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Abstract: The forest growing stock is one of the key indicators in monitoring forest resources, and
its quantitative estimation is of great significance. Based on multi-source data, including Sentinel-1
radar remote sensing data, Sentinel-2 optical remote sensing data, digital elevation model (DEM),
and inventory data for forest management planning and design, the Lasso feature selection method
was used to remove the non-significant indicators, and three machine learning algorithms, GBDT,
XGBoost, and CatBoost, were used to estimate forest growing stock. In addition, four category
features, forest population, dominant tree species, humus thickness, and slope direction, were
involved in estimating forest growing stock. The results showed that the addition of category features
significantly improved the performance of the models. To a certain extent, radar remote sensing data
also could improve estimating accuracy. Among the three models, the CatBoost model (R2 = 0.78,
MSE = 0.62, MAE = 0.59, MAPE = 16.20%) had the highest estimating accuracy, followed by XGBoost
(R2 = 0.75, MSE = 0.71, MAE = 0.62, MAPE = 18.28%) and GBDT (R2 = 0.72, MSE = 0.78, MAE = 0.68,
MAPE = 20.28%).

Keywords: forest growing stock; CatBoost; category features; Lasso; Sentinel

1. Introduction

The forest growing stock is one of the key indicators of forest resource monitoring, and
its quantitative estimation is of great significance [1]. In China, two traditional methods of
surveying large-area forest resources are available: national forest inventory (NFI), which
is repeated every five years, and inventory for forest management planning and design,
which is conducted at 10-year intervals. Although the traditional survey methods provide
objective and accurate information for forest resource monitoring and management [2], this
requires a lot of manpower and time costs. Plus, the long time span makes these traditional
methods unable to effectively provide an accumulated amount of information in a dynamic
trend [3]. To provide a timelier scientific basis for forest resource management decision
making, scholars have been working to find other reliable data sources [4] and use effective
predictive models to quickly and accurately estimate the forest growing stock [5,6] in order
to grasp the dynamic changes in the forest.

Satellite remote sensing images constitute an important data source for extracting
forest stand attributes (such as biomass, forest growing stock, etc.) on different spatial and
temporal scales [7]. At present, satellite remote sensing combined with other auxiliary data
has been widely used in the quantitative estimation of forest stock [8–10].

Due to its rich spectral information, optical remote sensing images represent a fre-
quently used data resource to estimate forest growing stock. Based on optical remote
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sensing images, scholars have been trying to utilize various methods (such as band calcu-
lation, gray level co-occurrence matrix (GLCM), etc.) to extract various spectral features,
which include single-band characteristics, vegetation indexes, and texture characteristics.
The method of principal component analysis is an available algorithm for recombining the
original features into independent components, which might improve the performance
in estimating the forest growing stock [11–15]. Insufficiently, the optical remote sensing
data might be interfered by clouds. Furthermore, the echo signal of optical remote sensing
is highly blocked by the forest density, so it is difficult to obtain the three-dimensional
parameters of the forest, such as tree height [16]. Fortunately, radar remote sensing has the
ability to penetrate the forest canopy to obtain the forest spatial structure parameters, and it
is not susceptible to atmospheric conditions. Therefore, radar remote sensing data are also
commonly used to estimate the forest growing stock and biomass. In general, long-wave
radar (L-band and P-band) has a stronger ability to penetrate the forest canopy and can
capture more spatial structure information, such as L-band data generated by the sensor
of PALSAR, which is carried by the Advanced Land Observing Satellite (ALOS) [17,18].
Short-wave radar (X-band and C-band) can also be used to reflect the spatial structure of a
forest, such as the C-band data that came from Sentinel-1 [19,20]. The S-band frequency
(3.1–3.3 GHz) lies between the longer L-band (1–2 GHz) and the shorter C-band (5–6 GHz),
and S-band backscatter was found to have high sensitivity to the forest canopy charac-
teristics across all polarizations and incidence angles [21]. Experimental S-band radar
data were observed to have varying sensitivities to field-estimated forest properties, and
forest AGB shows sensitivity with S-band backscatter particularly for co-polarizations at
25 m resolution (stand level) [21]. Furthermore, different SAR wavelengths were gradu-
ally introduced in the interest of SAR’s missions. As early as 2012, China launched the
Environment and Disaster Monitoring Satellite Huan Jing-1 Constellation (HJ-1C) [22] with
a resolution of 5 m in the single-view mode. the U.K. also designed a low-cost mission
satellite, NovaSAR-S, for maritime surveillance, forestry, disaster monitoring, and agri-
culture [23]. In addition, a SAR satellite called NISAR [24], being jointly developed by
NASA and the Indian Space Research Organization (ISRO), will accommodate two fully
capable synthetic aperture radar instruments: NASA’s 24 cm wavelength L-band Synthetic
Aperture Radar (L-SAR) and a 10 cm wavelength S-band Synthetic Aperture Radar (S-SAR)
provided by ISRO. NISAR has a ~240 km swath with 7 m resolution along track and 2–8 m
resolution cross-track (depending on mode). In this way, SAR beats the resolution limits of
what can physically be put in space to provide images and science of much higher quality
than would be possible if the antenna size was used as is. NISAR’s data can help people
worldwide better manage natural resources and hazards, as well as provide information
for scientists to better understand the effects and pace of climate change [25]. However, the
problem with radar remote sensing is that when the biomass reaches a certain level, the
backscattering signal will reach a saturated state so that its intensity will no longer increase.
Evidently, both optical remote sensing and radar remote sensing have their own advantages
and disadvantages. By integrating the advantages of different remote sensing sources, the
limitations of a single remote sensing source can be overcome or supplemented, and the
forest growing stock estimation accuracy can be improved [26]. Therefore, the combination
of multiple remote sensing sources has become a preference for current researchers to
estimate the forest factors, such as forest growing stock. These combined remote sensing
data have achieved better prediction performance than single remote sensing data [27–30].
Plus, topographic factors and soil conditions may also affect the growth of vegetation [31],
so other auxiliary data, such as DEM data and soil survey data, are also being used to
supplement remote sensing data to assist the prediction of forest factors.

