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[1] Daily water demand forecasts are an important component of cost-effective and
sustainable management and optimization of urban water supply systems. In this study, a
method based on coupling discrete wavelet transforms (WA) and artificial neural networks
(ANNs) for urban water demand forecasting applications is proposed and tested. Multiple
linear regression (MLR), multiple nonlinear regression (MNLR), autoregressive integrated
moving average (ARIMA), ANN and WA-ANN models for urban water demand
forecasting at lead times of one day for the summer months (May to August) were
developed, and their relative performance was compared using the coefficient of
determination, root mean square error, relative root mean square error, and efficiency index.
The key variables used to develop and validate the models were daily total precipitation,
daily maximum temperature, and daily water demand data from 2001 to 2009 in the city of
Montreal, Canada. The WA-ANN models were found to provide more accurate urban water
demand forecasts than the MLR, MNLR, ARIMA, and ANN models. The results of this
study indicate that coupled wavelet-neural network models are a potentially promising new
method of urban water demand forecasting that merit further study.
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1. Introduction

[2] The city of Montreal, along with other large urban
cities in Canada and elsewhere, needs to find more effec-
tive methods to optimize the operation and management of
its existing water supply system in addition to exploring the
implementation of water demand management programs to
decrease both peak and average urban water demand. Even
though it may not appear that Canada lacks fresh water,
experts are seeing a growing problem involving municipal
water and sewer infrastructure in Canada. Many urban
water supply systems in Canada are becoming stressed due
to increasing peak and total water demand, a lack of new
water sources, climate change, and other environmental
and socioeconomic factors. Water loss in urban water sup-
ply distribution networks is also becoming a problem in
certain cities in Canada. Many water supply distribution
networks currently being used in Canada were built prior to
or just after World War II, and many have not been prop-
erly upgraded or maintained [Maas, 2003]. Moreover, in
Canada the use of water per capita is one of the highest in

the world (it ranks 15th out of 16 peer countries and earns a
‘‘D’’ grade), and a false illusion of fresh water abundance
exists among Canadians. Although Canada has 7% of the
world’s fresh water and only 0.5% of the world’s popula-
tion [Environment Canada, 2010], most of the fresh water
flows north in the opposite direction of the main areas of
population.
[3] The poor infrastructure, overuse, and lack of new

water sources in urban areas in Canada and around the
world has increased the need for demand management as a
way to ensure sufficient and sustainable water for urban
use. Rather than finding additional resources, demand man-
agement strategies look at ways to decrease water require-
ments and to conserve water [Dziegielewski and Baumann,
1992]. An important component of optimizing water supply
systems and implementing effective water demand man-
agement programs is the accurate forecasting of short-term
water demands [Ghiassi et al., 2008].
[4] Since some Canadian water supply distribution net-

works such as in Montreal are deteriorating, accurate short-
term water demand forecasts are becoming increasingly
important in helping to find solutions to Canada’s urban
water supply management problems. For example, water
managers find accurate short-term water demand forecasts
important because it allows them to: (i) develop a better
understanding of the dynamics and underlying factors that
affect water use; (ii) manage and optimize maintenance
and operating schedules for pumps, wells, reservoirs, and
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mains; (iii) balance the needs of water supply, residential/
industrial demands, and stream flows for ecosystem health;
(iv) analyze the benefits and costs of water conservation, as
well as the water saved by imposition of emergency water
restrictions; and (v) provide information on when peak day
events are likely to occur.
[5] Traditionally, urban water demand has been fore-

casted by either analyzing historical water consumption or
using statistical models with a range of inputs such as
population, price of water, income, and various meteoro-
logical variables. However, disadvantages of traditional
urban water demand forecasting models include the
requirement of a large number of input parameters, and
the fact that most traditional modeling methods assume
the data is linear and stationary. Statistical methods such
as multiple linear regression (MLR) and autoregressive
moving average (ARIMA) models have traditionally been
used for short-term urban water demand forecasting.
[6] Examples of short-term water demand forecast

modeling which use regression analysis include Cassuto
and Ryan [1979], Hughes [1980], Anderson et al. [1980],
and Maidment and Parzen [1984]. Maidment et al. [1985]
developed daily municipal water consumption time series
models as a function of rainfall and air temperature.
Maidment and Miaou [1986] applied their model to the
water consumption of nine cities in the United States.
Smith [1988] developed a time series model to forecast
daily municipal water use in Washington. Miaou [1990]
developed a monthly time series urban water demand
model. Zhou et al. [2000] developed a time series fore-
casting model for an urban sector in Australia. More
recently, Wong et al. [2010] developed a series of sea-
sonal autoregressive moving series models to analyze the
structure of daily urban water consumption in Hong
Kong. Wong et al. [2010] concluded that an increase in
the rainfall amount generally resulted in a reduction in
seasonal water use, and that the day-of-the-week effect
was characterized by higher water use on weekdays as
opposed to weekends.
[7] Originally developed by Ivanchenko [1970] for use

in engineering cybernetics, multiple nonlinear regression
(MNLR, or the group method of data handling or GMDH)
has been shown to provide accurate forecasting results in
various fields. MNLR is traditionally used in fields where
seemingly random recurring events need to be accurately
and quickly predicted. These areas include economics,
finance, medicine, and marketing. The appeal of MNLR is
that very high order multiples should be able to approxi-
mate complex multivariate functions [Cogger, 2010]. One
of the first environmental applications of MNLR was in
temperature forecasting. Miyagashi et al. [1999] deter-
mined that neurofuzzy MNLR models performed better
than traditional radial basis functions and numerical
weather predictions. More recently, Saraycheva [2003]
developed a modified version of MNLR which was suc-
cessfully applied to ecological and socioeconomical moni-
toring problems (including ecological forecasting) in
Ukraine. In hydrology, Emiroglu et al. [2011] compared
NLR, MLR, and ANNs in the context of discharge coeffi-
cient prediction for triangular labyrinth wires. This study
found that ANNs performed the best out of all models and
that NLR performed better than MLR. However, to date no

studies have explored MNLR in urban water demand
forecasting.
[8] In recent years, artificial neural networks (ANNs)

have been introduced in urban water demand forecasting.
Two of the main advantages of ANNs over other methods
are that their application does not require a priori knowl-
edge of the process, and they are effective with nonlinear
data. Jain and Ormsbee [2002] examined regression, time
series analysis, and ANN models for daily water demand
forecasting. The best ANN model in their study based on
the daily water demand from the previous day and the daily
maximum temperature of the current day. It was concluded
that this ANN model performed slightly better than time se-
ries and regression–disaggregation models. Adamowski
[2008a] examined regression, time series analysis, and
ANN models for short-term peak water demand forecasting
in Ottawa, Canada. It was found that the use of artificial
neural networks in forecasting peak daily water demand in
the summer months in an area of high outdoor water
demand was slightly better than multiple linear regression
and time series analysis.
[9] Support vector machines (SVMs) are a relatively

new form of machine learning that was originally devel-
oped by Vapnik [1995] for use in the telecommunications
industry. One of the first uses of a SVM in environmental
science was for air pollutant forecasting [Lu et al., 2002].
Wang et al. [2009] showed that SVMs outperformed ANN
models in forecasting monthly river flow discharges.
Khan and Coulibaly [2006] found that an SVM performed
better than MLP ANNs in 3–12 month predictions of lake
water levels. Yu et al. [2006] successfully predicted flood
stages using SVMs and Han et al. [2007] found that
SVMs performed better than other models for flood fore-
casting. Rajasekaran et al. [2008] used SVMs for storm
surge predictions and Cimen and Kisi [2009] used SVMs
to estimate daily evaporation. SVMs have also been suc-
cessfully used to forecast hourly streamflow by Asefa
et al. [2006], and were shown to perform better than ANN
[Wang et al., 2009] and ARIMA [Maity et al., 2010] mod-
els for monthly streamflow prediction. However, Msiza et
al. [2008] compared the use of ANNs and SVMs in water
demand forecasting in South Africa, and found that ANNs
performed significantly better than SVMs.
[10] A problem with presently available data-based

