observations than reanalysis data (NCEP1, 363 

NCEP2 and ERA40), and that ERA40 was more reliable than NCEP  [Ma et al., 2009].  364 

Reanalysis datasets are the output of data assimilation combined with available observations 365 

and a background model forecast. Thus uncertainties emerge, related to the model physical 366 

parameterizations [Betts et al., 2006; Bosilovich et al., 2008]. In addition, the topography can 367 

influence the bias between observations and multi-datasets due to the difference between 368 

assimilated and actual topography. In China, Ma et al., [2009] suggested that the reanalyses  369 

overestimation of precipitation was a more serious issue in regions with complex terrain and less 370 

of a problem in flatter regions. Models may not resolve precipitation in areas of complex 371 

topographic relief, especially in the regions with drastic elevation changes where moisture 372 
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convergence is often locally determined, and local convective precipitation is strongly dependent 373 

upon local thermal forcing of the terrain.  374 

Although the merged datasets in this study are closer to the observations than the reanalyses, 375 

contrasting retrieval algorithms, input data, treatment of gauge uncertainties, and quality flags can 376 

also result in  differences with observations [Adler et al., 2003; Bosilovich et al., 2008; Huffman et 377 

al., 2009; Huffman et al., 1997; Xie and Arkin, 1997; Yin et al., 2004]. For example, Yin et al., 378 

[2004] found that GPCP and CMAP (CMAP1 and CMAP2) have less/more in common over 379 

ocean/land areas, while different merging algorithms  can produce a substantial discrepancy in 380 

sensitive areas such as equatorial West Africa. GPCP and CMAP exhibited good agreement over 381 

the Southern Hemisphere, and also over land in the Northern Hemisphere. In the tropical ocean 382 

however, CMAP was wetter than GPCP, and this effect reversed over high latitude oceans [Yin et 383 

al., 2004]. GPCP is planned to feature a finer time and space resolution in the near future 384 

[Huffman et al., 2009], suggesting that this product is updated continually and that it should be 385 

taken as a good reference for studying precipitation over the TP. Clearly the discrepancies 386 

between different datasets mean that continuing attention should be paid to the selection of 387 

datasets for representing precipitation in the TP region and its trends. 388 
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Table 503 

Table 1.  Summary of the observations and  multi-datasets in this study 504 

Name Organization Temporal 

resolution 

Horizontal 

resolution 

Sources References 

NCEP1 NCEP/NCAR 1948-present 2.5°×2.5° http://www.esrl.noaa.gov [Kalnay et al., 

1996] 

NCEP2 NCEP/DOE 1979-present 2.5°×2.5° http://www.esrl.noaa.gov [Kanamitsu et al., 

2002] 

CMAP1 NOAA 1979-2009 2.5°×2.5° http://www.cpc.ncep.noaa.gov [Xie and Arkin, 

1997] 

CMAP2 NOAA 1979-2009 2.5°×2.5° http://www.cpc.ncep.noaa.gov [Xie and Arkin, 

1997] 

ERA-Interim ECMWF 1979-present 1.5°×1.5° http://www.ecmwf.int [Dee et al., 2011] 

ERA-40 ECMWF 1957-2002.08 2.5°×2.5° http://www.ecmwf.int [Uppala et al., 

2005] 

GPCP NASA 1979-2009 2.5°×2.5° http://precip.gsfc.nasa.gov [Adler et al., 2003] 

20Century NOAA/ESRL 

PSD 

1871-2011 2.5°×2.5° http://www.esrl.noaa.gov [Compo et al., 

2011] 

MERRA NASA 

GMAO 

1979-present 0.5°×0.5° http://disc.sci.gsfc.nasa.gov [Rienecker et al., 

2011] 

CFSR NCEP 1979-present 0.5°×0.5° http://cfs.ncep.noaa.gov [Saha et al., 2010] 