To further improve the estimation accuracy, finding more suitable data sources and
more effective estimation algorithms are two important topics that forest growing stock
scholars have long been studying [32]. Due to their free availability and high resolution,
the remote sensing data generated by Sentinel series satellites are often used to monitor
changes in oceans, lands, and forests. The optical remote sensing images from Sentinel-
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2A and Sentinel-2B satellites provide 13 multi-spectral bands, in which the resolution of
band 2-Blue, band 3-Green, band 4-Red, and band 8-NIR band even reached 10 m [33].
Compared with the Landsat satellites, Sentinel satellites have a greater application po-
tential [34,35] in many fields, such as tree species identification [36,37] and land cover
classification [38,39]. In addition to Sentinel-2 optical remote sensing data, the c-band radar
remote sensing data provided by the Sentinel-1 satellite are also frequently used to estimate
the forest growing stock.

In practice, the relationship between forest growing stock and remote sensing variables
might be too complex to be captured by parametric algorithms, such as simple or multiple
linear regression algorithms [1]. Conversely, nonparametric algorithms, such as machine
learning algorithms, determine the model structure in a data-driven manner rather than an
explicitly predefined manner. Since machine learning algorithms overcome the shortcom-
ings of spatial autocorrelation and non-linearity that are usually unavoidable in parametric
statistical methods, they have increasingly replaced traditional regression models as a
means of estimating forest growing stock [40,41]. Common machine learning algorithms
include random forest (RF) [42], backpropagation (BP) neural network (NN) [43], K-nearest
neighbors (K-NN) [8], etc. Due to their flexibility, these algorithms are often used for
creating complex nonlinear models to estimate forest growing stock.

Gradient Boosting is a machine learning algorithm that generates a strong prediction
model by iterating a set of weak prediction models (usually decision trees). Based on the
idea of Gradient Boosting, the algorithms of Gradient Boosting Decision Tree (GBDT) [44]
and XGBoost [45] have been developed and widely used in the field of prediction with
better performance than RF and BPNN [46,47]. However, to estimate forest growing stock,
the algorithm should be able to process not only quantitative features, such as age of
trees, but also categorical features, such as tree species. Usually, if there are category
features in independent variables, one approach, according to certain rules, is to convert
their values into discrete numerical values artificially and input them into the model
for processing. Another is to divide the experimental data into several categories based
on category features artificially, build corresponding models according to the divided
categories, and estimate the dependent variable. Obviously, the disadvantage is that
these two methods increase the data preprocessing workload [48,49]. To overcome this
shortcoming, Dorogush et al. [50] proposed a new gradient boosting algorithm in 2018,
CatBoost, which can not only automatically process category features in the training process
but also has a strong anti-overfitting ability. Thus, the combination of high-precision remote
sensing data and efficient machine learning algorithms (such as CatBoost) is likely to pave
the way for a more accurate estimation of forest growing stock.

Based on multi-source data, including Sentinel-1 radar remote sensing data, Sentinel-2
optical remote sensing data, digital elevation model (DEM), and inventory data for forest
management planning and design, we used the least absolute shrinkage and selection
operator (Lasso) [51] method to select essential features as independent variables, and
established three models (GBDT, XGBoost, and CatBoost) to estimate forest growing stock.
Finally, we compared various performance indicators to determine the best combination of
multi-source data and the best estimation algorithm.

The rest of this paper is sectioned as follows. Section 2 presents the used materials and
methods, while Section 3 gives the experimental results. Section 4 analyzes and discusses
the performance of the proposed contribution. Finally, we conclude this work in Section 5.

2. Materials and Methods
2.1. Overview of the Research Area

Linhai City (shown in Figure 1) is located on the southeast coast of Zhejiang Province,
at 28◦40′~29◦04′ N and 120◦49′~121◦41′ E. The maximum distance between east and west
is 85 km, and the maximum distance between north and south is 44 km. The total land
area is 2203 km2. The territory is dominated by mountains and hills and has a subtropical
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monsoon climate. Linhai City is a key forestry county in Zhejiang Province, with a forest area
of 150,396 ha, a total forest growing stock of 4,280,000 m3, and a forest coverage rate of 58.6%.
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Figure 1. Administrative map of the study area.