methods, including ANNs, is that they have limitations
with nonstationary data, which can result in poor forecast-
ing. Relative urban water demand variation is daily, by day
of week, by weekend and holiday patterns, by month, and
season, and is modified by weather. The pattern of water
demand is a nonstationary stochastic time series that may
include a nonlinear trend in the mean, nonconstant var-
iance, and discontinuities. Many methods such as ANNs
may not be able to handle nonstationary data if preprocess-
ing of the input data is not done. The methods for dealing
with nonstationary data are not as advanced as those for
stationary data [Cannas et al., 2006]. Two very recent pub-
lications [Solomatine and Ostfeld, 2008; Maier et al.,
2010] on the current status and future directions of the use
of data-based modeling in the area of water resources vari-
able forecasting highlighted several critical issues that need
to be explored in greater detail, including: (i) the develop-
ment and evaluation of hybrid model architectures that
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attempt to draw on the strengths of different modeling
methods and (ii) the development of robust modeling pro-
cedures that are able to work with ‘‘noisy’’ data. This
research explored these two issues in the context of short-
term urban water demand forecasting.
[11] A data analysis technique that effectively deals with

the above described type of multiscale and nonstationary
behavior is wavelet analysis, which can be used to detect
and extract signal variance both in time and scale simulta-
neously, without any assumptions of stationarity. Wavelet
transforms are well suited for dealing with nonstationary
time series in forecasting applications since they can auto-
matically localize and filter the nonstationary component of
the signal, instead of trying to de-trend or suppress quasi-
periodic smooth components as, for example, in the classi-
cal nonstationary ARIMA approach. Through the use of
wavelet analysis, a water demand series can be decom-
posed into a few selected component series. The selected
component series carry most of the information which can
then be selectively used in forecasting. This allows for the
removal of most of the noisy data and facilitates the extrac-
tion of quasiperiodic and periodic signals in the water
demand time series.
[12] In the last decade, wavelet analysis has begun to be

investigated in the water resources engineering and hy-
drology literature. Wang and Ding [2003] developed a
hybrid model to forecast groundwater levels in China.
Cannas et al. [2006] developed a hybrid model for
monthly rainfall-runoff forecasting in Italy. Adamowski
[2007, 2008a, 2008c] developed a new method of wavelet
and cross wavelet based forecasting for floods. Kisi
[2008] and Partal [2009] developed a hybrid model for
monthly flow forecasting in Turkey. Kisi [2009] explored
the use of wavelet ANN (WA-ANN) models for daily
flow forecasting of intermittent rivers, while Adamowski
and Sun [2010] developed a WA-ANN model for flow
forecasting of nonperennial rivers at lead times of one and
three days in Cyprus. Shiri and Kisi [2010] successfully
combined wavelets with ANN and fuzzy interference sys-
tems to accurately forecast short-term and long-term
streamflow. Overall, these studies found that the WA-
ANN models generally outperformed other methods such
as MLR, ARIMA, and ANN in hydrological forecasting
applications.
[13] To date, no research has been published in the litera-

ture that explores the use of the coupled wavelet-neural net-
work method (or multiple nonlinear regression) for short-
term urban water demand forecasting. In this research, a
method based on coupling discrete wavelet transforms
(WA) and artificial neural networks (ANNs) for urban
water demand forecasting applications is proposed and
tested, and compared to the MLR, MNLR, ANN, and
ARIMA methods.

2. Methods

2.1. Multiple Linear Regression

[14] The objective of multiple linear regression (MLR)
analysis is to study the relationship between several inde-
pendent or predictor variables and a dependent or criterion
variable. The assumption of the model is that the relation-
ship between the dependent variable Yi and the p vector of

regressors Xi is linear. The following represents a MLR
equation [Pedhazur, 1982]:

Y ¼ aþ �1X1 þ � � � þ �kXk ; (1)

where a is the intercept, � is the slope or coefficient, and k
is the number of observations. For forecasting purposes, the
linear regression equation will fit a forecasting model to an
observed data set of Y and X values. The fitted model can
be used to make a forecast of the value of Y with new addi-
tional observed values of X.

2.2. Multiple Nonlinear Regression

[15] The assumption of multiple nonlinear regression
(MNLR) models is that the relationship between the de-
pendent variable Yi and the p vector of regressors Xi is non-
linear. The following represents a MNLR equation
[Ivakhnenko, 1970]:

Y ¼ aþ �1Xi þ �2Xj þ �3X
2
i þ �4X

2
j þ � � � þ �kXiXj; (2)

where a is the intercept, � is the slope or coefficient, and k
is the number of observations. For forecasting purposes, the
multiple nonlinear regression equation will fit a forecasting
model to an observed data set of Y and X values. The fitted
model can be used to make a forecast of the value of Y with
new additional observed values of X.

2.3. Autoregressive Integrated Moving Average

[16] The autoregressive integrated moving average
(ARIMA) methodology has the ability to identify complex
patterns in data and generate forecasts [Box and Jenkins,
1976]. ARIMA models can be used to analyze and forecast
univariate time series data. The ARIMA model function is
represented by (p,d,q), with p representing the number of
autoregressive terms, d the number of nonseasonal differ-
ences, and q the number of lagged forecast errors in the
prediction equation. The three steps to develop ARIMA
models are identification, estimation, and forecasting.
ARIMA (p,d,q) models are defined as follows [Box and
Jenkins, 1976]:

�pðBÞð1� BÞ
d
Yt ¼ � þ �qðBÞ"t; (3)

where Yt is the original value of the time series, "t is a ran-
dom perturbation or white noise (zero mean, constant vari-
ant, and covariance zero), B is the backshift operator, � is a
constant value, FP is the autoregressive parameter of order
p, �q is the moving average parameter of order q, and d is
the differentiation order used for the regular or not seasonal
part of the series. A model described as (0, 1, 3) signifies
that it contains 0 autoregressive (p) parameters, and 3 mov-
ing average (q) parameters, which were computed for the
series after it was differenced (d) once (1).

2.4. Artificial Neural Networks

[17] An artificial neural network (ANN) is a data-driven
process with a flexible mathematical algorithm capable of
solving complex nonlinear relationships between input and
output data sets. A neural network can be described as a
network of simple processing nodes or neurons, intercon-
nected to each other in a specific order, performing simple
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numerical manipulations. A neural network can be used to
predict future values of possibly noisy multivariate time se-
ries based on past histories. ANNs have become popular in
the last decade for hydrological forecasting such as rain-
fall-runoff modeling, streamflow forecasting, groundwater
and precipitation forecasting, and water quality issues
[Kisi, 2004; Sahoo and Ray, 2006; Adamowski, 2007,
2008a, 2008b; Banerjee et al., 2009; Pramanik and Panda,
2009; Sreekanth et al., 2009; Sethi et al., 2010; Adamow-
ski and Chan, 2011].
[18] The most widely used neural network is the multi-

layer perceptron (MLP). In the MLP, the neurons are
organized in layers, and each neuron is connected only
with neurons in contiguous layers. A typical three-layer
feedforward ANN is shown in Figure 1. The input signal
propagates through the network in a forward direction,
layer by layer. The mathematical form of a three-layer
feedforward ANN is given as [Ozbek and Fidan, 2009]

Ok ¼ g2
X

j

Vjwkjg1
X

i

wjiIi þ wj0

 !