Observation CMA 1961-2010 0.25°×0.25° http://www.cma.gov.cn [Xu et al., 2009] 
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Figure 518 
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Figure 1. Characteristics of precipitation in the TP during 1979-2001 from observations: a) annual 519 

mean (mm), b) spatial trends (mm/decade), c) regional monthly mean (mm), d) regional seasonal 520 

mean (mm), e) regional trends (mm/decade) and f) percent of precipitation in each season(%). The 521 
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whole TP is divided into northwestern (NW) and southeastern (SE) regions by the red isohyet of 522 

400 mm, representing the boundary between semi-arid and semi-humid regions.  523 
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 542 

Figure 2. Mean annual precipitation (mm) in the TP during 1979-2001 from various multi-543 

datasets. The multi-datasets include NCEP1, NCEP2, CMAP1, CMAP2, ERA-Interim, ERA-40, 544 

GPCP, 20century, MERRA and CFSR, respectively.  545 
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 546 

Figure 3. Spatial patterns of trends (mm/decade) of mean annual precipitation in the TP during 547 

1979-2001 from various multi-datasets (same as Figure 2). Trends are calculated by the Mann-548 

Kendall test.  549 
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 550 

Figure 4. Means and trends of mean annual precipitation in the NW and SE TP during 1979-2001 551 

from observations and multi-datasets. The units for mean precipitation and trends are mm and 552 

mm/decade, respectively. The trend is calculated by the Mann-Kendall statistical test. Numbers 1 553 

to 10 represent NCEP1, NCEP2, CMAP1, CMAP2, ERA-Interim, ERA-40, GPCP, 20century, 554 

MERRA, CFSR and observations, respectively. 555 
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 556 

Figure 5.  Mean seasonal precipitation in the TP during 1979-2001 from various  multi-datasets. 557 
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 558 

Figure 6. Seasonal precipitation (%: mean seasonal precipitation divided by mean annual 559 

precipitation) in the TP during 1979-2001 from various  multi-datasets. 560 
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 569 

 570 

Figure 7. Trends of mean seasonal precipitation in the TP during 1979-2001 from various  multi-571 

datasets. 572 
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 581 

Figure 8. Taylor diagrams showing correlation coefficients, standard deviation, and root-mean-582 

square difference (RMSD) of mean annual precipitation as simulated by observations and various 583 

multi-datasets in the NW (left panel) and SE (right panel) TP.  Numbers 1 to 10 represent NCEP1, 584 

NCEP2, CMAP1, CMAP2, ERA-Interim, ERA-40, GPCP, 20century, MERRA and CFSR, 585 

respectively. The radial coordinate (y axis) gives the magnitude of standard deviation, and the 586 

concentric semi-circles are the RMSD values. The angular coordinate shows the correlation 587 

coefficient.  588 
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 594 

Figure 9. Same as Figure 8 but for the NW TP on a seasonal basis.  595 
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 596 

Figure 10. Same as Figure 8 but for the SE TP on a seasonal basis.  597 
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 605 

Figure 11.  Detrended  mean annual precipitation anomaly in the NW (top panel) and SE (bottom 606 

panel) TP during 1979-2001 from  observations and  multi-datasets. The multi-datasets include 607 

NCEP1, NCEP2, CMAP1, CMAP2, ERA-Interim, ERA-40, GPCP, 20century, MERRA and 608 

CFSR,  respectively. 609 
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 612 

Figure 12.  Same as Figure 11 but for mean seasonal precipitation anomaly.  613 
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 617 

Figure 13.  Topography (m) assimilated by NCEP1, NCEP2, ERA-40 and ERA-Interim. 618 
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 630 

 631 

Figure 14.  Annual mean water vapor (vector, unit is kg/(s·hPa·m)) and moisture divergence  632 

(shaded, unit is 10
-7

 kg/(s·hPa·m
2
)) at 500 hPa during 1979-2001 in NCEP1, NCEP2, ERA-40 and 633 

ERA-Interim. 634 
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