2.2. Research Data
2.2.1. Remote Sensing Data

The optical remote sensing data with four-scene images generated by the satellite
Sentinel-2 on 27 November 2017 and 31 October 2017 were used in this study. The radar
remote sensing data with two-scene images were generated by the satellite Sentinel-1 in
October 2017. The remote sensing data were obtained from the European Space Agency
(ESA) website (https://scihub.copernicus.eu/ (accessed on 15 December 2020)), and the
details with specifications and dates of acquisition are shown in Table 1.

Table 1. Details of the remote sensing data with specifications and dates of acquisition.

Type of Remote Sensing Images Satellite Date of Acquisition Product Level

Optical remote sensing Sentiniel-2B, Sentinel-2A 27 November 2017, 3 scenes
October 2017, 1 scene L1C

Radar remote sensing Sentinel-1A 13 October 2017, 2 scenes IW GRD

From the Sentinel-2B level 1-C product, the atmospheric correction is performed by
the plug-in software of Sen2cor to eliminate the radiation errors caused by the atmosphere,
and resampling is performed by SNAP software. Furthermore, ENVI software is used to
convert the image coordinate system from the Global Navigation Satellite System (GNSS)
to the China Geodetic Coordinate System 2000 (CGCS2000) and perform a mosaic to fuse

https://scihub.copernicus.eu/
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the four-scene optical images into a complete image. Finally, based on the administrative
vector map of Linhai City, the mosaic remote sensing image is cropped. Therefore, an
optical remote sensing image consistent with the boundary of the study area is obtained.

The propagation and scattering of electromagnetic waves are both vector phenomena,
and polarization is used to study the vector characteristics of electromagnetic waves. The
radar can transmit horizontal (H) or vertical (V) electric field vectors, and can also receive
horizontal (H) or vertical (V) signals. HH, VV, HV, and VH are four polarization modes
commonly used in the Sentinel-1 radar remote sensing system. VV–VH is mainly used
to observe land, while HH–HV and HH are usually used to monitor polar environments.
The Sentinel-1 radar remote sensing image obtained in this study is a ground distance
multi-view product in IW GRD interference wide mode (TOPS Mode), with rising orbit and
two polarization modes of VV and VH. To eliminate or reduce the errors by noise, radiation,
and terrain fluctuations from the original product, the radar remote sensing images are
preprocessed by SNAP software using the following operations: thermal noise removal,
radiation correction, speckle filtering, radiometric calibration, and terrain correction [9].
Furthermore, the radar remote sensing images are preprocessed by the operations of
transformation of the coordinate system, mosaic, and crop.

2.2.2. Ground Data

The ground data used in this paper are DEM (Figure 2) and the inventory data for
forest management planning and design in 2017.

Forests 2022, 13, x FOR PEER REVIEW 5 of 19 
 

 

Table 1. Details of the remote sensing data with specifications and dates of acquisition. 

Type of Remote 
Sensing Images 

Satellite Date of Acquisition Product Level 

Optical remote 
sensing 

Sentiniel-2B, Sentinel-2A 27 November 2017, 3 scenes 
31 October 2017, 1 scene 

L1C 

Radar remote sens-
ing 

Sentinel-1A 13 October 2017, 2 scenes IW GRD 

From the Sentinel-2B level 1-C product, the atmospheric correction is performed by 
the plug-in software of Sen2cor to eliminate the radiation errors caused by the atmos-
phere, and resampling is performed by SNAP software. Furthermore, ENVI software is 
used to convert the image coordinate system from the Global Navigation Satellite System 
(GNSS) to the China Geodetic Coordinate System 2000 (CGCS2000) and perform a mosaic 
to fuse the four-scene optical images into a complete image. Finally, based on the admin-
istrative vector map of Linhai City, the mosaic remote sensing image is cropped. There-
fore, an optical remote sensing image consistent with the boundary of the study area is 
obtained. 

The propagation and scattering of electromagnetic waves are both vector phe-
nomena, and polarization is used to study the vector characteristics of electromag-
netic waves. The radar can transmit horizontal (H) or vertical (V) electric field vectors, 
and can also receive horizontal (H) or vertical (V) signals. HH, VV, HV, and VH are 
four polarization modes commonly used in the Sentinel-1 radar remote sensing sys-
tem. VV–VH is mainly used to observe land, while HH–HV and HH are usually used 
to monitor polar environments. The Sentinel-1 radar remote sensing image obtained in 
this study is a ground distance multi-view product in IW GRD interference wide mode 
(TOPS Mode), with rising orbit and two polarization modes of VV and VH. To eliminate 
or reduce the errors by noise, radiation, and terrain fluctuations from the original product, 
the radar remote sensing images are preprocessed by SNAP software using the following 
operations: thermal noise removal, radiation correction, speckle filtering, radiometric cal-
ibration, and terrain correction [9]. Furthermore, the radar remote sensing images are pre-
processed by the operations of transformation of the coordinate system, mosaic, and crop. 

2.2.2. Ground Data 
The ground data used in this paper are DEM (Figure 2) and the inventory data for 

forest management planning and design in 2017. 