þ wko

" #

; (4)

where Ii is the input value to node i of the input layer, Vj is
the hidden value to node j of the hidden layer, and Ok is the
output at node k of the output layer. An input layer bias
term I0 ¼ 1 with bias weights wj0 and an output layer bias
term V0 ¼ 1 with bias weights wk0 are included for the
adjustments of the mean value at each layer. Two sets of

adjustable weights are presented in this equation: wji con-
trols the strength of the connection between the input node
i and the hidden node j, while wkj controls the strength of
the connection between the hidden node j and the output
node k. g1 and g2 represent the activation function for the
hidden layer and the output layer, respectively. The activa-
tion function is typically a continuous and bounded nonlin-
ear transfer function, for which the sigmoid and hyperbolic
tangent functions are usually selected [Ozbek and Fidan,
2009]. A detailed overview of ANNs is provided by Haykin
[1998].
[19] The Levenberg-Marquardt algorithm (LM) is a

modification of the classic Newton algorithm. The goal of
the LM algorithm is to search for the minimum point of a
nonlinear function [Karul et al., 2000]. The LM algorithm
is represented by the following equation [Karul et al.,
2000]:

Xkþ1 ¼ Xk � ðJTJ þ uIÞ�1JTe; (5)

where X is the weight of the neural network, J is the Jaco-
bian matrix of the performance criteria to be minimized, u
is the learning rate that controls the learning process, and e
is the vector of the case error. The LM algorithm performs
a curve fitting on the data. The LM algorithm is designed to
approach second-order training speed and accuracy without
having to compute the Hessian matrix. Second-order non-
linear optimization techniques are usually faster and more
reliable compared to most other optimization algorithm

Figure 1. ANN architecture with one hidden layer [Adamowski and Chan, 2011].
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methods. Several previous research studies have found the
performance of the LM algorithm to be superior to other
training algorithms such as the conjugate gradient (CG)
and gradient descent with momentum (GD) algorithms
[Pramanik and Panda, 2009; Adamowski and Karapataki,
2008; Adamowski and Chan, 2011]. Therefore, the LM
algorithm was used to train the ANN models in this study.
A more detailed description of the application of the LM
algorithm to ANN training is provided by Hagan and Men-
haj [1994].

2.5. Wavelet Analysis

[20] Wavelets are mathematical functions that give a
time-scale representation of the time series and their relation-
ships to analyze time series that may contain nonstationar-
ities. The data series is broken down by the transformation
into its wavelets, that is a scaled and shifted version of the
mother wavelet. Wavelet transform analysis, developed
during the last three decades, is often a more effective tool
than the Fourier transform (FT) in studying nonstationary
time series [Partal and Kisi, 2007]. The signal to be ana-
lyzed is multiplied with a wavelet function and the trans-
form is computed for each segment generated. However,
unlike with the Fourier transform, the width of the wavelet
function changes with each spectral component in the
wavelet transform. The wavelet transform, at high frequen-
cies, gives good time resolution and poor frequency resolu-
tion, while at low frequencies the wavelet transform gives
good frequency resolution and poor time resolution.
[21] The continuous wavelet transform (CWT) of a sig-

nal x(t) is defined as follows [Kim and Valdes, 2003]:

CWT x ð�; sÞ ¼ jsj1=2 �

Z

þ1

�1

t � �

s

� �

dt; (6)

where s is the scale parameter, � is the translation parame-
ter, and � denotes the complex conjugate [Cannas et al.,
2006]. The translation parameter � relates to the location of
the wavelet function as it is shifted through the signal,
which corresponds to the time information in the wavelet
transform. The scale parameter s is defined as j1/frequencyj
and corresponds to frequency information. Scaling either
dilates (expands) or compresses a signal. The mother wave-
let  (t) is the transforming function. Large scales (low fre-
quencies) dilate the signal and provide detailed information
hidden in the signal, while small scales (high frequencies)
compress the signal and provide global information about
the signal [Cannas et al., 2006].
[22] The wavelet transform performs the convolution

operation of the signal and the basis function. The above
analysis becomes very useful as in most practical applica-
tions, high frequencies (low scales) do not last for a long
duration, but instead, appear as short bursts, while low fre-
quencies (high scales) usually last for the entire duration of
the signal [Cannas et al., 2006].
[23] The continuous wavelet transform (CWT) calcula-

tions require a significant amount of computation time. In
contrast, the discrete wavelet transform (DWT) requires
less computation time and is simpler to implement than the
CWT. DWT scales and positions are usually based on
powers of two (dyadic scales and positions) [Partal and

Kisi, 2007]. This is achieved by modifying the wavelet rep-
resentation to [Mallat, 1999]

 j;kðtÞ ¼ s
�j=2
0  

t � k�0s
j
0

s
j
0

 !

; (7)

where j and k are integers and s0 > 1 is a fixed dilation
step. The effect of discretizing the wavelet is that the time-
space scale is now sampled at discrete levels. A value of s0
¼ 2 was chosen so that the sampling of the frequency axis
corresponds to dyadic sampling [Cannas et al., 2006]. The
mother wavelet  is the ‘‘a Trous’’ wavelet transform algo-
rithm. A translation factor of � ¼ 1 was selected to ensure
the dyadic sampling in the time axis [Cannas et al., 2006].
This power of two logarithmic scaling of the translations
and dilations is known as dyadic grid arrangement [Cannas
et al., 2006].

2.6. Coupled Wavelet and Artificial Neural Networks
(WA-ANNs)

[24] Coupled wavelet and artificial neural network (WA-
ANN) models are ANN models which use, as inputs, sub-
series components which are derived from the use of the
discrete wavelet transform (DWT) on the original time se-
ries data. The DWT was used in this study since its use
involves less computational effort. The decomposition of
the time series into multilevels of ‘‘details’’ effectively diag-
noses the main frequency component of the signal and
abstract local information of the time series [Minu et al.,
2010]. The development of the WA-ANN models followed
the procedures undertaken by Cannas et al. [2006], Partal
[2009], and Adamowski and Chan [2011]. The details of the
WA-ANN coupling process is described in section 4.4.

2.7. Model Performance Comparison

[25] The performance of different models can be
assessed in terms of goodness of fit after each of the model
structures are calibrated using the training/validation data
set and testing data set. The coefficient of determination
(R2) measures the degree of correlation among the observed
and predicted values. R2 values range from 0 to 1, with 1
indicating a perfect relationship between the data and the
line drawn through them, and 0 representing no statistical
correlation between the data and a line. The root mean
square error (RMSE) evaluates the variance of errors inde-
pendently of the sample size. RMSE indicates the discrep-
ancy between the observed and forecasted values. A perfect
fit between observed and forecasted values would have a
RMSE of 0. The relative root mean square error (RRMSE) is
an additional indicator of model fit. A lower RRMSE signifies
a smaller discrepancy relative to the predicted value. RRMSE
is suggestive of a good model fit. The Nash–Sutcliffe model
efficiency coefficient (E) is used to assess the predictive
power of hydrological models. An efficiency of one (E ¼
1) corresponds to a perfect match of forecasted data to the
observed data. An efficiency of zero (E ¼ 0) indicates that
the model predictions are as accurate as the mean of the
observed data.

3. Study Areas and Data

[26] The City of Montreal provides drinking water to
around 1.8 million people in six pressure zones using a
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total of 2760 km of primary and secondary distribution net-
work systems. The primary network consists of 440 km of
reinforced concrete pipes. Their average age is approxi-
mately 47 years old, and 27% of them were constructed
before 1920 [Aubertin, 2002]. The median age of the sec-
ondary network is 52 years old, compared to 40 years for
the average Canadian municipality [Aubertin, 2002].
[27] The Atwater and Des Baillets plants are the two

largest water treatment plants for the City of Montreal, and
provide approximately 85% of the total urban water supply
in Montreal. The Atwater plant is 100 years old and sup-
plies approximately 680,000 m3 d�1 of potable water, while
the Des Baillets plant, built in 1978, supplies approxi-
mately 1,159,000 m3 d�1 of potable water.
[28] It has been estimated that Montreal produces

approximately 1300 liters per person per day compared to
600 liters per person per day in Toronto [Aubertin et al.,
2002; Rubin, 2005]. This very high level of production is
the result of a number of factors, including the poor condi-
tion of the water infrastructure, lack of public awareness,
low water consumption fees, and defective equipment in
many industries, businesses, and institutions.
[29] In some cities in Canada, such as Ottawa, studies

have shown that a major fraction of the water consumption
in the summer can be attributed to outdoor water use,
which essentially consists of the watering of lawns and gar-
dens (e.g., Adamowski, 2008). It is thought that the water
demand process in such situations is mainly driven by the
maximum air temperature with the rainfall occurrences in-
terrupting the process to cause transient drops in the water
use. However, apart from the present study, this issue has
not really been explored in Montreal.
[30] The primary consumers of Montreal’s potable water

are the industrial and commercial sectors, which account
for 33% of total water usage [City of Montreal, 2010].
Domestic and municipal users account for approximately
30% of total use. In addition, it is estimated that the number
of pipe breaks currently amounts to 500 per year, and
approximately 40% of Montreal’s water is wasted because
of old leaky pipes [Aubertin, 2002]. Consumption is
expected to continue to rise due to increasing urbanization
and higher water demand, which will be exacerbated by the
aging condition of the water infrastructure. The high water
consumption rate has resulted in high operational costs in
terms of water infrastructure maintenance and water treat-
ment processes.
[31] To address the above concerns, the City of Montreal

publicly committed to launching one of the largest pilot
projects in its history in the spring of 2002, namely the
‘‘Effective Management of Water’’ throughout the city
[City of Montreal, 2010]. In 2007, the Mayor of Montreal
signed the framework agreement for water conservation of
the Great Lakes and St. Lawrence Cities Initiative, a bi-
national coalition to promote the protection of the Great
Lakes and St. Lawrence River basin. Through this agree-
ment, the city committed to reducing potable water produc-
tion by 15% by 2015 compared with 2000 [City of
Montreal, 2010]. To achieve the objective, the City of
Montreal and related stakeholders have, among other initia-
tives, committed to reducing water consumption by sector
of activity and establishing effective consumption targets,
installing water meters in commercial buildings, and

increasing public education among citizens about the im-
portance of sustainable water use [City of Montreal, 2010].
A highly accurate short-term water demand forecasting
model for the city of Montreal will help optimize the opera-
tional efficiency and management of the city water supply
system. This study proposes the use of a highly accurate
new method of daily urban water demand forecasting based
on coupled wavelet-neural networks.
[32] Many variables influence water demand, most of

which can be grouped into two classes : socioeconomic and
climatic variables. Studies have demonstrated that socioe-
conomic variables are responsible for the long-term effects
on water demand, while climatic variables are mainly re-
sponsible for short-term seasonal variations in water
demand [Miaou, 1990]. Accordingly, in this study, MLR,
MNLR, ARIMA, ANN, and WA-ANN models were devel-
oped using past daily urban water demands in addition to
meteorological parameters. More specifically, the data used
in this study consisted of daily total precipitation (mm),
daily maximum temperature (�C), and daily total urban
water demand (m3), all during the summer period. The
daily maximum temperature and total precipitation from
May 2001 to August 2009 were obtained from the national
climate data and information archive on the website of
Environment Canada. The total daily water consumption
data for Montreal from May 2001 to August 2009 was pro-
vided by the City of Montreal.

4. Model Development

4.1. MLR Models

[33] The MLR models for urban water demand forecast-
ing were developed using the Microsoft Excel software
program. The MLR models were trained and tested based
on different combinations of the following input varia-
bles : the maximum temperature, the total precipitation,
and the urban water demand. For each variable, data from
the current day, from the previous day, from two days
before, from three days before, and from four days before
were explored. All MLR models were first trained using
the data in the training set (May 2001 to May 2008), and
then tested using the testing set (May 2008 to August
2009) and compared using the statistical measures of
goodness of fit. It was determined that the best MLR
model for one day ahead water demand forecasting is a
function of the maximum temperature from the current
day and the previous day, and the urban water demand
from the current day and previous day.

4.2. Multiple Nonlinear Regression

[34] The MNLR models for urban water demand fore-
casting were developed using the Microsoft Excel
XLSTAT software program [XLSTAT, 2011]. Different
combinations of the following input variables were used to
train and test the MNLR models: the maximum tempera-
ture, the total precipitation, and the urban water demand.
For each variable, data from the current day, from the pre-
vious day, and from two, three, and four days before was
explored. All MNLR models were first trained using the
data in the training set (May 2001 to August 2007), and
then tested using the testing set (May 2008 to August 2009)
and compared using the statistical measures of goodness of
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fit. It was determined that the best MNLR model for one
day ahead water demand forecasting is a function of the
following variables: maximum temperature (taken for the
current day and for one, two and three days ago) and urban
water demand (taken for the previous day, and for two and
three days ago).

4.3. ARIMA Models

[35] In this study, the ARIMA models for urban water
demand forecasting were developed using the NumXL soft-
ware program [Spider Financial, 2011]. The NumXL is a
Microsoft Excel add-in for time series analysis. The first
step is to determine the stationarity of the input data series
via the autocorrelation function (ACF). It was found that
the City of Montreal urban water demand data series were
not stationary. ARIMA models require the input data to
have a constant mean, variance, and autocorrelation
through time [Box and Jenkins, 1976]. Therefore, the input
data series were transformed into a stationary model
through a differencing process. The development of the
ARIMA models in this study followed the methodology
used by Adamowski [2008b]. The number of nonseasonal
differences (d) was set to 1 to ensure the stationarity of the
data. Following this, parameter estimation in the ARIMA
models was performed, and then urban water demand was
forecasted using the ARIMA models. All ARIMA models
were first trained using the data in the training set (May
2001 to May 2008), and then tested using the testing set
(May 2008 to August 2009), and compared using the statis-
tical measures of goodness of fit. Among the various
ARIMA models that were developed the model that had the
best forecasting performance was a (2, 1, 3) ARIMA
model.

4.4. ANN Models

[36] To develop an ANN model, the primary objective is
to optimize the architecture of the ANN that captures the
relationship between the input and output variables. The
process of determining the number of neurons in the input
and output layers is based on the input and output variables
considered to model the physical process. The number of
neurons in the hidden layer can be optimized using the
available data through the use of a trial and error procedure.
Other methods such as the one proposed by Sudheer et al.
[2003] can also be used to determine the optimum number
of neurons in the hidden layer.
[37] The regular ANN models (i.e., those not using

wavelet decomposed input data) consisted of an input layer,
one single hidden layer, and one output layer consisting of
one node denoting the targeted daily water demand. Sig-
moid and linear activation functions were used for the hid-
den and output nodes, respectively. The ANN models were
trained and tested based on different combinations of input
variables and the number of neurons in the model’s hidden
layer. The input nodes consisted of various combinations of
the following variables: the maximum temperature, the
total precipitation, and the urban water demand. For each
variable, data from the current day, from the previous day,
from two days before, from three days before, and from
four days before was explored. Each ANN model was
tested on a trial and error basis for the optimum number of
neurons in the hidden layer (found to be between 2 and 5).

[38] All of the ANN models were first trained using the
data in the training set (May 2001 to August 2007) to
obtain the optimized set of connection strengths and then
tested using the testing data set (May 2008 to August
2009) and compared using the statistical measures of
goodness of fit.