 
Figure 2. DEM image of Lin Hai for generation of terrain factors. Figure 2. DEM image of Lin Hai for generation of terrain factors.

The DEM data with 30 m resolution and the World Geodetic System 1984 (WGS84), in-
cluding four-scene images, are supplied by the International Scientific & Technical Data Mirror
Site, Computer Network Information Center, Chinese Academy of Sciences (www.gscloud.cn
(accessed on 15 December 2020)). The preprocessing operations of transformation of the
coordinate system, mosaic, and crop for the DEM images are described in Section 2.2.1.

The inventory data for forest management planning and design, containing 59,636 sub-
compartments, were provided by the Forestry Bureau of Linhai in 2017. In order to
eliminate erroneous and incorrect data, the following two steps are implemented: the first
step is to remove the samples with non-forest, zero-volume, or zero-canopy density sub-
compartments; the second step is to further remove the samples according to the principle
of three times the standard deviation [43]. Finally, 18,987 valid samples were involved
in the following research, including 10 dominant tree species (mixed broadleaf forest,
mixed coniferous and broadleaf forest, other hard wide class, Pinus massoniana, mixed
coniferous forest, Chinese fir, Camphor, Schima superba, other soft broad class, cedar). The
sub-compartments ranged in size from 2000 m2 to 359,333 m2, and the distribution of the
stock volume per hectare is shown in Figure 3.

www.gscloud.cn
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2.3. Independent Variable Factor Extraction
2.3.1. The Independent Variable Factors from Optical Remote Sensing Images

The independent variables from optical remote sensing images of Sentinel-2 include
two types of factors: original factors (Band 1, Band 2, Band 3, Band 4, Band 5, Band 6,
Band 7, Band 8, Band 8A, Band 9, Band 10, Band 11, Band 12) and derivational factors
(vegetation indices, shown in Table 2), which are calculated by the original factors.

Table 2. Vegetation index formulas.

No. Vegetation Index Formula Reference

1 Soil Adjusted Vegetation Index (SAVI) SAVI = ((NIR − R)/(NIR + R + L)) × 1.5 [52]
2 Ratio Vegetation Index (RVI) RVI = NIR/R [53]
3 Nonlinear Index (NLI) NLI = ((NIR × NIR) − R)/((NIR × NIR) + R) [54]
4 Normalized Difference Vegetation Index (NDVI) NDVI = (NIR − R)/(NIR + R) [55]
5 Modified Normalized Difference Vegetation Index (mNDVI) mNDVI = (NIR − R)/(NIR + R − 2 × B) [56]
6 Normalized Difference Infrared Index (NDII) NDII = (NIR − SWIR1)/(NIR + SWIR1) [57]
7 Normalized Difference Green Index (NDGI) NDGI = (G − R)/(G + R) [58]
8 Enhanced Vegetation Index (EVI) EVI = 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) [59]
9 Difference Vegetation Index (DVI) DVI = NIR − R [60]
10 RedEdge Ratio Vegetation Index (RVIre) RVIre = NIR/Re [61]
11 RedEdge1 Normalized Difference Vegetation Index (NDVIre1) NDVIre1 = (NIR − Re1)/(NIR + Re1) [62]
12 RedEdge2 Normalized Difference Vegetation Index (NDVIre2) NDVIre2 = (NIR − Re2)/(NIR + Re2) [62]
13 Modified RedEdge Normalized Difference Vegetation Index (mNDVIre) mNDVIre = (NIR − Re1)/(NIR + Re1-2 × B) [56]
14 RedEdge Nonlinear index(NLIre) NLIre = ((NIR × NIR) − Re1)/((NIR × NIR) + Re1) [61]

Note: L = 0.5 in most conditions; R, red; G, green; B, blue; NIR, near-infrared; SWIR, short-wave infrared;
Re, RedEdge.

Of the thirteen bands originating from Sentinel-2 remote sensing images, there are four
(Band 2, Band 3, Band 4, and Band 8) with a higher resolution of 10 m. After combining
the four bands [63], the principal component analysis (PCA) method is utilized to eliminate
collinearity and calculate important principal components [64], and from the first important
principal component, eight texture-independent variable factors are obtained: mean, variance,
homogeneity, contrast, dissimilarity, entropy, angular second moment, and correlation.

2.3.2. The Independent Variable Factors from Radar Remote Sensing Images

From radar remote sensing images, four independent variable factors are obtained,
which are the backscatter coefficient VV, VH, the polarization ratio VV/VH, and the
polarization difference VV–VH.
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2.3.3. The Independent Variable Factors from Ground Data

From the inventory data for forest management planning and design, there are nine
independent variable factors involved in the research, which include slope direction
(PO_XIANG), slope position (PO_WEI), soil thickness (TU_CENG_HD), humus thickness
(FU_ZHI_HD), vegetation coverage (ZB_FGD), forest population (QUN_LUO), dominant
tree species (YOU_SHI_SZ), tree age (NL), and canopy density (YU_BI_DU). In the nine
independent variables, the slope direction (PO_XIANG), humus thickness (FU_ZHI_HD),
forest population (QUN_LUO), and dominant tree species (YOU_SHI_SZ) are the categor-
ical characteristic factors. Furthermore, we extract three independent variable factors of
elevation (ELEVATION), slope (SLOPE), and aspect angle (ASPECT) from DEM data.