4.5. WA-ANN Models

[39] The original data (daily urban water demand, daily
maximum temperature, and daily total precipitation) was
decomposed into series of approximation and details
(DWs) using a modified version of the ‘‘a Trous’’ algorithm
(so that future data values are not used in the calculation).
To do this, the original time series were first decomposed
into an approximation and accompanying detail signal. The
decomposition process was then iterated with successive
approximation signals being decomposed in turn, so that
the original time series was broken down into many lower
resolution components.
[40] In this study, three wavelet decomposition levels

were selected. Each time subseries (DW) plays a distinct
role in the original times series and has different effects on
the original urban water demand series [Wang and Ding,
2003]. The correlation coefficients between each time subs-
eries and the corresponding original data are presented in
Table 1. The different correlation coefficients indicate the
differing effect that each individual DW component has on
the original series, and provide information to help deter-
mine the effective wavelet components on urban water
demand. Selected DW components can then be added to
each other to increase the performance of the ANN model
[Partal, 2009; Adamowski and Chan, 2011]. From Table 1,
the selected DW components are DW2 and DW3 for total
precipitation, DW1, DW2, DW3 for maximum tempera-
ture, and DW1, DW2, DW3 for urban water demand. For
each, the approximate series was also included. The above
were used to form a new series for each variable. This dom-
inant subseries selection process is the same as the proce-
dure used by Partal and Kisi [2007], Kisi [2008], and Kisi
[2009]. The DW selection process allowed most of the
noisy data to be filtered out and facilitated the extraction of
quasiperiodic and periodic signals in the original data time
series.
[41] For the WA-ANN models, the ANN networks that

were developed consisted of an input layer, a single hidden
layer, and one output layer consisting of one node denoting
the targeted water demand. Sigmoid and linear activation
functions were used for the hidden and output nodes,
respectively. The input nodes consisted of various combi-
nations of the following variables: the new summed wave-
let decomposed series of the maximum temperature, the
total precipitation, and the urban water demand from the

Table 1. The Correlation Coefficients Between Each Discrete

Wavelet Subseries and the Original Data for the City of Montreal

Discrete Wavelet
Subseries

Total
Precipitation

Data

Maximum
Temperature

Data
Urban Water
Demand Data

DW 1 0.024 0.232 0.260
DW 2 0.244 0.346 0.319
DW 3 0.275 0.405 0.284
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current day, from the previous day, from two days before,
from three days before, and from four days before. Each
model was tested on a ‘‘trial and error’’ basis to determine
the optimum number of neurons in the hidden layer based
on different combinations of time subseries in the model’s
input layer and the number of neurons in the model’s hid-
den layer [Adamowski and Chan, 2011]. The optimum
number of neurons was found to be between 2 and 5.
[42] All of the WA-ANN models were first trained using

the data in the training set (May 2001 to August 2007) to
obtain the optimized set of connection strengths and then
tested using the testing data set (May 2008 to August
2009), and compared using the statistical measures of
goodness of fit.

5. Results and Discussion

[43] The results obtained from the best model for each
type of forecasting method are presented in Table 2, and
the variables for the best model of each forecasting method
are shown in Table 3. All the models were developed in the
same way via an iterative procedure involving successively
adding variables and keeping them if they improved the
forecasting performance (while keeping the models as par-
simonious as possible).
[44] The WA-ANN models were found to provide more

accurate urban water demand forecasts than the MLR,
MNLR, ARIMA, and ANN models for one day lead time
forecasting for the City of Montreal, Canada. The best
WA-ANN model was a function of the maximum tempera-
ture from the current day and the previous day, the water
demand from the current day, from the previous day, from
two days before, and from three days before. The best WA-
ANN model had four neurons in the hidden layer. The best
WA-ANN model, which had a testing coefficient of deter-
mination (R2) of 0.919, and a testing Nash–Sutcliffe model
efficiency coefficient (E) of 0.919, performed better than
the best ANN model (R2 ¼ 0.865, E ¼ 0.864), MNLR
model (R2 ¼ 0.838, E ¼ 0.633), MLR model (R2 ¼ 0.786,
E ¼ 0.629), and ARIMA model (R2 ¼ 0.782, E ¼ 0.778).
An R2 and E ¼ 1 correspond to a perfect match of fore-
casted data to the observed data in a model. Also, the best

WA-ANN model, which had a testing root mean square
error (RMSE) of 0.027, and a testing relative root mean
square error (RRMSE) of 1.591%, was more accurate than
the best ANN model (RMSE ¼ 0.035, RRMSE ¼ 2.056%),
MLNR model (RMSE ¼ 0.058, RRMSE ¼ 3.323%), MLR
model (RMSE ¼ 0.059, RRMSE ¼ 3.491%), and ARIMA
model (RMSE ¼ 0.045, RRMSE ¼ 2.663%). The lower
RMSE and RRMSE values in the best WA-ANN model
indicate a smaller discrepancy relative to the forecasted
value compared to other models.
[45] Figures 2 to 6 compare the observed daily urban

water demand in Montreal with the forecasted daily urban
water demand for one day lead time during the testing pe-
riod using the best WA-ANN, ANN, MNLR, MLR, and
ARIMA models, respectively. It can be seen that the best
ANN and ARIMA models slightly under-forecast during
some high peak water demand periods, the best MNLR and
MLR models over-forecast during most of the high peak
water demand periods, while the best WA-ANN model pro-
vides the closest estimates to the corresponding observed
daily water demand during most of the peak water demand
periods.
[46] Figures 7 to 11 show the scatterplots comparing the

observed and forecasted urban water demand for one day
lead time forecasting during the testing period using the
best WA-ANN, ANN, MLR, MNLR, and ARIMA models,
respectively. Looking at the fit line equations (assuming
that the equation is y ¼ a0x þ a1) of the scatterplots, the a0
and a1 coefficients for the WA-ANN model (a0 ¼ 0.92 and
a1 ¼ 0.14) are closer to 1 and 0, respectively, than for the
ANN model (a0 ¼ 0.89 and a1 ¼ 0.19), MNLR model (a0
¼ 0.85 and a1 ¼ 0.29), MLR model (a0 ¼ 0.80 and a1 ¼
0.38), and ARIMA model (a0 ¼ 0.84 and a1 ¼ 0.28). a0 ¼ 1
and a1 ¼ 0 represent the best fit line. The more the observed
and forecasted data agree, the more the scatters concentrate
in the vicinity of the identity line. The scatters fall on the
identity line exactly when the observed and forecasted data
sets are numerically equal. It can be seen that the WA-ANN
model has less scattered estimates than other models.
[47] In this study it has been shown that the WA-ANN

method performed better than the ANN, MLR, MNLR,
and ARIMA methods in forecasting water demand. The
WA-ANN models likely performed better than the
ARIMA models and MLR models because the ARIMA
technique did not include climatic variables during the
modeling process, while the MLR method can only

Table 2. Comparison of the Best Models for Urban Water

Demand Forecasting During the Training and Testing Perioda

Performance
Index

Best ANN
Model

Best
WA-ANN
Model

Best MNLR
Model

Best
MLR
Model

Best
ARIMA
Model

Training Period
R2 0.792 0.896 0.848 0.760 0.758
E 0.789 0.895 0.848 0.761 0.762
RMSE 0.061 0.043 0.052 0.065 0.064
RRMSE (%) 3.333 2.337 2.797 3.532 3.525

Testing Period
R2 0.865 0.919 0.838 0.786 0.782
E 0.864 0.919 0.633 0.629 0.778
RMSE 0.035 0.027 0.058 0.059 0.045
RRMSE (%) 2.056 1.591 3.323 3.491 2.663

aNote: R2, coefficient of determination; E, Nash–Sutcliffe model effi-
ciency coefficient; RMSE, root mean square error; RRMSE, relative root
mean square error.

Table 3. Variables of the Best Model for Each Forecasting

Methoda

Model Variables

MLR WD(t), WD(t-1), T(t), T(t-1)
MNLR WD(t), WD(t-1), WD(t-2), WD(t-3),

T(t), T(t-1), T(t-2), T(t-3)
ANN WD(t), WD(t-1), WD(t-2), T(t),

T(t-1)
WA-ANN WD(t), WD(t-1), WD(t-2), WD(t-3),

T(t), T(t-1)

aMLR, multiple linear regression; MLNR, multiple nonlinear regres-
sion; ARIMA, autoregressive integrated moving average; ANN, artificial
neural networks; WA-ANN, coupled wavelet-neural networks; WD(t),
water demand at time t; T(t), temperature at time t.
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Figure 3. Comparison of forecasted versus observed urban water demand using the best ANN model
for one day ahead forecasting during the testing period (a) summer 2008 and (b) summer 2009.

Figure 2. Comparison of forecasted versus observed water demand using the best WA-ANN model for
one day ahead forecasting during the testing period (a) summer 2008 and (b) summer 2009.

Figure 4. Comparison of forecasted versus observed water demand using the best MLR model for one
day ahead forecasting during the testing period (a) summer 2008 and (b) summer 2009.
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Figure 6. Comparison of forecasted versus observed water demand using the best ARIMA model for
one day ahead forecasting during the testing period (a) summer 2008 and (b) summer 2009.

Figure 5. Comparison of forecasted versus observed water demand using the best MLNR model for
one day ahead forecasting during the testing period (a) summer 2008 and (b) summer 2009.

Figure 7. Scatterplot comparing observed and forecasted urban water demand using the best WA-
ANN model for one day ahead forecasting during the testing period.
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capture relationships of a prespecified functional form,
and as such it is not able to accurately predict nonlinear
water demand. MNLR, on the contrary, is able to process
nonlinear data and this likely resulted in more precise
forecasts since the data that was used was nonlinear.
However, the MNLR method does not explicitly address
the nonstationarity inherent in the data. In addition, the

WA-ANN models likely provided more accurate results
than the ANN models because the wavelet transforms
provide useful decompositions of the original time series,
and the wavelet-transformed data improves the ANN fore-
casting performance by capturing detail information on var-
ious wavelet resolution levels. Through the use of wavelet
analysis, a water demand series can be decomposed into

Figure 9. Scatterplot comparing observed and forecasted
urban water demand using the best MNLR model for one
day ahead forecasting during the testing period.

Figure 8. Scatterplot comparing observed and forecasted
urban water demand using the best ANN model for one day
ahead forecasting during the testing period.

Figure 10. Scatterplot comparing observed and fore-
casted urban water demand using the best MLR model for
one day ahead forecasting during the testing period.

Figure 11. Scatterplot comparing observed and fore-
casted urban water demand using the best ARIMA model
for one day ahead forecasting during the testing period.
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a few selected component series that carry most of the in-
formation which can then be selectively used in forecasting.
This allows most of the noisy data to be removed and it
facilitates the extraction of quasiperiodic and periodic sig-
nals in the water demand time series.
[48] The accurate WA-ANN urban water demand fore-

casting method can help optimize a water supply sys-
tem’s operational efficiency by supplying the minimum
amount of water necessary. The optimization of opera-
tions can also result in substantial savings (as high as
25%–30% of total operating costs) by reducing electric-
ity costs and the use of chemicals in the treatment pro-
cess [Ghiassi et al., 2008]. In the long term, the proposed
WA-ANN forecasting method for urban water demand
management could be useful in the management, plan-
ning, and evaluation of existing water systems, water
conservation initiatives, water pricing policies, and
drought condition analyses.
[49] The results of this study indicate that the water

demand process during the summer months in Montreal is
mainly driven by the maximum air temperature (and less
so by precipitation). However, this issue should be studied
in greater detail in future studies. This study also showed
that the WA-ANN method provides more accurate results
than the traditional methods of ANN, ARIMA, MLR, and
MNLR when used in short-term urban water demand
forecasting. However, none of the forecasting models stud-
ied in this research account for uncertainty in the data. Fail-
ure to account for data uncertainty in models could lead to
incorrect forecasts. The bootstrap method is a simple algo-
rithm which can be used to account for uncertainty. The
combination of WA-bootstrap-ANN has been successfully
used in other areas of hydrological forecasting [Tiwari and
Chatterjee, 2010a, 2010b], and the possible use of this
method in water demand forecasting appears promising
and will be studied further by the authors. In addition, there
is little research available on the MNLR method in water
demand forecasting. Although it was not the best method in
this study, this method also showed promising results and
should be studied further. And finally, the combination of
wavelet transforms and SVMs have provided good fore-
casting results in hydrology [Kisi and Cimen, 2011]. In
light of this, a comparative study between WA-ANN and
WA-SVM applied to urban water demand forecasting
would be useful.

6. Conclusions

[50] The potential of coupled wavelet-neural network
models (WA-ANNs) for daily urban water demand fore-
casting during the summer months was investigated in this
study. The study site was the City of Montreal, Canada.
The coupled wavelet-neural network models were devel-
oped by combining two methods, namely discrete wavelet
transforms and artificial neural networks. The WA-ANN
models were compared to ANN, MLR, MNLR, and
ARIMA models for urban water demand forecasting with a
one day lead time. It was determined that the WA-ANN
models provided more accurate results than the other mod-
els that were tested. Through the use of wavelet analysis,
the water demand series was decomposed into a few
selected component series that carried most of the informa-

tion which was then selectively used in forecasting. This
allowed most of the noisy data to be removed and it facili-
tated the extraction of quasiperiodic and periodic signals in
the water demand time series.
[51] In reference to the original aims of this study, it was

determined that the use of selected wavelet decomposed
subseries as inputs to ANN models helps provide very
accurate forecasts of daily urban water demand. The results
of this study indicate that coupled wavelet-neural network
models are a promising new method of short-term water
demand forecasting that warrant further exploration. Possi-
ble future research stemming from this study include:
exploring the application of coupled wavelet-neural net-
work models for urban water demand forecasting for differ-
ent lead times (weekly, monthly); analyzing holiday water
consumption effects and other socioeconomic factors; com-
paring the use of different types of continuous (Morlet and
Mexican Hat) and discrete (Daubechies) mother wavelets
in the wavelet decomposition phase of the wavelet-neural
network forecasting method; developing wavelet-bootstrap-
neural network urban water demand forecasting models to
provide ensemble forecasts ; and comparing the wavelet-
neural network method with other new methods such as
support vector machines with localized multiple kernel
learning.

Notation

ANN artificial neural network
ARIMA autoregressive integrated moving average
CWT continuous wavelet transform
DF degree of freedom
DW decomposed wavelet subseries
DWT discrete wavelet transform

E Nash–Sutcliffe model efficiency coefficient
G activation function
Ii input value to node i of the input layer

MLR multiple linear regression
MNLR multiple nonlinear regression

N number of data points used
Ok output at node k of the output layer
R2 coefficient of determination

RMSE root mean square error
RRMSE relative root mean square error
SEE sum of squared errors
Vj hidden value to node j of the hidden layer

WA wavelet transform
WA-ANN wavelet-neural network

s scale parameter
x(t) signal
y i mean value taken over N
yi observed peak weekly water demand
ŷi forecasted peak weekly water demand
� translation parameter
� complex conjugate

 (t) mother wavelet

[52] Acknowledgments. Financial support for this study was provided
by a FQRNT grant held by Jan Adamowski. Data and advice were pro-
vided by Michel Merette, the Director of the Drinking Water Production
Department for the City of Montreal. His help is greatly appreciated.

W01528 ADAMOWSKI ET AL.: WATER DEMAND FORECASTING USING WAVELET-NEURAL NETWORKS W01528

12 of 14



References
Adamowski, J. (2007), Development of a short-term river flood forecasting
method based on wavelet analysis, J. Hydrol., 353(3–4), 247–266,
doi:10.1016/j.jhydrol.2008.02.013.