2.3.4. Data Integration

To summarize all factors from Section 2.2.1 to Section 2.2.2, there are 34 independent
variable factors and four characteristic variables (Table 3). In ArcGIS 10.2 (Environmental
Systems Research Institute, Redlands, CA, USA), the DEM data and remote sensing data
were extracted based on each sub-compartment. For modeling and prediction, all the
preprocessed data, including the inventory data for forest management planning and
design, DEM data, and remote sensing images from Sentinel-2B and Sentinel-1A, were
integrated into the same relational database. The remaining 18,987 samples were randomly
divided into a training set and tested set according to the ratio of 7:3.

Table 3. List of the characteristic factors.

No. Factor Name Explanation Source of Data Types of Factors

1–14 Refer to Table 2
Vegetation indexes
from optical remote

sensing images

Independent
Variable Factors

15 Mean Mean

Texture features
from optical remote

sensing images

16 Variance Variance
17 Homogeneity Homogeneity
18 Contrast Contrast
19 Dissimilarity Dissimilarity
20 Entropy Entropy
21 Angular second moment Angular second moment
22 Correlation Correlation

23 VV VV polarization
Radar remote

sensing images
24 VH VH polarization
25 VV/VH Polarization coefficient ratio
26 VV-VH Polarization coefficient difference

27 ELEVATION Altitude
Digital elevation model28 SLOPE Slope

29 ASPECT Aspect angle

30 PO_WEI Slope position
Inventory data for
forest management

planning and design

31 TU_CENG_HD Soil thickness
32 ZB_FGD Vegetation coverage
33 NL Tree age
34 YU_BI_DU Canopy density

35 QUN_LUO Forest population Inventory data for
forest management

planning and design
Category features36 YOU_SHI_SZ Dominant species

37 FU_ZHI_HD Humus thickness
38 PO_XIANG Aspect direction

2.4. Methods
2.4.1. Gradient Boosting Decision Tree (GBDT)

GBDT [40] is an integrated machine learning (ML) algorithm that uses multiple deci-
sion trees (DTs) as basic learners. Each decision tree (DT) is not independent because the



Forests 2022, 13, 1471 8 of 18

newly added DT increases the emphasis on the misclassification samples obtained by the
previous DTs. The GBDT algorithm takes the residual of the previous DTs as the input of
the next DT. Thereby, the added DT is used to reduce the residual so that the loss decreases
following the negative gradient direction in each iteration.

2.4.2. eXtreme Gradient Boosting (XGBoost)

XGBoost [45] is an integrated ML algorithm based on GBDT. The basic idea of the
XGBoost algorithm is to first establish a base classifier/regressor and then gradually add
new classifiers/regressors. After each classifier/regressor is added, the value of the ob-
jective function is calculated again to continuously improve the expression effect of the
model. This algorithm has strong generalization performance and can reduce over-fitting
by introducing the regularization term in the objective function, which is significantly
different from the GBDT.

2.4.3. Categorical Boosting (CatBoost)

CatBoost [50] is derived from “Category” and “Boosting”, and is also a kind of boosting
algorithm. The CatBoost algorithm overcomes the shortcomings of the original boosting
algorithm, such as data offset problems, and is used in the processing of prediction offsets
and categorical features. The following improvements have been made:

1. To predict the offset: Traditional gradient enhancement depends on the sample itself
for gradient calculation, and noise points will bring prediction offsets and eventually
lead to overfitting. CatBoost first sorts the entire dataset several times and then
removes the i-th data item for the first i-1 pieces of data, calculates the loss function
and gradient, builds a residual tree, and finally adds the residual tree to the original
model, which effectively avoids the prediction offset and reduces overfitting.

2. To process the category features: The CatBoost algorithm can automatically process
categorical features and combine the original category features according to the
inherent relationship of the features, which enriches the feature dimensions to improve
the accuracy of the prediction results. In addition, the automatic processing of category
features also greatly improves efficiency.

Suppose the observation dataset S = {(X1, Y1), (X2, Y2),. . . , (Xn, Yn)}, where Xi =
(xi1, xi2,. . . , xin) is the n-dimensional vector of a set of numerical features and categorical
features, and Yi is the labeled value.

Firstly, the CatBoost algorithm binarizes all numerical features: the oblivious tree is
used as the base predictor to binarize the floating point features, statistical information,
and codes by one-hot encoding. Secondly, the categorical features are transformed into
digital features. The specific steps are as follows.

(1) To randomly arrange the categorical features to generate multiple random sequences.
(2) To replace each sequence’s value with the average label value of the training dataset

(shown in Formula (1)).

xik =
∑n

j=1

[
xjk == xik

]
∗Yj

∑n
j=1

[
xjk == xik

] (1)

where if xjk == xik, then [xjk = xik] = 1; otherwise, xjk = 0.
(3) To convert the sequence’s value into a numerical value (shown in Formula (2)).

xθp ,k =
∑

p−1
j=1

[
xθj ,k = xθp ,k

]
+ a ∗ P

∑
p−1
j=1

[
xθj ,k = xθp ,k

]
+ a

(2)

where θ = (θ1, θ2 . . . . . . , θn)
T
n , P is the prior value, and a is the coefficient of the

weight for the prior of P.
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A relatively novel algorithm with very powerful prediction ability, the CatBoost model
was developed in 2018, and it is worth applying to estimate forest growing stock.

2.4.4. Least Absolute Shrinkage and Selection Operator (Lasso)

Lasso [51] is an embedded feature selection method. By adding the L1 penalty term,
Lasso reduces the value to 0 to the coefficients of those nonsignificant features, so as to
remove them from the independent variables. Compared with other variable selection
methods, the Lasso method has the advantages of higher effectiveness and better stability.

2.5. Model Performance Indicators

We chose a 10-fold cross-validation method to evaluate the accuracy of the model.
The performance indicators include the coefficient of determination (R-squared, R2), mean
square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
root mean square error (RMSE), and relative root mean square error (RMSEr), calculated by
Formulas (3)–(8).

R2 =
∑N

i=1

( ∧
yi −

−
y
)2

∑N
i=1

(
yi −

−
y
)2 (3)

MSE =
1
N

N

∑
i=1

(
yi −

∧
yi

)2
(4)

MAE =
1
N

N

∑
i=1

∣∣∣( ∧yi − yi

)∣∣∣ (5)

MAPE =
1
N

N

∑
i=1

∣∣∣(∧yi − yi

)∣∣∣
yi

(6)

RMSE =
√

MSE (7)

RMSEr =
RMSE
−
y

(8)

where N represents the number of samples, yi is the i-th measured value, ŷi is the estimated

value,
−
y is the mean of all yi, and the expression for calculating

−
y is

−
y = 1

N

N
∑

i=1
yi.

3. Results

Based on whether to add category features and whether to add Sentinel-1 remote
sensing data, four data schemes are designed: A, B, C, and D (as shown in Table 4).

Table 4. Data schemes.

Data Scheme Data Source Category Features

A
Sentinel-2, DEM, Inventory data for forest

management planning and design
Did not add

B
Added

C
Sentinel-2, Sentiniel-1, DEM, Inventory data for

forest management planning and design
Did not add

D
Added
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3.1. Screening for Independent Variable Factors
3.1.1. Variable Screening for Data Schemes A and B

Based on data schemes A and B, which include the data sources of Sentinel-2, DEM,
and inventory data for forest management planning and design, a total of 30 initial numeri-
cal features are extracted. Furthermore, the Lasso method is used to select more critical
independent variable factors from the 30 numerical features. After parameter tuning for
the Lasso, the value of alpha is set to 0.0005, and the value of the threshold coefficient is
set to 0.02. Finally, the remaining independent variables (Figure 4a) include five factors,
namely, canopy density (YU_BI_DU), correlation, tree age (NL), variance, and entropy.
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3.1.2. Variable Screening for Data Schemes C and D

Based on the data schemes C and D, which include the data sources of Sentinel-2,
Sentinel-1, DEM, and inventory data for forest management planning and design, a total of
34 initial numerical features are extracted. Using the same feature selection method and pa-
rameter values as in Section 3.1.1, seven independent variables (Figure 4b) remain, namely,
canopy density (YU_BI_DU), polarization ratio (VV/VH), variance (VARIANCE), tree age
(NL), backscatter coefficient (VV), entropy (ENTROPY), and correlation (CORRELATION).

3.2. Result Analysis
3.2.1. Analysis for Data Schemes A and B

From the data schemes A and B, with the five remaining factors of canopy density
(YU_BI_DU), correlation (Correlation), tree age (NL), variance (VARIANCE), and entropy
(ENTROPY) as independent variables, and the forest growing stock per hectare as the
dependent variable, the models based on GBDT, XGBoost, and CatBoost are developed.
The performance indicators of models to estimate the forest growing stock based on data
schemes A and B are shown in Table 5.

The models based on data scheme B have four more category features than data scheme
A. The performance indicators are evidently improved, with R2 increases of 9.20–11.76%.
The MSE, MAE, and MAPE decrease by 17.40–26.47%, 9.20–16.20%, and from 24.70–27.02%
to 21.03–24.64%, respectively. It can also be seen from the performance indicators that the
CatBoost algorithm is the best model to estimate forest growing stock. In the model of
CatBoost, when using data scheme A, the highest value of R2 is 0.68, and the lowest MAPE
is 24.70%. When using data scheme B, the highest value of R2 is 0.76, and the lowest MAPE
is 21.03%.
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Table 5. Performance indicators for forest growing stock estimation based on data schemes A, B, C, and D.