Adamowski, J. (2008a), Development of a short-term river flood forecasting
method for snowmelt driven floods based on wavelet and cross-wavelet
analysis, J. Hydrol., 353, 247–266, doi:10.1016/j.jhydrol.2008.02.013.

Adamowski, J. (2008b), Peak daily water demand forecast modeling using
artificial neural networks, J. Water Resour. Plan. Manage., 134(2), 119–
128, doi:10.1061/(ASCE)0733-9496(2008)134:2(19).

Adamowski, J. (2008c), River flow forecasting using wavelet and cross-
wavelet transform models, J. Hydrol. Processes, 22, 4877–4891,
doi:10.1002/hyp.7107.

Adamowski, J., and H. F. Chan (2011), A wavelet neural network conjunc-
tion model for groundwater level forecasting, J. Hydrol., 407, 28–40,
doi:10.1016/j.jhydrol.2011.06.013.

Adamowski, J., and C. Karapataki (2008), Comparison of multivariate
regression and artificial neural networks for peak urban water demand
forecasting: the evaluation of different ANN learning algorithms, J. Hydrol.
Eng., 15(10), 729–743, doi:10.1061/(ASCE)HE.1943-5584.0000245.

Adamowski, J., and K. Sun (2010), Development of a coupled wavelet
transform and neural network method for flow forecasting of non-peren-
nial rivers in semi-arid watersheds, J. Hydrol., 390, 85–90, doi:10.1016/
j.jhydrol.2010.06.033.

Anderson, R., T. Miller, and M. Washburn (1980), Water savings from
lawn watering restrictions during a drought year in Fort Collins, Colo-
rado, Water Resour. Bull., 16(4), 642–645, doi:10.1111/j.1752-1688.
1980.tb02443.

Asefa, T., M. Kemblowski, M. McKee, and A. Khalil (2006), Multi-time
scale stream flow predictions: The support vector machines approach,
J. Hydrol., 318(1–4), 7–16, doi:10.1016/j.jhydrol.2005.06.001.

Aubertin, L., A. Aubin, G. Pelletier, D. Curodeau, M. Osseyrane, and
P. Lavallee (2002), Identifying and Prioritizing Infrastructure Rehabili-
tation, North American Society for Trenchless Technology, Liverpool,
NY.

Banerjee, P., R. K. Prasad, and V. S. Singh (2009), Forecasting of ground-
water level in hard rock region using artificial neural network, Environ.
Geol., 58(6), 1239–1246, doi:10.1007/s00254-008-1619-z.

Box, G. E. P., and G. Jenkins (1976), Time Series Analysis: Forecasting
and Control, 2nd ed., San Francisco: Holden-Day.

Cannas, B., A. Fanni, L. See, and G. Sias (2006), Data preprocessing
for river flow forecasting using neural networks: Wavelet transforms and
data partitioning, Phys. Chem. Earth, 31, 1164–1171, doi:10.1016/
j.oce.2006.03.020.

Cassuto, A. E., and S. Ryan (1979), Effect of price on the residential
demand for water within an agency, Water Resour. Bull., 15(2), 345–
353, doi:10.1111/j.1752-1688.1979.tb00337.

Cimen, M., and O. Kisi (2009), Comparison of two different data driven tech-
niques in modeling surface water level fluctuations of Lake Van, Turkey,
J. Hydrol., 378(3–4), 253–262, doi:10.1016/j.jhydrol.2009.09.029.

City of Montreal (2010), The Montreal Community Sustainable Develop-
ment Plan 2010-2015, Montreal, QC.

Cogger, K. O. (2010), Nonlinear regression methods: A survey and exten-
sions, Intell. Syst. Acc. Fin. Manage. 17, 19–39, doi:10.1002/isaf.311.

Dziegielewski, B., and D. Baumann (1992), Tapping alternatives: The
benefits of managing urban water demands, Environment, 34(9), 6–11,
35–41.

Emiroglu, M., O. Bilhan, and O. Kisi (2011), Neural networks for estima-
tion of discharge capacity of triangular labyrinth side-weir located on a
straight channel, Expert Syst. Appl., 38(1), 867–874, doi:10.1016/
j.eswa.2010.07.058.

Environment Canada (2010), Environmental Trends, CESI, 1(3).
Ghiassi, M., D. K. Zimbra, and H. Saidane (2008), Urban water demand
forecasting with a dynamic artificial neural network model, J. Water
Resour. Plan. Manage., 134(2), 138–146, doi10.1061/(ASCE)0733-
9496(2008)134:2(138).

Hagan, M. T., and M. Menhaj (1994), Training feedforward networks with
the Marquardt algorithm, IEEE Trans. Neural Networks, 5(6), 989–993,
doi:10.1109/72.329697.

Han, D., L. Chan, and N. Zhu (2007), Flood forecasting using support vec-
tor machines, Journal of Hydroinformatics, 9(4), 267–276, doi:10.2166/
hydro.2007.027.

Haykin, S. (1998), Neural Networks—A Comprehensive Foundation, Pren-
tice-Hall, Upper Saddle River, NJ.

Hughes, T. (1980), Peak period design standards for small western U.S.
water supply, Water Resour. Bull., 16(4), 661–667, doi:10.1111/j.1752-
1688.1980.tb02446.

Ivakhnenko, A. G. (1970), Heuristic self-organization in problems of engi-
neering cybernetics, Automatica, 6(2), 207–219, doi:10.1016/0005-
1098(70)90092-0.

Jain, A., and L. Ormsbee (2002), Short-term water demand forecast model-
ing techniques: Conventional methods versus AI, J. Am. Water Works
Assoc., 94(7), 64–72.

Karul, C., S. Soyupak, A. F. Cilesiz, N. Akbay, and E. Germen (2000),
Case studies on the use of neural networks in eutrophication modeling,
Ecol. Model., 134(2–3), 145–152, doi:10.1016/S0304-3800(00)00360-4.

Khan, M. S., and P. Coulibaly (2006), Application of support vector
machine in lake water level prediction, J. Hydrol. Eng., 11(3), 199–205,
doi:10.1061/(ASCE)1084-0699(2006)11:3(199).

Kim, T. W., and J. B. Valdes (2003), Nonlinear model for drought forecast-
ing based on a conjunction of wavelet transforms and neural networks, J.
Hydrol. Eng., 8(6), 319–328, doi:10.1061/(ASCE)1084-0699(2003)8:
6(319).

Kisi, O. (2004), River flow modeling using artificial neural networks, J.
Hydrol. Eng., 9(1), 60–63, doi:10.1061/(ASCE)1084-0699(2004)9:1(60).

Kisi, O. (2008), Stream flow forecasting using neuro-wavelet technique,
Hydrol. Processes, 22, 4142–4152, doi:10.1002/hyp.7014.

Kisi, O. (2009), Neural networks and wavelet conjunction model for inter-
mittent streamflow forecasting, J. Hydrol. Eng., 14(8), 773–782,
doi:10.1061/(ASCE)HE.1943-5584.0000053.

Kisi, O. and M. Cimen (2011), A wavelet-support vector machine conjunc-
tion model for monthly streamflow forecasting, J. Hydrol., 399(1–2),
132–140, doi:10.1016/j.jhydrol.2010.12.041.

Lu, W., W. Wang, A. Y. T. Leung, S. Lo, R. K. K. Yuen, Z. Xuand H. Fan
(2002), Air pollutant parameter forecasting using support vector
machines, Neural Networks Proceedings of the 2002 International Joint
Conference, 1, 630–635, doi:10.1109/IJCNN.2002.1005545.