Data Scheme A B C D

GBDT

R2 0.65 0.71 0.63 0.72
MSE 1.09 0.90 1.05 0.78

MAE (m3/ha) 0.76 0.69 0.78 0.68
MAPE (%) 27.02 24.64 23.71 20.28

RMSE 1.04 0.95 1.02 0.88
RMSEr (%) 25.90 23.53 25.42 21.91

XGBoost

R2 0.66 0.73 0.63 0.75
MSE 1.06 0.86 1.03 0.71

MAE(m3/ha) 0.74 0.66 0.76 0.62
MAPE (%) 25.93 22.99 22.83 18.28

RMSE 1.03 0.93 1.01 0.84
RMSEr (%) 25.54 23.00 25.17 20.90

CatBoost

R2 0.68 0.76 0.65 0.78
MSE 1.02 0.75 1.04 0.62

MAE (m3/ha) 0.74 0.62 0.77 0.59
MAPE (%) 24.70 21.03 21.63 16.20

RMSE 1.01 0.87 1.02 0.79
RMSEr (%) 25.05 21.48 25.29 19.53

3.2.2. Analysis for Data Schemes C and D

The models based on data scheme D have four more category features than data
scheme C. The performance indicators are also evidently improved, with R2 increases of
14.29–20.00%. The MSE, MAE, and MAPE decrease by 25.71–40.38%, 12.82–23.38%, and
from 21.03–23.71% to 16.20–20.28%, respectively. It can also be seen from the performance
indicators that the CatBoost algorithm is the best model to estimate forest growing stock. In
the model of CatBoost, when using data scheme C, the highest value of R2 is 0.65, and the
lowest MAPE is 21.63%. When using data scheme D, the highest value of R2 is 0.78, and the
lowest MAPE is 16.20%. Furthermore, comparing scheme C with scheme A, there is only a
slight gap for the three indicators of R2, MSE, and MAE. However, the MAPE significantly
decreased by 11.96–12.43% for the models XGBoost, GBDT, and CatBoost. The comparative
study of scheme D and scheme B also shows that the MAPE significantly decreased by
17.70–22.97% for the models GBDT, XGBoost, and CatBoost.

Figure 5 depicts a comprehensive and intuitive comparison of the performance indica-
tors generated by the models GBDT, XGBoost, and CatBoost, showing that CatBoost is the
best model to estimate forest growing stock. Regarding the data sources, data scheme D
is the best scheme. The introduction of category features effectively improves the perfor-
mance, and the radar remote sensing factors can also be used to improve the estimation
accuracy with a significant decrease in the MAPE.

In detail, Figure 6 shows a scatter plot of the estimated values (values calculated by
models) and measured values (values from the inventory data) for the sub-compartments
based on the four data schemes (schemes A, B, C, and D) and the three models (GBDT,
XGBoost, and CatBoost). It has been experimentally proven that the performance indica-
tors of R2 and MAPE with category features (in data schemes B and D) are significantly
better than those without category features (in data schemes A and C). Furthermore, the
introduction of radar remote sensing factors efficiently reduces the MAPE so that a higher
accuracy can be obtained for estimating forest growing stock. Additionally, the scattered
points generated by CatBoost are closer to sub-diagonal (the diagonal from bottom left to
top right) than the ones generated by GBDT and XGBoost.
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multi-source remote sensing data; (d1) GBDT, (d2) XGBoost, (d3) CatBoost.

4. Discussion
4.1. Principal Findings

From the research results, we can make the following points. (1) The Lasso feature
selection method can effectively remove non-significant indicators. (2) Compared with
other machine learning models, the CatBoost model has obvious advantages in estimating
the forest growing stock. (3) The addition of category features significantly improves the
performance of the models.
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4.2. Comparison with Other Studies

Among the performance indicators, R2 represents the fitting degree between the
measured values and estimated values, and RMSEr (%) and MAPE (%) represent the
model’s estimated deviation degree of the measured values. Because the three indicators
reflect the relative relationship between measured data and estimated data rather than
absolute deviation, they can avoid being affected by the measurement unit of sample
data, so they are more suitable for performance comparison between different studies.
Accordingly, we compared our study with existing relevant studies in the performance
indicators of R2, RMSEr (%), and MAPE (%) (shown in Table 6).

Table 6. Comparison analysis.

Scheme Mauya [65] Ruyi Zhou [43] Jingjing Zhou [66] Our Study

R2 0.63 0.65 0.84 0.78
RMSEr (%) 42.03% - 28.77% 19.53%
MAPE (%) - 32.89% - 16.20%

Table 6 shows that the performance indicators of RMSEr (%) and MAPE (%) in our study
are significantly improved compared with previous studies [43,65,66]; the R2 is also maintained
at a relatively higher level than in the research by Mauya (2019) and Ruyi Zhou (2018).

The estimation accuracy of this study is 83.8%, which is slightly lower than the 84.5%
estimation accuracy of Huang Yuling et al. [67], who used only 4002 experimental samples,
which is far lower than our study with 18,987 data samples. The R2 in this study is
0.78, which is less than 0.84, the value of R2 in the study by Jingjing Zhou (2020). While
comparing the study area between our study and that of Jingjing Zhou, an indisputable
fact is that the former is 150,396 ha, which is much larger than the latter’s 7600 ha. This
shows that the CatBoost algorithm used in this study has relatively high accuracy and
generalization ability to estimate forest growing stock, even in the case of a larger amount
of data and larger study area size than previous studies.

4.3. Strengths and Limitations of This Study

We utilized multi-source data, which include the optical remote sensing data from
the satellite of Sentinel-2, radar remote sensing data from the satellite of Sentinel-1, DEM,
and inventory data for forest management planning and design. An initial independent
variable set is established, which includes spectral features from Sentinel-2, texture features
from Sentinel-2, polarization features from Sentinel-1, topographic features (elevation,
slope, and aspect angle) from DEM, and ground factors from the inventory data for forest
management planning and design. Based on whether to add category features and whether
to add Sentinel-1 remote sensing data, we designed four data schemes: A, B, C, and D.
Additionally, the Lasso algorithm was used to select relatively important features from the
initial independent variables. Finally, three models, GBDT, XGBoost, and CatBoost, were
involved in the study. The main contributions are as follows:

(1) A total of 34 independent variable factors are obtained, and the Lasso algorithm
effectively reduces the number of independently variable factors so as to speed up the
training process of the model and improve the generalization ability of the model.

(2) The addition of category features significantly improves the performance of the
models. This mainly depends on contributions of two aspects. One is the category
features of forest population and dominant species; the addition of these category
features gives more targeted estimation results according to different categories. The
other is for the category features of humus thickness and aspect direction; the addition
of these category features further reflects the relationship between the plant growth
and the environmental factors, e.g., plants with thicker humus or on sunny slopes
tend to grow better. Therefore, the model inclines to obtain a higher accuracy after
adding category features.
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(3) It is easier to obtain the vertical structure parameters of vegetation by radar remote
sensing data, which can overcome the shortcomings of optical remote sensing data
to a certain extent. Thus, the combination of radar remote sensing data and optical
remote sensing data can be used to estimate forest growing stock more accurately
than single remote sensing data.

(4) When adding the radar remote sensing data and the category features, the perfor-
mance of the model improved significantly. Compared with data scheme A (without
radar remote sensing data and without category features), for scheme D (with radar
remote sensing data and with category features), the R2 increased by 10.76–14.71%,
while MSE, MAE, and MAPE decreased by 28.44–39.22%, 10.53–20.27%, and from
24.70–27.02% to 16.20–20.28%, respectively.

(5) CatBoost first sorts the entire dataset several times and then removes the i-th data
item, and builds residual trees and adds them to the original model step by step,
which effectively avoids the prediction offset and reduces overfitting. Furthermore,
the CatBoost algorithm can automatically process categorical features and combines
the original category features according to the inherent relationship of the features,
which enriches the feature dimensions to improve the accuracy of the prediction
results. Thus, CatBoost is the best of the three models GBDT, XGBoost, and CatBoost.
When based on data scheme D, the performance indicators of the CatBoost model are
R2 of 0.78, MSE of 0.62 m3/ha, MAE of 0.59 m3/ha, and MAPE of 16.20%. Moreover,
the estimation accuracy is close to 85%, which has practical significance and benefit in
estimating the forest growing stock.

Different from existing studies, we performed label encoding and one-hot encoding
on category features and applied them to model estimation. In addition, we also attempted
to use the CatBoost model to estimate large-scale forest growing stock. This is also the main
innovation of this paper.

However, due to the limitations of experimental conditions, the following points need
to be optimized and improved:

(1) The texture features of remote sensing images can effectively improve the estimation
accuracy to estimate forest growing stock. However, we only extracted the texture
features from optical remote sensing images. If various window sizes, asynchronous
lengths, and combinations from various bands are used to extract the texture features
of radar remote sensing images, it would be helpful to explore the impact of texture
features to improve the estimating accuracy [11].

(2) The imaging date of remote sensing images used in this study is between October and
November. There are some inconsistencies with the tree growth period. In the autumn
and winter, some tree species are entering dormancy, which may lead to yellowing
and even falling leaves. The vegetation information reflected from the remote sensing
images, especially the optical remote sensing images, may not correctly reflect the sincere
information of trees, which would reduce the estimation accuracy of the models. If
remote sensing images with an imaging date consistent with the growth period of trees
can be found in the future, the estimating accuracy may be further optimized.

(3) It is necessary to verify the generality of the model through a more extensive range of
the estimation of forest growing stock volume. Santoro et al. [68]’s research on global
biomass estimates will provide us with a validation set.

5. Conclusions

In this study, optical remote sensing data, radar remote sensing data, DEM data, and
inventory data for forest management planning and design were used to estimate the forest
growing stock of 18,987 sub-compartments in Linhai City using three machine learning
algorithms. Our specific conclusions are as follows:

(1) The Lasso algorithm effectively reduced the number of independent variable factors
and retained the main features, speeding up the training process of the model and
improving the generalization ability of the model.
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(2) Radar remote sensing waves more easily penetrate the forest surface to obtain the
vertical parameters of the forest, which makes up for the shortcomings of optical
remote sensing data sources to a certain extent and could improve the estimation
accuracy of forest growing stock.

(3) The addition of category features led to more targeted estimation and significantly
improved the performance of the models.

(4) To estimate the forest growing stock, the CatBoost algorithm is the best model among
the three models GBDT, XGBoost, and CatBoost. Distinguished from the common ar-
tificial classification methods which established different models according to various
category characteristics, the CatBoost model is more efficient and convenient.
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