Maas, T. (2003), What the experts think: Understanding urban water
demand management in Canada. Retrieved from http://www.polispro-
ject.org/publications/byauthor/Maas,%20Tony.

Maidment, D., and S. Miaou (1986), Daily water use in nine cities, Water
Resour. Res., 22(6), 845–851, doi:10.1029/WR022i006p00845.

Maidment, D., and E. Parzen (1984), Monthly water use and its
relationship to climatic variables in Texas, Water Resour. Bull., 19(8),
409–418.

Maidment, D., S. Miaou, and M. Crawford (1985), Transfer function mod-
els of daily urban water use, Water Resour. Res., 21(4), 425–432,
doi:10.1029/WR021i004p00425.

Maier, H., A. Jain, G. C. Dandy, and K. P. Sudheer (2010), Methods used
for the development of neural networks for the prediction of water
resource variables in river systems: Current status and future directions,
Environ. Model. Software, 25, 891–909.

Maity, R., P. P. Bhagwat, and A. Bhatnagar (2010), Potential of support
vector regression for prediction of monthly streamflow using endogenous
property,Hydrol. Processes, 24(7), 917–923, doi:10.1002/hyp.7535.

Mallat S. (1999), A Wavelet Tour of Signal Processing, 2nd ed.. Academic,
New York.

Miaou, S. (1990), A class of time series urban water demand models with
non-linear climatic effects,Water Resour. Res., 26, 169–178.

Minu, K. K., M. C. Lineesh, and C. Jessy John (2010), Wavelet neural
networks for nonlinear time series analysis, Appl. Math. Sci., 4(50),
2485–2495.

Miyagishi, K., M. Ohsako, and H. Ichihashi (1999), Temperature prediction
from regional spectral model by neurofuzzy GMDH, Proc. of The Second
Asia-Pacific Conference on Industrial Engineering and Management
Systems, Kanazawa, Japan, 705–708.

Msiza, I. S., F. V. Nelwamondo, and T. Marwala (2008), Water demand
prediction using artificial neural networks and support vector regression,
J. Comput., 3(11), 1–8, doi:10.4304/jcp.3.11.1-8.

Ozbek, F. S., and H. Fidan (2009), Estimation of pesticides usage in the ag-
ricultural sector in Turkey using artificial neural network (ANN),
J. Animal Plant Sci., 4(3), 373–378.

Partal, T. (2009), River flow forecasting using different artificial neural net-
work algorithms and wavelet transform, Can. J. Civil Eng., 36(1), 26–38,
doi:10.1139/L08-090.

Partal, T., and O. Kisi (2007), Wavelet and neuro-fuzzy conjunction model
for precipitation forecasting, J. Hydrol., 342(1–2), 199–212, doi:10.1016/j.
jhydrol.2007.05.026.

W01528 ADAMOWSKI ET AL.: WATER DEMAND FORECASTING USING WAVELET-NEURAL NETWORKS W01528

13 of 14



Pedhazur, E. J. (1982), Multiple Regression in Behavioral Research:
Explanation and Prediction, Holt, Rinehart and Winston, New York.

Pramanik, N., and R. K. Panda (2009), Application of neural network and
adaptive neuro fuzzy inference systems for stream flow prediction,
Hydrol. Sci. J., 54(2), 247–260, doi:10.1623/hysj.54.2.247.

Rajasekaran, S., S. Gayathri, and T.-L. Lee (2008), Support vector regres-
sion methodology for storm surge predictions, Ocean Eng., 35, 1578–
1587, doi:10.1016/j.oceaneng.2008.08.004.

Rubin, D. (2005),Down the drain: Dealing with Montreal’s water wastage,
McGill Reporter, 37(17), Montreal, QC.

Sahoo, G. B., and C. Ray (2006), Flow forecasting for a Hawaii stream
using rating curves and neural networks, J. Hydrol., 317, 63–80,
doi:10.1016/j.jhydrol.2005.05.008.

Sarycheva, L. (2003), Using GMDH in ecological and socio-economical
monitoring problems, Syst. Anal. Model. Simul., 43(10), 1409–1414,
doi:10.1080/02329290290024925.

Sethi, R. R., A. Kumar, S. P. Sharma, and H. C. Verma (2010), Prediction
of water table depth in a hard rock basin by using artificial neural net-
work, Int. J. Water Resour. Environ. Eng., 2(4), 95–102.

Shiri, J., and O. Kisi (2010), Short-term and long-term streamflow forecast-
ing using a wavelet and neuro-fuzzy conjunction model, J. Hydrol.,
394(3–4), 486–493.

Smith, J. (1988), A model of daily municipal water use for short-term
forecasting,Water Resour. Res., 24(2), 201–206, doi:10.1029/WR024i002p
00201.

Solomatine, D., and A. Ostfeld (2008), Data driven modeling: Some past
experiences and new approaches, J. Hydroinf., 10(1), 3–22.

Spider Financial (2011), NumXL Microsoft Excel add-in, Spider Financial,
Chicago.

Sreekanth, P. D., N. Geethanjali, P. D. Sreedevi, S. Ahmed, N. R. Kumar,
and P. D. K. Jayanthi (2009), Forecasting groundwater level using artifi-
cial neural networks, Curr. Sci., 96(7), 933–939.

Sudheer, K. P., P. C. Nayak, and K. S. Ramasastri (2003), Improving peak
flow estimates in artificial neural network river flow models, Hydrol.
Processes, 17(3), 677–686, doi:10.1002/hyp.5103.

Tiwari, M. K., and C. Chatterjee (2010a), A new wavelet-bootstrap-ANN
hybrid model for daily discharge forecasting, J. Hydroinf., 13(3), 500–
519, doi:10.2166/hydro.2010.142.

Tiwari, M. K., and C. Chatterjee (2010b), Development of an accurate and
reliable hourly flood forecasting model using wavelet-bootstrap-ANN
(WBANN) hybrid approach, J. Hydrol., 394(3–4), 458–470, doi:
10.1016/j.jhydrol.2010.10.001.

Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer,
New York.

Wang, W., and J. Ding (2003), Wavelet network model and its application
to the prediction of hydrology, Nat. Sci., 1(1), 67–71.

Wang, W. C., K. W. Chau, C. T. Cheng, and L. Qiu (2009). A comparison
of performance of several artificial intelligence methods for forecasting
monthly discharge time series, J. Hydrol. 374(3–4), 294–306.

Wong, J. S., Q. Zhang, and Y. D. Chen (2010), Statistical modeling of daily
urban water consumption in Hong Kong: Trend, changing patterns,
and forecast, Water Resour. Res., 46, W03506, doi:10.1029/2009WR
008147.

XLSTAT (2011), XLSTAT Microsoft Excel add-in, Addinsoft SARL,
Paris.

Yu, P.-S., S.-T. Chen, and I.-F. Chang (2006), Support vector regression for
real-time flood stage forecasting, J. Hydrol., 328(3–4), 704–716,
doi:10.1016/j.jhydrol.2006.01.021.

Zhou, S., T. McMahon, A. Walton, and J. Lewis (2000), Forecasting daily
urban water demand: A case study of Melbourne, J. Hydrol., 236(3),
153–164, doi:10.1016/S0022-1694(00)00287-0.

J. Adamowski, H. Fung Chan, S. O. Prasher, and A. Sliusarieva, Depart-
ment of Bioresource Engineering, McGill University, 21 111 Lakeshore Road,
Ste. Anne de Bellevue, QC H9X 3V9, Canada. (jan.adamowski@mcgill.ca)
B. Ozga-Zielinski, Centre of Hydrology, National Research Institute,

Institute of Meteorology and Water Management, ul. Podlesna 61, Warsaw
PL-01-673, Poland.

W01528 ADAMOWSKI ET AL.: WATER DEMAND FORECASTING USING WAVELET-NEURAL NETWORKS W01528

14 of 14



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


